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A Variable Order Finite Difference Method
for Nonlinear Multipoint Boundary Value Problems

By M. Lentini and V. Pereyra

Abstract.   An adaptive finite difference method for first order nonlinear systems

of ordinary differential equations subject to multipoint nonlinear boundary conditions

is presented.   The method is based on a discretization studied earlier by H. B. Keller.
Variable order is provided through deferred corrections, while a built-in natural

asymptotic estimator is used to automatically refine the mesh in order to achieve a

required tolerance.   Extensive numerical experimentation and a FORTRAN program

are included.

1. Introduction. In this paper, we intend to show how a finite difference tech-
nique can be developed to produce high order approximations to the solution of mul-
tipoint, nonlinear boundary value problems for first order systems of equations.

We shall present extensive numerical evidence and comparisons with results pub-
lished in the current literature showing that the method is extremely accurate and that
it performs very efficiently.

Moderate accuracy can also be obtained economically in terms of time and
storage by working on very coarse meshes.  All our results have been obtained with a
general purpose program, whose structure can be (and has been) employed in other
applications (Pereyra [20] ).

Following Keller [11] we consider the nonlinear first order system

(1.1a) y'(t) - f(t, y(t)) = 0,      a < t < b,

subject to the multipoint boundary conditions:

(Lib) g(y(r1),---,y(TN)) = o,     a<T1<T2<---<rN<b.

The vector functions y(t), f(t, y), and g will take values in R".  Considering the
nonuniform net {t.}:
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982 M. LENTINI AND V. PEREYRA

tn =a,     t. = t.   ,+h.,       l<j<J,      t=b,(1.2) o     '      /     /-i      /' ' J
h = max/i.,      {r.} C {t.},

the simple finite difference scheme

(1.3a)     Nhu. = - (u. - u}_X)-M\f(t,-_ v»f_1)+ f(ff uf)] =0,      / = 1, • • •, J,
7

(1.3b) g(u   ,...,«   ) = 0,
'i 'n

will produce 0(h2) accurate discrete approximations under mild conditions which
will be spelled out in Section 2.  An asymptotic expansion in even powers of h  for
the global discretization error «• ~y(t¡) can be shown to exist, and this knowledge
justifies the use of deferred corrections which will increment the order of the method
in two units per correction, working always on the same basic mesh.

The adaptive scheme of Section 4 is designed so that the highest order method,
compatible with the current mesh and with increasing returns in accuracy, is always
used.  The main tool employed to decide which path to follow in the program logical
tree is the very natural and effective asymptotic error estimator described in Section 3.

By reduction to first order systems in the usual way, systems of higher order
equations can be treated.  In this respect, we remark that, in sharp contrast to other high
order methods, not only the unknown function but all its derivatives up to one unit less
than the order of the equation are approximated with the same asymptotic order.

From the current literature, we have chosen a set of representative problems used
to test variational spline methods, shooting and parallel shooting, and a finite differ-
ence technique similar to (1.3), but where high order is achieved via Richardson extra-
polation.

Numerical results obtained with our technique are presented in Section 5.  In
each case, we give pointers to the papers in which the test has been used before, and
in a few relevant cases we compare different numerical results.  Due to the fact that
most numerical tests in this area are published with little detail concerning implemen-
tation, computer times, and so on, it is hard to make any final judgement about the
relative merits of the different techniques.  The ultimate comparison will be that given
by the user which will require:  ease of use, applicability or adaptability to its particular
problem, and overall:  economy in computer cost and reliability.

Our program (which is appended) has been developed with these requirements
in mind, and we have tried to achieve the quality and high standards of the general
purpose software currently available for initial value problems.

In this first stage, we present a version which is not as general as the one described
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NONLINEAR MULTIPOINT BOUNDARY VALUE PROBLEMS 983

theoretically.  We consider only linear two-point boundary conditions of the form
Ay (a) + By(b) = a and uniform meshes.

However, we have used (Section 6) a variation of the program (not presented
here) which handles a jump discontinuity.  It is fairly clear that a general program can
be written with a moderate amount of additional work.  We are really waiting to develop
an effective automatic procedure for choosing nonuniform meshes before undertaking
a more general program.

2.  Keller's Results for the Basic Method [8], [9], [11].  The main theoretical
support for our method is provided by the thorough analysis that H. B. Keller has made
of the second order scheme (1.3), and by the general theory of deferred corrections
developed by the second author of this paper [16].  For completeness, we shall now
describe the minimum material necessary to present our results.

A solution y*(t) of (1.1) is said to be isolated if the linearized problem (around
y*) has a unique solution. We assume that (1.1) has an isolated solution y*(t). Then,
for sufficiently small h0  and all h <,h0, we have:

(i)  The difference equation (1.3) has a unique solution in a neighborhood of
{y*(t¿)}, which can be computed by Newton's method.  The convergence is quadratic
for appropriate initial values.

(ii)  mzxj\\uj-y*(tj)\\ = 0(h2).
(iii) ury%) = ^=lh2vev(tj) + 0(h2m+2),j = 0, • • •, /.
(iv) Writing (1.3) in vector form

<$>n(U) = 0,    with    U = (uQ, ■■■, ufí,   and

'i 'n

*HUJ

we have the stability condition

(2.1) 11(7- HI < C\Wh(U) - $h(V)W,    C independent of h,

(which can be readily obtained from (3.4a) of [11]).
Most of these results can be extended to the important case in which the data

functions / and g are only piecewise smooth, with jump discontinuities allowed at
the boundary points {r}.

\(U) =
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984 M. LENTINI AND V. PEREYRA

We shall also need the Fre'chet derivative (Jacobian matrix) of the operator
$n(U)- This matrix has the following block structure:

(2.2) *;(£o=

g, ■•• gj
R, 0 ••• 0

v    *
\    *
\    \

<\      \    \    ■
\      *     v
\    *   \ •
\ \       V

>, \

where all the submatrices are of size n x n, and

G, = (3/3«,)*,      / = 0, • • •, /,

sr-[iI + ti-]>    Rrf\/"2f'r    > = 1»■-7 -I 7
,j,

3.   Deferred Corrections and Asymptotic Error Estimates.   By using Taylor
series we can easily obtain an asymptotic expansion for the local discretization error
**(?*) = **(>'*)•   In fact,

(3.1)

where

,(y*)(76   , +Wi.)=-   Y——-
~l 2^-1(2t'+ 1)

+ 0(h2L + 2),

h2v

J'-1'2(2v)l

f}% =/C2p)(í/_1 + vbvy%_x + Hty).

Let Ffc(y*) be the segment of the expansion (3.1) containing its first k terms.
For each 1 < / < /, let i- be the only index for which

(3.2)

Then we define Sk  as

rt<tf_.+\6k,<Tti+v

(3.3)
27c

s^(y*)(t- , +1Áh.)= Zw../.     ..,
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where the p. are chosen so that

7 7 7

is satisfied.  The weights w- ,• are chosen so that

(3.5) Sk(y*) = Tk(y*) + 0(h2k + 2)

at each t_, + ?¿/i -, j = I, ■ ■ ■ , J.
Clearly, (3.4) imposes a condition on the mesh:
CM:  There must be at least (2k - 1) mesh points between boundary points.
Though it is not strictly necessary to require (3.4) in the case we are consider-

ing at present, we prefer to assume (3.4) to hold since this will be essential in the
case of piecewise smooth data, where we must avoid straddling a singularity in order
to obtain the desired accuracy (cf. Section 6).

Once CM is assured, (3.3) can always be constructed since it is simply a numer-
ical differentiation formula applied to each component of the (perhaps piecewise
smooth) vector function /.  With a small modification, the correction generator of
[19] can be used for this purpose (cf. also [16], [17]).

From [16], [18], it follows that, if Y{k~1) is an 0{h2k) accurate discrete
solution, then (3.5) is satisfied if y* is replaced by Y^k~1^ and that, for k > 1,
the solution A^fc_1^  of the linear problem

(3.6) $;(y-(fc-'>)A = Sk_ t(Y<fc-2>) - Sk(Yk~»)

is an asymptotic error estimator for ek_1 = Yk_l - $ny*, where S0 = 0, and
<t>h projects y*(x) on the mesh functions.  In fact, we shall have

(3-7) Ak^=ek_1+0(h2k + 2).

The successively more accurate mesh solutions  Y^k^  are obtained by deferred cor-
rections, i.e., by solving for  Y^ the nonlinear problems:

(3-8) $h(Y) = Sh(Y<k-1)),      fc=l, •••.

These nonlinear problems can be solved by Newton's method, i.e., by the iteration:

(™) Y,+i = Y,-K(Yi)i~l\(Y,)'

starting from an appropriate   Y0.  Naturally, each step is performed by solving a
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986 M. LENTINI AND V. PEREYRA

linear system entirely similar to (3.6).  Because of the special structure of the sparse
matrix &h, there are various direct methods which can be employed.  In the case of
separated two-point boundary conditions, it is advisable to use the band or block
tridiagonal methods of Varah [25] and Keller [11].

Clearly, the difficulties in the asymptotic theory observed before in the simple
two-point boundary value problem [19], because of the use of different differentia-
tion formulas at different points, are also present in this case at each subinterval.
However, as in the simpler problem, we hope to show with our numerical experimen-
tation that, notwithstanding these theoretical difficulties, this is a very effective
technique.

Solution of the Linear Systems of Equations. We shall describe briefly the
direct solution of block systems of the form (2.2). We have included in (2.2) an
extra subdivision in order to treat the 2x2 "super-block" matrix:

(3.10)
[C ¡DJ \ n*J t
n  n*J

Considering the partitioned vectors

b =

the super-block system

(3.11)
~a i *"irxoi [K

_C     Dj\_x]    \_h _

is solved by elimination.  More explicitly:

(3.11a) x0 = (A - BD-lC)-l(h0-BD~lh),

(3.11b) m = (h-CxQ).

The main part of the computation is the solution of the block-bidiagonal sys-
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terns with the matrix D, corresponding to the computation of D   lC, D   lb.  By
putting C= [C|b], V = [F|w], where  V = D~lC, w = £>_1b, we have that the
system DV = C is solved by the recursion:

(3.12) V. = R-i(Cj-SjVj_1),      j=l,---,J,

where   V0 = 0, and the  K-, C,  correspond to the appropriate partitionings of V, C.
Naturally, the matrices /?■ are not inverted, but, rather, a good Gaussian elimination
code with pivoting is used to solve the corresponding matrix systems.  This provides
what Keller [11] calls partial pivoting.  With  V, (3.11) reduces to the solution of
the linear system

(3.13a) (A-BV)x0 = (h0-Bvt),

(3.13b) x = w-Fxft. o

Observe that in most cases the block-vector B will be quite sparse since there
will usually be many more grid points than boundary points.  This should be taken
into account in the computation.

4.  The Adaptive Method.  In [19], a variable order algorithm based on results
similar to those of Section 3 was developed for the two-point boundary value problem
for second order equations.  It was indicated there that the scheme had more general
applications, as we shall proceed to show now (cf. [20] also).

The problem we set ourselves to solve is the following:   "Given a boundary value
problem (1.1), a basic mesh Í2ft  (containing the boundary points T¡, i■'- 1, • • ■, N),
and a tolerance TOL, find an approximate solution  Y* defined (at least) on Q,h
and satisfying

(4.1) Il y*- 0^*11 < TOL."

The basic mesh Í2ft  is the region in which the user wants to know the solution
(minimal description):

(4-2) 'n*=f'/W ...,,-

We define the indices j,, by

t, =r„ i= 1, • ••, N,
(4.3) .

i'f-/l+1-/l+l,      f-l.-.tf-l.

and
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988 M. LENTINI AND V. PEREYRA

17 = min V..
i      '

By £îft/2, we shall denote the refinement of £ln  obtained by including all the
midpoints t-   x + fäh,.  Thus, J becomes U.

Algorithm.   Let k = 0.
If t>> 4, then we can compute S1   (cf. (3.1) and (3.5)).  In that case, on

Sln, we solve %(Y) = 0 for  y(0), and also solve 4>;(y(0))A = - ^(y*0)) for
A<°>.  Since   IIA(0)II is an error estimate for   lly<0) - 0^*11, we check if  H^\<°>II <
TOL and, if this condition is satisfied, we exit successfully.

If 17 < 4, then the first step just described cannot be performed and we refine
the mesh and try again.  If OLDERROR = llA(0)ll > TOL, then we enter in the
general correction loop:

Correction loop:   set  k equal to k + 1;
if t? < Ik + 2 then refine the mesh;
otherwise solve for  Y^k^  the nonlinear equation:

4>h(Y) = Sk(Y<k-1))

Compute and save Sk+i(Yik)).
Solve for A^ the linear equation:

$;(y<fc))A = sk(Y<k-^) - sk+ ,(y<fc>);

if NEWERROR = llA(fc)ll < TOL, then exit successfully;
otherwise if NEWERROR <C * OLDERROR (where 0 < C < 1) then
set OLDERROR to NEWERROR and go to Correction loop;
otherwise refine the mesh end.

The strategy behind this algorithm is that the highest order method compatible
with the current mesh is always used, unless the level of diminishing returns is reached
and no further improvement is obtained by increasing the order on the present mesh.
This last decision corresponds to the condition NEWERROR < C * OLDERROR,
where the constant C measures the minimum rate of improvement required of a
correction in order to continue on the given mesh.  This strategy is dictated by the
accumulated experience on multiple applications that indicates that greater efficiency
is achieved in this way than by refining the mesh prematurely.   (Recall that the
dimensionality of the problem increases when the mesh is refined.)

Another important feature, especially for nonlinear problems, is the following.
After the very first step on the basic mesh, where, usually, we will not have good
initial values, we can count on accurate initial values for starting all the successive
iterations.  In fact, to solve the equations  &n(Y) - Sk(Y^k~1^), we can use
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as starting values  y<fc_1) itself, while, upon refinement of the mesh, we can use the
latest value of Y on the coarse mesh, plus values interpolated from them for the
missing points in the new mesh.

The error estimate NEWERROR is profitably used in two ways, aside from the
one already mentioned above.  After the first step of the process, we use it to set
the level, at which the residual in the solution of the nonlinear equations, must be
reduced, in the next step.  When the grid is refined, the degree of interpolation used
to produce initial values for the new grid points, and the level of correction at which
the process will start, are also decided on the basis of information related to earlier
estimates.  When convergence of Newton's method cannot be achieved due to lack of
information to start the process, one might be forced to resort to more elaborate
techniques, as we exemplify in Section 7.

5.  Numerical Results.   In this section, we shall report on a fairly extensive set
of tests, mostly collected in the open literature.  In all cases, we write the equations
as first order systems, although in the references they might have been treated as high
order equations.  All results have been obtained on an IBM/360 model 50 computer
working with long words («* 16 decimal digits), using the FORTRAN program SYSSOL
listed in the Appendix.  There are two user parameters that must be given to SYSSOL:
TOL = user's desired accuracy (see 4.1) and N = number of points in the initial mesh.

Problem 1.

y\ =y2,

y'2=y\ - sin t (1 + sin2f),

y1(0)=yAit) = 0.

Exact solution. y¡(t) = sin t;y2(t) = cos t.
In [19], an adaptive method for second order equations was developed using

as a basic discretization the 0(h4) Milne-Numerov formula.   Results obtained with
SYSSOL are listed in Table 1.  The user parameters were:   TOL =5 x 10~15
and N = 9.

Table 1

Final estimated    Final true    Number of Final mesh
error error        corrections size

SYSSOL 3.2,- 15 2.2,- 15 6 33

[19] 7.0,-17 2.8,-15 3 33
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990 M. LENTINI AND V. PEREYRA

We observe in Table 1 that very similar results are obtained with both methods,
but, reflecting the fact that 4 orders are gained per correction, the method of [19]
requires only half the number of corrections.  Computer times are unfortunately non-
comparable, since the results for [19] were obtained on an IBM/360 Model 91.  How-
ever, we believe that the technique of [19] should be preferred whenever it applies.
As a matter of reference, the computer time on an IBM/360/50 for SYSSOL was
13.12 sec.

Problem 2.

yt=y2,

y'2 = 400(y, + cos2îtî) + 2tt2 cos2tt/;,

y1(0)=y1(l) = 0.

Exact solution.

y At) =    e~2°     e20t +-l--e~20t - cosV
1 1+e"20 1+e"20

,,    20e-20e20f         20 _20f ,       .  „
yjt) =-e  2Uf + tt sin27rr.

2 1+e"20        1+e-20

In Stöer and Bulirsch [24, Chapter 2, §6], this example is used to compare the
following methods:

(Ma) Simple shooting method (obviously, the example is designed to fail for this
method, and so it does);

(Mb) Multiple shooting of Bulirsch;
(Mc) 0(h2) finite difference method for second order equations;
(Md) Variational method using cubic splines.
We thank Professor Stöer for making his results available to us before [24] was ready.
In Table 2, we compare the maximum absolute errors of the various methods with

those obtained by SYSSOL, with TOL = 5 x 10_11,iV=65.

Table 2

_Max. abs. error_Comments_

Ma 1.3,-3
Mb 5.0, — 12 20 intermediary points.
Mc 5.6, — 6 210 mesh points.
Md 1.8,-6 100 subintervals.

SYSSOL 9.9, - 12 65 mesh points; 7 corrections.
21.74 sec. of computing time.
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Problem 3.

y\ =y2,

y2 -e \

y(0)=y(l) = 0.
Exact solution.

y.(t) = - In 2 + 2 In [c * sec (| (t - 0 j]

^2(í)=c*taní|hr-ijV

where c satisfies c*secc/4 = V2. To 16 significant figures, c= 1.336055694906108... .
This problem has been solved by a variety of techniques in [2], [5], [7], [11], [19],

[21 ]. In Table 3, we present some comparative figures. A description of the various
methods follows (in some cases, we have chosen only the most accurate results):

Ml : Ritz-Galerkin with polynomial subspaces P^K
Basis: indefinite integrals of Legendre polynomials.
Iterative method: Gauss-Seidel-Newton [2].

M2: Ritz-Galerkin with cubic Hermite subspaces H^\ coupled with four-point
Gaussian quadrature scheme [5].

M3: Ritz-Galerkin with smooth cubic splines Sp(D2, A(h), I) [7].
M4: Keller's method with Richardson's extrapolations, [11].
M5: 0(h8), Milne-Numerov, linear deferred corrections [19].
M6: Milne-Numerov with successive extrapolations [19].
M7:  Adaptive deferred corrections (SYSSOL).
We report max. abs. error for each method.

Table 3

Method Error                                         Comments

Ml 5.03, - 8 Dimension of P^ = 6.
M2 6.28, - 8 Dimension of H{2) = 24.
M3 7.15,-7 Dimension of S(2) = 16.
M4 1.09, — 11 Three extrapolations.   Basic mesh, h = 1/3.
M5 7.36,- 10 TV =8.
M6 4.01, - 12 Two extrapolations. Basic mesh, h = 1/4.
M7 5.35,-12 k = 2. NQ =9. N final = 17.

M7 3.98,-15 k = 4. N0 = 17. N final = 33.
Time on IBM 360/50:  4.1 seconds.
ft: = 4. N0 = 17. N final = 33
Computer time:   8.76 seconds.
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We observe that the only results with an accuracy comparable to SYSSOL are those
obtained with successive extrapolations (a very near cousin!) but that, as usual, the ac-
curate results correspond only to the coarsest mesh used (with 2 and 3 interior points
respectively in M4 and M6).

Problem 4. (Bending of a thin beam clamped at both ends.)

y\ =y2,

y'2=y*

y\ = (f4 + 14r3 + 49r2 + 32r - 12)ef,

yl(0)=y2(0)=y1(l)=y2(i) = 0.

Exact solution. y(t) - t2(l - t)2e{.
In [2], [5], this problem is solved by a variational method using smooth Hermite

subspaces //^(it) of piecewise cubic polynomials.
In Table 4, we compare max. abs. errors for the solution and its first derivative.

The value of k indicates the final number of correction terms.

Table 4

Method

Ritz-Galerkin
#<2)  of dim. 46

SYSSOL
17 points
k = 2

SYSSOL
33 points
fc = 6

Max. abs. error
function

Max. abs. error
derivative

1.70, 1.27,

4.70, 9.03,

1.82,- 14 9.65, - 15

The computer time on an IBM 360/50 for the most accurate results was of 13.82
sec, using 138 K.-bytes of main storage.
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Problem 5.

y\ =y2'

993

y'2=ß(yx -y3),

y*=y*-

y* = o*y3-y¿>

yx(0)=y4(0)=y2(s) = 0;     y4(s) = c,

with s=10,c = 10_3,a = /3=2.5.
Exact solution.

y

y.

ß+ t - y cosh(rt)/r + - sinh(7t)/7-

ß

■]■

1 - 7 sinh(7í) + - cosh(rr)

ßy/r + ßt + ay cosh(rt)/r - ß sinh(rt)¡r

ß + ay sinh(T-r) - ß cosh(rr)
]■

where

(^ cosh(rs) + 1 j ,r = y/a + ß,      7 = (    cosh(7-s) + 1 ) / sinh(7-s)

In [3], Falkenberg solves this problem by a method he calls "step wise inversion"
which is related to the Godunov-Conte method. This is also a problem which is unstable
for simple shooting. In Table 5 we show again max. abs. errors for the various compon-
ents as obtained with Falkenberg's algorithm and with SYSSOL.

Method max. abs.
error in

y,

Table 5

max. abs.
error in

^2

max. abs.
error in

^3

max. abs.
error in

^4

Falkenberg
10 steps

SYSSOL
33 points

fr = 7

io-

6 x 10"

10" 10" 10-9

1 1 1.5 x 10_1U  3.3 x 10-11   6.4 x 1011 u
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994 M. lentini and v. pereyra

Computer time on IBM 360/50 was 36.10 sec. for N0 = 9.
Finally, in Table 6, we present the results of a fairly extensive set of tests, which

shows the behavior of SYSSOL on the five problems of this section for different toler-
ances and initial step sizes.

Table 6

Problem

T0l> 17 33 65 33 65

10

10

10

-b
til

.96
(9)
3.27 3.21
(17) (17)
5.07 5.2
(17) (17)

.83     1.61     2.01        4.57 9.36
(17)
2.89]
(17)
[4.75
(17)

(33) (65)
3.19 6.19
(33) (65)
6.73 11.48
(33) (65)

Problem

17 35 65 17 33 65

10

10

10

.56
(9)
1.38
(9)
2.61
(17)

.38
(9)
|1. 03
(9)

.73     1.41
(17)
1.26
(17)

2.57
(17)

2.51
(17)

(33)
2.81
(33)
4.01
(33)

4.90
(65)
6.45
(65)
7.85
(65)

3.16
(9)
6.65
(17)

10.71
(17)

2.51|
(9)
6.241
(17)

3.22
(17)
6.57
(17)

10.23
(17)

8.83
(17)

6.40
(33)
9.86
(33)

14.56
(33)

13.11
(65)

18.98
(65)

18.68
(65)

Problem

10
-3

10

10
-9

17 33 65

1.73
(9)

1.61
(17)

2.22
(9)

18.02   17.50   14.04
(33)

3.37
(33)

(33)
29.81
(33)

(33)
29.12   25.07'(33)      (33)

11.561
(33)

23.32
(33)[

7.23
(65)

13.09
(65)

26.35
(65)

Time in seconds needed to reach the

indicated TOLerances in Problems 1
to 5. The number in parentheses is
the final number of points in the

mesh. The boxes indicate the mini-
mum time for fixed problem and tol-
erance .

The tolerances chosen (values of TOL) could be described as low, medium and
medium-high, while, in the individual results already given, we exemplified the results
for high precision (on this computer). These results are important since they show that
the algorithm is not geared exclusively towards high precision, which might be inade-
quate in many present day applications, but also performs economically at "engineering
precisions".

We observe in Table 6 that for each problem and a given tolerance (horizontal
lines), the final number of mesh points N¡ is independent of the initial one N0, until
N0 >Np when they start coinciding. What is more important, the minimum time, for
given problem and tolerance (marked by a box), is attained when 7V0 reaches N*. We
shall call the mesh with this number of points A'(TOL): the optimal mesh for the problem
(and tolerance). There is only one exception in the 15 cases shown: Problem 4, TOL =
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10-6. However, we see that the difference in times falls in the area of uncertainty due
to the multiprogramming environment (about 10%). Therefore, it would be quite im-
portant, from the point of view of this algorithm, to be able to predict jV(TOL) early
in the game.

Another point shown in this table is that underestimating tV(TOL) is less costly
than overestimating it. Very schematically, we can subsume the results of Table 6 in the
following diagram, where we present the curves time/(minimum time) versus
log2(7V0 - 1) for two hypothetical, though typical, cases.

time
min-    time

2   h

1.5

^_*log2(N0-1)

6.  Piecewise Smooth Data.  In [9], Keller develops, in all detail, the theory
mentioned in Section 2, restricted to the linear case but allowing jump discontinuities
in the function f(t, y(t)) =A(t)y(t) + g(t).  The only restriction is that those dis-
continuities must be limited to occur on the set of boundary points.   In Section 3,
we introduced a limitation stronger than necessary in the way by which the correction
operators Sk  were calculated.  This was done foreseeing the extension to the piece-
wise smooth case.  In fact, the only care we must exert in order that the whole theory
(and practice) of deferred correction holds true in this case, is not to straddle dis-
continuities in the calculation of the Sk. By working systematically on the smooth
subintervals, all the necessary expansions are valid (cf. [9] ).

The only small modifications that must be introduced in the general routine
are due to the fact that, at discontinuity points, we must use the proper information.
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For instance, let L - t¡ be a discontinuity point of f(t, y(t)), and let ff. ,ft be
the respective one-sided limits.  Then

N,

and

'„"• =T~(u. -u.    ,)-7,\f-    , +/T-1,hi.      h      v /•        7.-1'      0U]-X       Ji."'i      "i        'i        'i *■    'i 'i' i

^"•J.,   =7^— («.   . ,  -«{)-l|X+ +/,.,].h 'i+1    hj+1   'i+1      h     2   'i       V1N,
' iff'     n'i

Similar care must be exerted in the implementation of formula (3.3) and in the
computation of the Jacobian.  However, the same code as for the smooth case can
be used for computing the Sk  at each subinterval   [t¡, t/+1] , i.e., for (f_, + VJtX

/=/,+ 1, •■-./i+i-
Problem 6.

y\ =yv

y\=yy

y'3=y4,

,      (24,      0<x<l/2,
y4 = ]

(48,       1/2<x<1,

y1(0)=y2(0)=y1(i)=y2(i) = 0.

Exact solution.

_U4-fr3+y^2, 0<f<l/2,

1 2(r - l)4 + f{t - l)3 + y6 (t - l)2,      1/2 < f < 1.

yAt) =
4t3-^t2+^-t, 0<r<l/2,

(8(r-l)3+^(r-l)2+y(r-l), 1/2 <*-< 1-

nJ12f2-T' + T' °<r<1/2'
3 ) 57 97

(24(f-l)2+^(i-l) + ^, l/2<f<l.

y At) = 24/6-57/4, 0 < í < 1/2,

48(í-1) +57/4, l/2<f<l.
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In [21], this discontinuous problem is solved by a variational method using cubic
Hermite spaces H^f  In that paper, a comparison is made with a finite difference
method, showing the dangers of a naive approach to the problem.   In Table 7 we
compare the variational method with our finite difference method.

Method

Variational

Five-point
finite differences

SYSSOL

SYSSOL

Table 7

max. abs. error

1.25,- 5

8.53, - 3

4.43, -6

1.39, - 17

Comments

Dimension of //*2; = 1Í

79 mesh points

9 points
1 correction

33 points
5 corrections

One of the main points made in [21], when comparing the variational method
with the finite difference method, was that while the former method showed a per-
fect asymptotic behavior, the latter failed to show even second order convergence, and
computations on various meshes had a very erratic behavior.   The reason for these
results is apparent to us now:  the 5-point finite difference method straddled the
singularity at 1/2 for points near it, while the cubic Hermite method, being essen-
tially a two-point method did not.  That is the reason why our finite difference
method is also impervious to the jump discontinuity.  Our last piece of evidence is
to show then that our method has the proper asymptotic behvaior, and we do that
in Table 8.

N is the number of mesh points, k is the correction number, and the number
in parentheses after a correction column is the computed order of the method for
that column.  The theoretical order for correction k is 0(h2k + 2).

N\k        0

Table 8

1 2

9 6.05,-3      - 4.43,-6      -
17 1.53,-3 (2.0) 2.75,-7 (4.0) 1.08,-9 (6.0) 4.22,-12
33 3.82,-4 (2.0) 1.72,-8 (4.0) 1.68,-11 (6.0) 1.65,-14
65 9.56,-5 (2.0) 1.07,-9 (4.0) 2.62,-13 (6.0) 6.94,-17

(8.0)
(7.9)

Problem 6 is linear and has a piecewise polynomial solution:  a fairly favorable case.
The following is a nonlinear problem with a nonpolynomial solution with dis-

continuous second derivative.
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Problem 7.
y\ =>v

l-e^1/*3,      1 <jc < 1.5,
y2 = )

(0, 1.5<x<2,

7,(1) = 0,     y2(2) = 2/3.
Exact solution.

(Inx, l<x.<1.5, M/x,       Kx<1.5,
y1(x)=]7 y2(x) = \

(|x +In 1.5-1,      1.5<x<2, (2/3,      1.5 < jc < 2.

User parameters for this problem were NQ = 65, TOL = 5 x 10_1S.  With four cor-
rections on this mesh and a total of eight Newton iterations the tolerance was met,
using 18.07 sec. of computing time.*

The results of this section were obtained with a more primitive (and modified)
version of SYSSOL, and are reported only as a matter of reference.

7.  Use of a Continuation Method for Stubborn Problems.   In [15], [22], [23],
some more challenging problems appear.  These are "horror" problems generally
appearing in practical applications which have resisted the action of most methods.
Some of them are impervious to the use of shooting methods, while others present
difficulties in the convergence of the iterations used for the solution of the nonlinear
equations that occur in the various methods.  Difficulties with the simple shooting
method have been avoided in many cases by resorting to the more sophisticated tech-
nique of parallel shooting [8], [15], which is essentially a hybrid, combining shoot-
ing with finite differences.   As we have already shown in Problem 2, our algorithm
can also overcome the difficulties originated by unstable or stiff systems.   In the
following problem, however, we found for the first time divergence in Newton's
method, when starting from our usual crude values y¡(ti) — 0.  Thus, we have been
forced to employ a more sophisticated technique for solving the nonlinear equations.

Problem 8.  (A boundary layer problem.)

y\ =y2,

y 2 =yy

y'3=- 1.55^3 + \y\ + l-y\ + 2y2,

y'4=y5'

y'5=- l.55ytys + l.ly2y4 + .2(y4 - 1),

7,(0) =y2(0) =y¿0) =y2(3.5) = 0,     y4(3.5) = 1.

We   acknowledge  here the tele-debugging abilities of Professor H. B. Keller who dis-

covered an error in the Jacobian matrix in an earlier version, without ever seeing the program.
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Exact solution.   Unknown.
In [6], Holt presents a numerical solution in graphic form obtained via an

ad hoc finite difference method and reports difficulties obtaining initial values.  In
[15], Osborne uses parallel shooting with success depending again upon the initial
values, but, unfortunately, no information is given about the computed solution.   In
[23], Roberts, Shipman and Ellis replace the system by

y + evg(t, y)

= Cy + evg(t, y),

where Cy +g=f.   They use a continuation method [14] consisting of setting ev -
ev_, + Ae, v = I, ■ ■ ■ , e0 = 0, and solving the intermediate problems by simple
shooting until ev reaches the value 1, where the original problem is recovered.  A
table of the computed missing boundary values is offered, though no mention of
their accuracy is made.  In the intermediate problems, (it seems), ten iterations are
performed, presumably each one of them costing the integration of an initial value
problem.  No indication of computer times are given.

We have chosen to use a variation of this procedure in which only one Newton
step is performed for each e„, since our aim is simply to provide initial values to
start a successful iteration for e„ = 1.  This goal has been achieved and highly ac-
curate results have been obtained as we show below.  Again, the changes in the main
program have been minimal; this is offered as an option in the final library subroutine.

In Table 9, we list the calculated missing boundary conditions of Roberts et al.,
and those obtained with SYSSOL modified as indicated above.  We used Ae = .1.
As usual, k is the correction number. N was 65.

The computer time on an IBM 360/50 was 135.28 sec.
The program SYSSOL given in the Appendix will perform continuation auto-

matically as an option.  The user has to embed his problem in a one parameter family
of problems

y'=f(t,y,e),

such that, for e = 0, the problem is "simple", and, for e = 1, the original problem
is recovered.  This option is considered automatically whenever the parameter
DELEPS e(0, 1).  It is the responsibility of the user to have the appropriate sub-
routine for calculating f(t, y; e) and its Jacobian.  In this case, initial values for  Y
must also be given.

(7.1) y =

oiooo
ooioo
0 0.2 0 0 0
0 0 0 0 1
0     0     0    0.2    0
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Table 9

Method y3(0) y5(0) 7^3.5) X3(3.5) Y5(3.5)

[23]  -0.97819707     0.64678660    -1.5308940 1.1744953 -0.31437074

SYSSOL

k=0   -0.97793385     0.64706375     -1.5300011 1.1731673 -0.31483749

k=l   -0.97819829    0.64678677     -1.5308960 1.1745015 -0.31437128

k=2   -0.97819758    0.64678682     -1.5308941 1.1744980 -0.31437042

k=3   -0.97819757999' 0.64678682479 ' -1.5308940685 1.1744981003 -0.31437042497

k=4   -0.97819757997  0.64678682478  -1.5308940684 1.1744981012 -0.31437042438

We point out that our asymptotic error estimate indicates that the max. abs.

error on all the components (for  k = 4)  is equal to  6.67 x 10"    ,  tending to
confirm that all the figures shown in the last line of Table 9 are exact.

8.  Generalization of the Milne-Numerov Method to Even-Order Systems of
Special Type.   In this section we shall consider systems of the form:

(8.1) y(2r)=f(f y y(2)   ...   ^r-2))

with separable two-point boundary conditions.  Such systems can always be reduced
to larger second order systems with no first derivatives present.  Thus, without loss
of generality, we consider instead:

(8.2) y"-f(t,y) = 0
with the boundary conditions

y(a) = a,     y(b) = ß,   and   y(t) = (y ¿t), ■ ■ •, yn(t)).

Taking a uniform mesh with step h, we discretize these systems with the three-
point Milne-Numerov formula (cf. [4], [12], [17] for 77 = 1).

(8.3) ̂ r^vr^ + v.)-^-^10^^,)^,
/ = i, •••,/-1.

For smooth /, the whole one-dimensional theory can be generalized to this «-di-
mensional case.  The linear systems appearing in the application of Newton's method
to (8.3) are block-tridiagonal and various techniques can be used in their solution.
Observe that the resulting method is 0(hA) and, therefore, deferred corrections will
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provide methods of order 0(h4k). Also, the fact that we deal with second order
systems means that only half the number of equations are used that would be neces-
sary upon reduction to first order systems.  This type of problem appears for instance
in the two-body equations of motion (cf. [22] ), and in systems arising from the
Schródinger equation [ 1 ].
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Appendix.  In the microfiche section of this journal, we present a FORTRAN
(level G) implementation of Subroutine SYSSOL, for solving nonlinear two-point
boundary value problems for first order systems of the form:

y'-jXt,y) = 0,     a<t<b,

Ay(a) + By(b) = <*,
where y(t) = (y^t), • • •, ym(t))7', a G Rm  given, and A, B are given m x m
matrices.

The program contains its own documentation and, we hope, is fairly readable.
We have added the driver program and all the necessary subroutines to produce the
results presented in Table 6.

The subroutine itself contains no input-output instructions and, therefore, it
should be fairly transportable.  There is only one instruction (the definition of
EPSMAC), clearly marked, which is machine dependent.  In [19, p. 74] can be found
a flow-chart which is sufficiently close to give additional information on the func-
tioning of SYSSOL.

The authors assume no responsibility for any damages that this subroutine may
cause, but they will be happy to answer any comments or complaints.
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