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Abstract

We study a generalized version of the method of alternating directions as applied to
the minimization of the sum of two convex functions subject to linear constraints. The
method consists of solving consecutively in each iteration two optimization problems which
contain in the objective function both Lagrangian and proximal terms. The minimizers
determine the new proximal terms and a simple update of the Lagrangian terms follows. We
prove a convergence theorem which extends existing results by relaxing the assumption of
uniqueness of minimizers. Another novelty is that we allow penalty matrices, and these may
vary per iteration. This can be beneficial in applications, since it allows additional tuning
of the method to the problem and can lead to faster convergence relative to fixed penalties.
As an application, we derive a decomposition scheme for block angular optimization and
present computational results on a class of dual block angular problems.

Keywords: parallel computing, alternating direction methods, decomposition, block angular
programs.
Abbreviated title: variable-penalty ADI.

1 Introduction

We present an extended alternating directions method (ADI) for the general convex optimiza-
tion problem
min Gi(z) + Ga(z) "
subject to Az 4+ b= Bz
where G :IR" - RU{+o00} and G3:IR* — IRU {400} are extended-real valued, proper,
closed, convex functions, b € IR™, and the matrices A : IR" — IR™ and B : R®* — IR™.
We make a basic assumption.

Assumption 1.1 Problem (1) admits a Lagrangian saddlepoint.
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The ADI method operates on the augmented Lagrangian associated with problem (1)
A
La(w, 2,p) = Gi(w) + Ga(2) +p' (Aw +b— B2) + T || Az + b — Bz|; (2)

in which p is a tentative dual multiplier and X is a positive scalar. From standard duality
theory, if (2%, 2%, p*) is a saddlepoint of the augmented Lagrangian, then (z*,z*) is a primal
solution of (1) and p* is an associated dual multiplier.

In the method of multipliers [26, 38, 39, 2] a saddlepoint is located by an iterative process,
consisting of a minimization of the augmented Lagrangian, followed by a steepest-ascent update
of the multipliers.

(2t Y € argmin L) (w,z,pf)
z,z

P = DAY, Ly (@)

A computational drawback of this algorithm is that the quadratic penalty term || Az + b — Bz||;
in Ly(z,z,p") is not separable with respect to # and z. To overcome this, the primal mini-
mization can be carried out in two steps in a block Gauss-Seidel fashion.

2ttt ¢ argygnin Ly (z, 2%, ph)
FLaREN< arg;nin Ly (a1 2, ph)
P = P AV, Ly (@ 2 )

This is equivalent to the following scheme.

i\ 2
¢t ¢ argmin Gi(z) + ptT/\Ax T 2 HAQC ule thHz 3)
T
i+1 : ¢ A it .
2 € argmin Ga(2) —p" ABz + B} HAQC +b- BZHz @)
z
Pt = ph 4 (A" 4 b — BT ®)

This is the ADI method; it consists of solving in each iteration two optimization problems,
the objective function of which contains both Lagrangian and proximal terms. Then the
Lagrangian terms are adjusted in proportion to the violation of the constraints. Arbitrary p°
and 2% can be chosen as starting point, and, in the basic case, the penalty X is constant.

The method has been studied extensively in the theoretical frameworks of both Lagrangian
functions (Glowinski with Chan, Marrocco, Fortin and Le Tallec [16, 20]), and maximal mono-
tone operators (Lions and Mercier [32], Gabay [18], Eckstein and Bertsekas [9, 12]). The con-
nection to the proximal point algorithm is discussed in Rockafellar [40]. It has been shown [32]
that the method is an instance of the Douglas-Rachford splitting [8] for finding a zero of a max-
imal monotone operator. Several other decomposition schemes, such as the algorithm of Han
and Lou [24], Spingarn’s method of partial inverses [42, 43], the progressive hedging algorithm
of Rockafellar and Wets [41] and Golshtein’s block method of convex programming [21, 22] are
also instances of the Douglas-Rachford splitting (see [9] for a demonstration).

Eckstein and Bertsekas [12] and Cheng and Teboulle [5] have constructed ADI variants
which allow for inexact minimization. The former also permits relaxation of the primal iterates;
in the latter, quadratic proximal terms replace the augmented Lagrangian penalty terms. In
the Peaceman-Rachford variant [18], based on [36], a multiplier update is interpolated between



the two problems. This algorithm requires more stringent assumptions for convergence and
is less robust numerically [16]. Fukushima [17] presents an ADI method for the dual problem
of (1). ADI methods have been constructed for several other classes of problems, such as
variational inequalities [19] and the monotone linear complementarity problem [13].

The existing literature on the basic ADI algorithm (3)-(5) treats the slightly simpler case
where B = I and b = 0. Convergence has been proved under assumption 1.1 and additional
ones that guarantee that the original problem and/or the ADI problems are uniquely solvable.
Such assumptions are: A has full column rank and G5 is the sum of a closed, proper, convex
function and a strictly convex C* function [16, chapter 3]; A has full column rank [9, 12], [3,
chapter 3]. The dual algorithm in [17] requires that both primal and dual problems be feasible
and that the solution set of the primal be bounded. We will show here that it is possible to
dispense with the uniqueness assumption and still obtain a solution of (1) by ADI.

Previous theoretical work on (3)-(5) has focused on the case of a fixed penalty A. It has been
proven that, under additional assumptions of coercivity and Lipschitz continuity, the rate of
convergence is linear. Then an optimal value of A exists and is related to the constants in these
properties [32, section 1.3.3]. In the general case, a good value of X is determined empirically,
after experimentation and examination of the characteristics of the problem. In network flow
problems, accelerated convergence has been observed with heuristics that vary the penalty for
finitely many iterations, or even use a separate penalty for each linear constraint [34, 10, 31].

In this article we present convergence results for a general variable penalty algorithm,
in which a symmetric positive definite (spd) matrix H' is employed in the Lagrangian and
proximal term, to allow for linear transformations of the constraints. This leads to the following
extension of algorithm (3)-(5).

1 2
ot e argmin Gy(e) +p! H'Az + 2 HAQC ule BZtHHt (6)
X
1 2
Zt e argmin Ga(z) — ' H'B: + 2 HAQCH—I +b- BZHHt (7)
4
P = it (Aac“’l 1h— th+1) (8)
Update H' (9)

The next assumption guarantees that the algorithm is well-defined.
Assumption 1.2 Problems (6) and (7) are solvable.
We impose a modest control on the growth of the penalty.

Assumption 1.3 The eigenvalues of the spd matrices H' are uniformly bounded from be-
low away from zero, and, with finitely many exceptions, the eigenvalues of H' — H't! are
nonnegative.

This assumption implies that { H'} and its eigenvalues converge. (This can be shown by
using lemma 2.9). This assumption allows us to vary the penalty in an arbitrary fashion for a
finite number of iterations; thereafter, the variation must be such that H' — H't! is positive
semidefinite. The added flexibility in the initial stages can be computationally beneficial.

This article is organized as follows: in section 2 we prove the main result, the convergence
theorem for the algorithm (6)-(9), and present an implementable construction of a penalty
{H"} satisfying assumption 1.3. A characteristic of the extended algorithm is that, although



the primal iterates may not converge, they are feasible in the limit, and also the limit of the
objective value is optimal. (This is in common with other algorithms, such as the subgradient
method for nondifferentiable optimization in [37, section 5.3.2].) We present an example illus-
trating this characteristic in section 3. In section 4 we provide a sequence of corollaries that
mainly address primal convergence and finite termination. As an application, in section 5 we
derive a decomposition scheme for block angular optimization in which we also have conver-
gence to the optimal objective value even in the absence of primal convergence. Finally, we
examine computational performance on a class of dual block angular problems in section 6.

2 The convergence theorem
In this section we prove the following convergence theorem for the extended method.

Theorem 2.1 Let assumptions 1.1, 1.2 and 1.3 hold. Then, for any sequence of iterates
{(%, 2%, p', HY)} produced by the ADI algorithm (6)—(9),

(i) {(Az", Bz")} converges, and the limit satisfies the constraints of problem (1).

(i) {G1(2") + G2 (z")} converges to the optimal value of the objective function for problem (1).
(iii) { H'p'} converges to an optimal dual multiplier for problem (1).

(iv) Any minimizers of problems of the form (6) and (7) in which H'p', Az'™! and Bz' are
fixed at their limit values are optimal for problem (1).

Note that in (iii) we consider a dual multiplier independently of a primal solution. This is
because of the following lemma, which describes a well-known property of saddlepoints: duals
are associated with the problem, not with specific primal solutions.

Lemma 2.2 Let X° be a set in IR”, and define the functions # : X° — IR and g : X° — IR®.
Suppose that (z1,uy) is a saddlepoint with respect to 8 and g, i.e.

0(x1) +ulg(z1) <O(x1) +uilgler) <O(z) +ulglz) YueclR), VaeXO.
If (22, u2) also satisfies these conditions, then so do (z1,uz) and (3, uy).

We will use the following minimum principle lemma, which specializes [4, theorem 2.3].

Lemma 2.3 Let X° be a convex subset of IR”. Suppose J : X° — IR is a function of the
form J = J, + Jo, where J, and Jy are convex and J is differentiable on X°. If & minimizes

J, then Jy(x) — Jy (&) + VJo(2) (¢ — &) >0, Vae X°
We will also use the following lemma, due to Cheng [6, lemma 2.1].

Lemma 2.4 Let {a'} and {€'} be two sequences of nonnegative numbers, with 3 2 €' < oo
and a1 < a' + €. Then {a'} converges.

In order to prove theorem 2.1, we state and prove a collection of lemmas. We begin by
showing, in lemma 2.5, that the iterates {(Aa’, Bz', p")} are bounded. Then we establish that
{G1(2") + G2(2")} converges to the optimal objective value for problem (1) and that, in the
limit, {(Aaz’, Bz")} satisfies the constraints of problem (1) (lemma 2.6). In lemma 2.7 we
show that {Az'}, {Bz'} and {H'p'} converge, and that the limit of {H'p'} is an optimal
dual for (1). Finally, lemma 2.8 shows how to obtain a primal solution for (1) by solving two



minimization problems which employ the limits of { A2}, {Bz"} and {H'p'} as fixed terms in

the objective.

The proof employs the saddlepoint approach of [3, chapter 3] and [20, chapter 3]. An im-
portant difference is that we do not assume minimizer uniqueness for problems (1), (6) or (7).
Also, the use of variable penalty requires a more complex argument, involving lemma 2.4. An-
other novelty is the use of lemma 2.2, which allows us to consider primal and dual components

of saddlepoints separately.

Lemma 2.5 Let the assumptions of theorem 2.1 hold. Then {Az'}, {Bz'} and {p'} are

bounded.

Proof: Applying lemma 2.3 to problem (6) with the correspondences

1 2
Ji(z) = Gi(x), Ja(x)=p' H'Az + 5 | 4w 40— thHHt
yields
[+ Ae' ™+ b — B2 H'AG™ — ) < Gi(2) — Gi(a™H)) Vo € R

which, after using (8), becomes
P+ B — 2O HIA(™! — 2) < Gi(o) — Gi(a"h) Vo € R”
Applying the lemma to problem (7) with the correspondences
Ji(2) = Galz), Jo(z2) = —p'"H'Bz + % HAJUH'I +b— BzHiF
we get in a similar fashion
— p’f"'lT]T’LB(z”“"1 — 2) < Go(2) — Go(2'h) Vz e R®

Let (2*, z*,p*) be a saddlepoint for problem (1). Then

Az*+ b= Bz
and also

Gi(z*) + Ga(2) < Gy(z) + Ga(2) + p (Az + b— Bz) Vo € R", Vz € R’
For the iterates (z',z') this implies, after taking (8) into account,
Gi(a™) + Go(=7) < Gr(@™) + Go(z) +p™ (" = 1)
Substituting z* for z in (11) we obtain
P+ B — O] HIA(R™ = 2%) < Gy (%) — Gy (2

By (13) and (8)
A(xH_l _ x*) — pt-l—l _pt _I_ B(Zt-l—l _ Z*)

(10)

(11)

(12)

(13)



and (15) can be rewritten as
[P+ B - Zt)]THt[pt-l—l C Pt BT 2] < Gh(e) - Gh(atHY (17)
Substituting z* for z in (12) we obtain
— P HIB( — 27) < Go(2) — G2 (18)
Adding (14), (17) and (18) yields
(P = ) H ' = p] 4[B! = 2] HIB(:4 = 27) (19)
F O ) THBGE -2 <0
The identities
2 (4! =) [HH =] = [ = o+ I = (D77 e = o' = ()05
2[B! — )] H'B(="! = =) = | Bz = )| + | BEH = 2 e = | B = =) 5
allow (19) to be written as

||pt-|—1 . pt||12q + ||B(zt+1 . Zt)”fztjt + 2( t+1 t)THtB(Zt-l—l _ zt) <

- (20)
Ip = ()9 e+ B! = =) e = [0+ = (Y797 e = [ BE = 2
The left hand side equals
H(pt+1 _pt) —I—B(ZH'l ot HHt
We can provide an upper bound for the right hand side. We define
2
= o' =yt + | BE =), (21)

By assumption 1.3, H' — H't! is ultimately positive semidefinite, and thus, for any vector c,
ultimately HCHIQLF > ||c|l3ye1- Then we have, for the right hand side

o' = ()0 ge + B = 2 e = ||P’f+1 (H) ™0 e = 1B =) =
of — || B =2 [ = I+ = (1) ”Hf <
of — B =) e = 0 = ()70 =
of — [ BEF = =) s = [0 e = 17 ey + 207 <
B = ) e = [0 s — 15 g + 257 -
of — oft! + ¢
for
= HP*H(QHHl)—l - Hp*H(th)—l (22)
Thus (20) implies that ultimately
0< H(p’”rl —p')+ Bz - ,:/:75)H2 <ol —alth 4 ¢ (23)

Ht —



This is the key inequality in establishing convergence. Since the matrix H® — H'*1 is ultimately
positive semidefinite, so ultimately is (H'™Y)~t — (H")™1 [27, corollary 7.7.4], and therefore
¢ > 0, ultimately. A telescopic summation shows that

k
Yo =P N{gerry—r = 1P [{oy-2 s VE >0

t=0

Because of assumption 1.3, these partial sums are uniformly bounded from above.  Then
S92, €' converges and, by lemma 2.4, {a'} converges. It follows that each of {p'} and {Bz'}
is bounded. Then, by (16) {Awt} is also bounded. B

If the penalty were Constant €' in (23) would be identically zero. Then, for any saddlepoint
(x*, 2%, p*), {a'} would be nonincreasing and Fejér-monotone, meaning that no step increases
the distance to any solution point. This is also a property of the proximal point algorithm [42].

Lemma 2.6 Let the assumptions of theorem 2.1 hold. Then,
() {p'tt - p}—>0,{B(Zt+1—zt)}—>0,{Awt—l—b—th}—>0.
(i) {G1(2") + G2(2")} converges to the optimal objective value for problem (1).

Proof: Substituting z* for z in (12) yields
— P FTHIB(E - 2 < Gy(2) - G2 (24)
We write (12) for t = ¢ — 1 and let z = z'T!. We obtain
THI B — 27 < Go(2T) — Ga(2Y) (25)
Adding (24) and (25) yields, after rearranging,
(p'tt — p’f)TH’fB(z’f"'1 -z > ptT(H’f_1 — HY)B(2'"T - 2% (26)
We now combine (26) and (23) and get

T = [ e - o

Ht —

Since {a'} converges and {e'} converges to zero, {a' — a/t! 4 €'} converges to zero. Because
of the boundedness of {p'} and {Bz'} and assumption 1.3, {p’fT(H‘L_1 — HY)B(z'*! - zt)}
converges to zero. Therefore by dominance, both {p*1 — p'} and {B(z'*! — z!)} converge to
zero. Then, because of ( {Aw + b — Bz'} also converges to zero. This concludes the proof
of part (i).

Let again (2%, 2*) be a solution of problem (1). We take limits in (14) and use the fact that
{p*1 —p'} — 0. We get

Ch(a™) + G (") < lim inf {Gi(e") + Gals) } (28)
Adding (17) and (18) yields

Gi(a") + Gaz") > Gr(e™h) + Ga(s") + (L — p") HIp' + B! — 21)]
+ [B(Zt""l . Zt)]THtB(Zt"i'l _ Z*)



We take limits in (29), using the boundedness of {p'} and { Bz'}, assumption 1.3 and part (i).
We obtain
lim sup { Gy (o) + G () } < G () + Gia(=") (30)

Combining (28) and (30) we get
hmsup{Gl )+ Ga(z }<G1 )+ Ga(2Y) <hm1nf{G1 )+ G2z )}

which implies that hm {G1(2") + G2(2")} = G1(2*) + G2(z*). This proves part (ii). &

Lemma 2.7 Let the assumptions of theorem 2.1 hold. Then,
(i) {Az'}, {Bz'} and {H'p'} converge.
(ii) The limit of {H'p'} is an optimal dual for problem (1).
Proof: Let (3,0) be an accumulation point of the bounded sequence {(Bz!, Hip')}. We
prove first that g is an optimal dual for problem (1), then we show that (3, ¢) is unique. The
convergence of {Az'} then follows from the convergence of { Bz'} and part (i) of lemma 2.6.
The sequence {(Aa', H'p', Bz')} is also bounded. Then there exists a subsequence
{(Ax?, H7p/, Bz%)}, j € J, which converges to («, o, 3), such that o+ b = 3.
We add (11), (12) and (14) for iterates with indices in J. We have

G1(2%) + Ga(2*) + pitt T HI(Aad+t 4 b — B23Fh) 4 [B(29+! — 20)] HI(A2i+! — Az) <

Gi(2) + Ga(2) + p T (P = p) + p TV HI (Ax + b — Bz)

VieJ, Ve elR”?, Vz e R?
(31)
Taking the limit, and using the facts that {A27} is bounded and that {Az/ +b— Bz} — 0,
{HIpt1} — g and {B(2) — 2/T1)} — 0, we obtain

Gri(z™) + Go(2%) < Gh(z) + Go(2) + 0T (Az + b — Bz) Yo € R™, ¥z € IR (32)

i.e. o is an optimal dual for problem (1).
We will now show that the point (8, 0) is unique. Suppose {(Bz', H'p")} has another

accumulation point (81, 01). Then there exists a subsequence {(wk,zk,pk)}, k € K, such
that { AzF 4 b, Hkpk)} — (p1,01), with o1 an optimal dual for problem (1), and also

{Gl )+ G2z )} — G1(z%) + G2(2*). We will now retrace our analysis and show that
o1 =20 and p=p.

Since p; is an optimal dual, we have
Gi(z™) + Go(27) < G (e + Ga (2 + 0T (A2 + b — B2 (33)
We substitute 2% for  in (11), and get
Gr(a™) + [p 4 BT — ) HIA@™ — 2F) < Gy(a®) Yk e K (34)
Substituting z* for z in (12) yields

Go(z Yy — p T HIB(2 — k) < Gy (2F) Yk € K (35)



Adding (33), (34) and (35) yields
Gi(2™) + Go(=") + (H'p™H = 01)' (A2 41— B2y <
Gi(e") + Go(2%) + p T B (A2® + b — B2%) + [B(=" — 2] HY (A2* — A1) (36)

After taking the limit over k € K and using the fact that {Awk} — 1 —band {sz} — [,
the right hand side becomes

Gr(a™) + Go(2") + [B(z"! — 29T HY(By — b — AxtH)
and, with the use of (8), inequality (36) becomes
(! =) [HH = 1) + [B( = 2] BB = 31) + (0! — p!) H'B("! =) <0

which is analogous to (19). Repeating the analysis from there on, we can show that the
sequence

Ut =yl + ==,

analogous to {a'} of (21), is convergent. Then all its subsequences must have the same limit.
For the subsequence with indices k& € K, {(sz, Hkpk)} — (01, 01), and thus the sequence
has limit 0. Then, for the subsequence with j € J, we must have {(Bz/, Hip’)} — (B101). 1

We now show how a primal solution for problem (1) can be obtained by solving two mini-
mization problems which include in the objective the limit of {(Bz?, H'p")}. We call a function
¢ : IR™ — IRy positive definite in case ¢(z) = 0 if and only if 2 = 0. Then we have the fol-
lowing result.

Lemma 2.8 Let {(Bz', H'p")} converge to (3,p). Let & solve
min Gi(z) 4 of Az + 1 (Az + b — )

and let Z solve

min G1(2) — 0T Bz + ¢a (8 — B2)
in which ¢ and ¢y are continuous positive definite functions. Then (Z, Z) solves (1).

Proof : Since  is a minimizer, we have for all iterates 2!

G1(3) + 0T Az + @1 (A% + b — B) < Gy (a') + 0T Az’ + o1 (A’ + b — B) (37)
Similarly we have for all iterates 2
Go(2) — 0T Bz + ¢3(8 — B2) < Go(2h) — 0T B2' 4 ¢o(3 — B2 (38)
Combining (37) and (38) yields

G1(3) + Ga(3) + 0T (AF 4+ b — B2) + @1 (AT + b — B) + ¢o(8 — B3) <
Gi(a!) + Ga(2) + o7 (Azt 4+ b — Bzt) + ¢y (Ax? +b — B) + @28 — BzY)



Let now (2%, z*) be a primal solution for (1). By lemma 2.6 and the continuity of ¢; and ¢,
in the limit the above inequality becomes

G () + Ga(3) + 07 (AT +b— BE) + oa(AT + b= B) + 02(6 — B2) < Ga(e) + Gale) (39)
Since (z*, 2%, p) is a saddlepoint for (1), we have
Gh(2") + Go(2%) < G1() + G2(2) + 0T (AZ 4 b — B2) (40)
Combining (39) and (40) shows that

p1(AT +b— ) + (8- B2) <0

Since ¢1 and ¢y are positive definite, this is possible only if Az + b= = Bz, i.e. if (2,2) is
primal feasible for (1). Then from (39) and (40) it follows that

G1() 4 Ga(2) = G1(27) + Ga(27)
i.e. (Z,2) is primal optimal for (1). B

A combination of the previous lemmas provides a proof for the master theorem.
Proof of theorem 2.1: Part (i) can be proven by combining part (i) of lemma 2.6 and part
(i) of lemma 2.7. Part (ii) is proven in part (ii) of lemma 2.6 and part (iii) is proven in part
(ii) of lemma 2.7. Finally, part (iv) is a special case of lemma 2.8, since a norm is a continuous
positive definite function. R

We now display a sequence of spd matrices { H'} satisfying assumption 1.3. It is based
on the following inequality, due to Weyl. We let A\;(A), k = 1,...,m, denote the k-th largest
eigenvalue of a real symmetric m X m matrix A4, i.e. A;(A) > Ay(4) > ... > A, (A4).

Lemma 2.9 [23, lemma 8.1.3] Let A and E be real symmetric m x m matrices. Then
A(A) + A (E) < Ae(A+ E) < A(A) + (), k=1,....m.

The following lemma describes the iterative construction.

Lemma 2.10 Given a scalar L > 0, construct {H'} as follows:

Initialization. Choose an spd matrix H® such that L < A, (HY).

Iterative step. Given H' such that L < A, (H"), pick a symmetric m x m matrix E' such that
0< M\(EY < A(HY =L, k=1,...,m. Let H* = H' — F'. Then,

(i) H' — H'*! is positive semidefinite.

(ii) H'*L is spd, with eigenvalues satisfying L < A\, (H'™), k=1,...,m.

Proof : By construction, H' — H'™' = F' and 0 < A\, (E'), i.e. H!' — H't! is positive
semidefinite. This proves (i). For part (ii), lemma 2.9 shows that

Ne(H™Y) A () < M(H') < M(HT) + M (BY), k=1,...,m.

Since A, (F') is nonnegative, A\p(H'™Y) < Ay (H'). On the other hand, since Ap(H'™!) >
Me(HY — A (EY), and, by construction, A\ (E") < A, (H") — L, we have A\, (H'TY) > A\, (HY) —
An(HY+L > L. 0

From Weyl’s inequality we can infer that the condition 0 < L < A, (H'™Y) < X\ (HY),
k=1,...,m,is ultimately necessary if assumption 1.3 is satisfied. If { H'} consists of diagonal
matrices, this condition is also sufficient. In all cases, the condition implies that the eigenvalues
of H! are uniformly bounded from above, and that for each k¥ = 1,...,m, the nonincreasing,
bounded sequence {\;(H")} converges to its infimum.

10



3 A simple example
We want to employ the ADI method to solve

min T4 — X2+ a3+ 24
T1,22,T3, T4 Z
. 41
subject to ] — 29 =1 (41)

$3—|—$421

This problem can be mapped to problem (1) in a variety of ways. Here we take

) 1 —axg+ax3 ifxy —ax9=1and xq,29,23>0
Gl ($17$27$3) =

400 otherwise

and

Gy (24) 1= { T4 ifaey >0

400 otherwise

and write problem (41) as

Gi(xy, 22, 23) + Ga(xa)

min
L1, L2,L3,L4q
subject to x3+a4 =1
This is in the form of problem (1), with A=1[0 0 1], B=[-1] and b = —1. Observe that A

has not full column rank. Both G; and G5 are convex, proper, closed functions. We take, for
simplicity, H! = I, Vt. At each ADI iteration the two smaller problems are solved

1

41 t4+1 41 . 2

(zft bt 2ty € argmin 1 — T9 + w3+ plas + 3 ||$3—|—$i — 1||2
$17$27$320

subject to 1 — a3 =1

1 2
xi"’l = argmin x4 —I—ptac4 + — Hx?’l + x4 — 1H
T4 Z 0 2 2

and then the multipliers are updated
pt-l—l — (xé-l—l + xi-u _ 1)
For initialization with arbitrary (29, p°) > 0, the iterates are given in closed form by
(xi"’l, pbtt gt gl pt"'l) = (1 +a, a, [-p']4, 0, [pT4 — 1) , forany a >0
The sequence {(z%, z},p')} converges to (1,0, —1). For the choice 2} = 1+ ¢ and 2}, = ¢

both sequences {z!{} and {z} are divergent. However, for any ¢ > 0, the vector (1 +¢,¢,1,0)
is primal optimal for problem (41).
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4 Corollaries

4.1 An interchange variant

There is enough flexibility in the variable penalty algorithm to allow for the rearrangement of
the minimization problems per iteration.

Corollary 4.1 Theorem 2.1 is valid for the algorithm (6)—(9) with steps (6) and (7) inter-
changed.

This is due to the symmetry of problem (1) in z and z, in both the objective and the
constraints. From a computational perspective, we would choose to solve first the problem
for which it is easier to generate a good starting point, or which contains more data from the
original problem.

4.2 Primal convergence

In certain cases the convergence result can be strengthened. In particular, when the matrices
A and B have linearly independent columns, we can guarantee primal convergence, as well.

Corollary 4.2 Let the assumptions of theorem 2.1 hold, and let A and B have full column
rank. Then { (2%, z")} is uniquely defined and converges to a primal solution of problem (1).

Proof: If A and B have full column rank, then the objective function in problems (6) and (7) is
strongly convex, and thus the minimizers are unique. By part (i) of theorem 2.1, {(Ax?, Bz')}
converges, and the limit satisfies the constraints of problem (1). Since A and B have full
column rank, {z'} and {z'} converge to  and z, respectively, so that Az +b = Bz, i.e. (z,2)
is primal feasible for problem (1). Then,

Ch(7) + Ga(2) > lim {Gh (2) + Ga () }

where the right hand side is the optimal value, by part (ii) of theorem 2.1. G; and G5 are both
closed, convex functions, thus lower semicontinuous, and so we must have

Gi(z) < limtinf {Gl(xt)} and G(2) < hm inf {G2 }
Combining the three inequalities yields
G1(z)+G3(2) <hm1nf{G1 }—I—hmlnf{G2 } <hm {Gl )+ Ga(z } < G1(7)+G2(2)

which shows that the value G1(Z) + G2(%) is optimal. B

A weaker result holds if we just assume that {(27, 2")} has accumulation points. These are
guaranteed to exist if the effective domains of GG; and G5 or the nonempty level sets of G +G
are compact.

Corollary 4.3 Let the assumptions of theorem 2.1 hold. Then any accumulation point (Z, Z)
of {(a%,2%)} is a primal solution of problem (1).

Proof: After going to a subsequence, if necessary, { (2%, 2")} converges to {(z,2)}. In view of
part (i) of theorem 2.1, Az + b = BZ, i.e. (,%) is primal feasible. By arguments similar to
those in the proof of the previous corollary, the value G1(Z) + G2(%) is optimal. B

12



4.3 Finite termination

We can provide a sufficient condition for finite termination at an optimal point. Note that this
corollary does not require assumption 1.3.

Corollary 4.4 Let assumptions 1.1 and 1.2 hold. If iterates (x!, 2!, p') and (x!T! 2+l pit+l)
are such that (p', Bz') = (p'™t, Bz*1), then (2!t 21 Hip'*l) is a saddlepoint for prob-
lem (1).

Proof: By (8), p' = p'™! implies
Azt 4 b = BT (42)

i.e. (!l 211 is feasible for (1). Let (2*, 2*) be optimal for (1). Then

Gi(27) + Ga(2") < Gi (@) + Ga (2" (43)
Using the hypothesis in (29) yields

Gi(a™) + Ga(z"™) < Gr(e) + Ga(27) (44)
Combining (43) and (44) we get

Gh(a™) + Ga(z") = G (a7) + Ga(27) (45)

i.e. the value of the objective function at (2!, z'*!) is optimal. We now add (11), (12)
and (45) and use the hypothesis and (42). We obtain

G(27) + Ga(2) < Gi(2) + Ga(2) + p T HY(Ax +b— Bz) Yo € R™, Vz€ IR®  (46)

This shows that H'p*! is an optimal dual for (1). ®
If this condition is used as a stopping rule in the example in section 3, the algorithm (for
nonnegative start) terminates finitely at an optimal point.

5 An ADI decomposition scheme for block angular problems

Several classes of models in applied optimization, including multicommodity network flow [1]
and stochastic scenario analysis [41], require solving convex block angular problems (CBA) of
the following form:

e ey W Jglg) e )
subject to AP = by
Apy = by
(47)
A bl
Dy Doy + + Dygrpgg < d
0< Tl < Ugygs 1=1,..., K.



Each function f[i] is finite-valued, convex and continuous, and, in many applications, quadratic

in the vector Ll ie. f[i](w[i]) = c[i]Tx[i] + x[i]TQ[Z»]x[i], in which Q;) is a real symmetric
positive semidefinite matrix. This includes the case of linear objective (Q[; = 0). We denote
by (- | Bf;)) the indicator function of the feasible set Bf;) for the block constraints

Briy =g | Ay = by and 0 < @y < upy

D

The variables interact only in the coupling constraints, defined by the matrix {D[l] .

K
and the shared resource vector d. )
For this class of problems we will derive a decomposition scheme based on the extended ADI
method. In mapping CBA onto problem (1), we choose to incorporate the block constraints
in the definition of GG; and represent the coupling constraints in the definition of G5 and as

explicit linear equality constraints. (Other mappings are discussed in [30].) We define

K
G (90[117 . -790[1(]) = Z f[i](w[i]) + 1#(90[2'] | 3[2'])
=1
and .
29
0 if din <d
G2 (d[1]7 ceey d[[{]) = ZZ:; [ =

400 otherwise

Problem CBA can be written as

min Gy (x[l], .. .,w[K]) + Gy (d[1]7 .. .,d[K])

7 4 | ,

subject to D[Z.]x[i] = d[i]7 1=1,..., K
which is in the form of problem (1), with the correspondences b + 0, A «— D :=
diag (D[l]7 .. .,D[K]), and B « I. A multiplier vector Pl is paired with each block of con-
straints D[Z.]x[i] = d[i]7 t=1,..., K. For reasons to be explained soon, we employ a diagonal

positive penalty matrix A?, common to all blocks. We let the diagonal matrix A% consist of K
copies of A placed along the diagonal. We write in shorthand x for the concatenation of the

vectors Ty, Tpyp, - -5 Ty and similarly for d and p. At each iteration we solve two problems
1 : tT pt 1 1E
2t e argmin  f(z)+p" AxDz + 3 HDQE —d ‘ N
€ K
subject to AMQEM - b[i] 1=1,..., K )
0<a, <u; LR
(4] (4]
1 2
dtl = argmin —ptTA%d +3 HDxt‘H —d N
d K " (49)
subject to Z d[i] <d
=1
Then we update the multipliers
P = pt 4 Dattl — gttt (50)
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and the penalty matrix A’.
Problem (48) decomposes to the following K block problems.

t+1 . t Tyt 1 ¢t |12
W ergmin fia (e + ol A Dy + 5 | Dy = iy (51)

Since D[Z.] may not have full column rank, 967[53'1 may not be unique. This nonuniqueness can be

dealt with by the convergence theory we developed in section 2. Problem (49) has a strongly
convex objective and therefore it is uniquely solvable. Because of our choice of diagonal penalty,
the solution can be expressed in closed form.

1 K
t+1 _ t+1 4 ot ¢ t4+1
Ay = Dyrg) +r - ¢ lzg (ply + Dpgeif") - d] (52)
1= _|_
Substitution in (50) yields
AN i(’f D x’f“)—d (53)
Py = & \Pl T P

_|_

which shows that, for ¢ > 1, the multipliers are equal across all blocks and nonnegative.

This is a resource proxzimization (RP) splitting [31], in which the activities x’[’}] always sat-
isfy the block constraints and the target resource allocations dfi] always satisfy the coupling
constraints. In the objective of problem (51) the vector D[i]w[i], which reflects the consumption
of the shared resource d, is penalized by both price and proximal terms; the iterative adjust-
ments (52) and (53) are such that, in the limit, consumption matches an optimal allocation.

This is shown in the following theorem, which specializes the general theorem 2.1.

Theorem 5.1 Assume that CBA admits a Lagrangian saddlepoint, and that each function f[i]
is either quadratic or has bounded level sets over the feasible set for the corresponding block
constraints. Let A\i(A"), the eigenvalues of the diagonal positive matrices {A'}, ultimately
satisfy L < Ap(A'TH) < Ap(AY), for L > 0 given. Then any sequence {z'} produced by the
algorithm (48)-(50) for arbitrary start (p°, d°, A°) is such that

K )
(i) 3 lim {Dgefy f <@
i
(ii) 231 {f[z](xfl])} converges to the optimal value for CBA.

(iii) {w’fz]} converges for all i € {1,..., K} such that Dy, has full column rank.

Proof: The functions GG; and G5 are convex and closed, by construction, and also proper,
since CBA is solvable, by hypothesis. The assumptions on the solvability of CBA and on the
f[i] ’s are sufficient to guarantee the solvability of problem (48). The objective in problem (49)
is strongly convex and continuous, and therefore has compact level sets. The feasible region
is a nonempty polyhedral set, thus closed, and its intersection with a nonempty level set is
a compact set. By the Bolzano-Weierstass theorem, the infimum of the continuous objective
over this intersection is attained; hence problem (49) is solvable. Also, by construction, the
penalty matrices {A’} satisfy assumption 1.3. Thus all assumptions of theorem 2.1 are met.
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By lemma 2.6 (i), {d@]} converges, say to d*,. By part (i) of theorem 2.1, {D[i]wfi] — d’[fi]}

(<]
converges to zero and therefore {D[ ]x’[fi]} converges to d[*]. Since ZZB:1 d’fi‘]i'l < d, we must have

K3 K3
S dfy < d. This proves part (i). Part (i) follows from part (i) of theorem 2.1. Part (iii)
follows from part (i). If all matrices D[Z.] have full column rank, {2’} converges to a primal
solution of CBA, by corollary 4.2. 1

Our definitions of (G; and (3 have resulted in a coarse grain decomposition algorithm for
CBA: the first ADI problem decomposes into independent block problems which can even be
solved in parallel, while the second ADI problem has a simple closed form solution. Appropriate
definitions of Gy and G can lead to a fine grain (activity-level) decomposition scheme [14].
The choice of granularity depends on the architecture of the target computing environment:
a coarse grain method may perform better in a cluster of workstations, while a fine grain one
may be better suited to a massively parallel system.

In [31] we present computational results for an ultimately-fixed-penalty variant of the coarse
grain RP decomposition on the Connection Machine 5 parallel supercomputer. The CM-5 can
be viewed as a cluster of powerful processors linked by fast networks. On this system, the
RP algorithm solved large-scale multicommodity network flow problems one to two orders of
magnitude faster than the serial optimizer MINOS 5.4 on a DEC 5000 workstation.

6 Computational experiments

In the basic ADI method (3)-(5) a single penalty is used and is held fixed over all iterations.
In this case the computational performance depends strongly on the value of the penalty.
Experience on a variety of applications [16, chapter 5], [9, chapter 7], [17] has shown that
if the penalty is chosen too small or too large the solution time can significantly increase.
For certain simple problems an optimal value of A can be found by spectral techniques [16,
chapter 1]. In the general case the choice of a good value of X is a question of considerable
experimentation and of familiarity with the characteristics of the problem. In such cases an
appropriate variable penalty heuristic can result in computational savings.

To illustrate this we apply both the fixed- and the variable-penalty methods to a problem
from the ADI literature and compare results. We consider the Fermat-Weber problem

K

min Z a; ||z — b[i]

54
z € IR" i=1 2 ( )

in which the vectors by, and the weights a; > 0 are given. For n = 2 the problem has a
single-facility location interpretation: b[i are shipment centers, represented as points in the
plane; the sought minimizer is the location of the facility to be built, such that the sum of
the transportation costs between the centers and the facility is minimized, where each cost is
proportional to the euclidean distance.

Specialized algorithms for this problem are reviewed in [35]. To cast it in a format
suitable for ADI, we introduce auxiliary vectors of variables Ty TR the combination
of which plays the role of the z variables, and rewrite it in a dual block angular form,

16



as in [16, section 3.7.3]

YL,

K
min g a;
=1

Tpy e TR 2 € R™

subject to 2L :z—b[i]7 1=1,..., K

We pair a multiplier vector pp; with each block of constraints and use a separate penalty value
A; for each block. At each iteration we solve two strongly convex problems

K t
. A 2
o argwmm ; lai 2|, x[i]T,\fpfi] + 35 2t — b[i] -z 2] (55)
i+1 X Tyt ¢ A 412
L arg;mn ; [z Aippg + EZ z = by — x[ﬂ' Hz] (56)
Then we update the multipliers
P = e+ G = by - g (57)
and the penalties A;. Because of the proximal terms, both problems have unique, closed form
solutions.
t+1 a; t to._ Lt ¢ . -
g 4] 24 4
K K
1 _ -1 ¢ t+1 ¢
27 = (; ) ; Ai [b[i] +ry - P[i]} (59)

For a single penalty A, the updates agree with (7.40)-(7.43) in [16, section 3.7.3]. In this case,
by (59) and (57) we have that S°& | pﬁ'l =0, for ¢ > 0, and thus (59) simplifies to

1 K
=g [+t e (60)

=1

Zt—l—l

We note that the earlier theory in [16, chapter 3] cannot characterize the convergence of
this iterative scheme, because the objective function in (54) is not strictly convex. In contrast,
our corollary 4.2 guarantees that {z'} converges to a primal solution of the problem.

To assess the impact of the penalty value on performance, we generated 20 classes of data,
with the number of points K in {10,15,25,50,75} and the dimension n in {2,4,8,16}. For
each class we generated 49 random problems. The weights a; were uniformly distributed in
[1,10], while the components of b were uniformly distributed in [10, 100].

In all runs we chose initial values 2° = p® = 0. We terminated a run when all components
of two successive (z,p) iterates agreed to at least D significant digits, for D = 6 and D = 8.
All runs were done on an IBM RS-6000/590 workstation using double precision arithmetic.
We also solved the problems with the special-purpose Weiszfeld algorithm as emended in [35],
and compared results. The objective function values at termination agreed to 6 — 7 digits.
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Performance of fixed penalty ADI

1000 D -
F D —_—

6
8

iterations

100 F

0.01 0.1 1 10
Value of fixed penalty

10

F1GURE 1: Number of ADI iterations as a function of the fixed penalty value on a Fermat- Weber problem with
K =15, n = 4, for termuination accuracy of D = 6 and D = 8 significant digits. Only a narrow
range of penalty values results in low iteration count (below 100).

In Figure 1 we display the number of iterations to termination of the fixed penalty algorithm
on an example problem with K = 15 and n = 4, as the penalty ranges from 0.01 to 2.5. We
observe that only a very narrow range of penalty values offers good performance: the algorithm
terminates in at most a hundred iterations only if the penalty is in [0.06, 0.45] for D = 6 and in
[0.08, 0.36] for D = 8. Performance deteriorates dramatically for values outside this interval.
This can be attributed to the following: If A >> 1, then 967[5;"1 ~ ﬁf’;] and therefore zit1 ~ 2t
i.e. the new estimate for z is very close to the previous one. e)n the other hand, if 0 < A << 1,
then 967[53'1 ~ 0 and 2! ~ % SE b[i]7 i.e. z*t! defaults to the average of the observations, a
poor estimate, in general, because it ignores the weights a;. Small computational progress is
made in both cases.

In this example the best penalty is 0.16 for 6-digit accuracy, resulting in 47 iterations, and
0.21 for 8-digit accuracy, resulting in 58 iterations. For penalty values in [0.01, 2.5], the median
number of iterations was 263 for 6-digit accuracy, and 337 for 8-digit accuracy. Interchanging
the order in which problems (55) and (56) are solved (with 2% = p® = 0) yielded similar results:
for 6-digit accuracy, the best count was 45, for A = 0.16, and the median was 249; for 8-digit
accuracy, the best count was 57, for A = 0.185, and the median was 323.

Using the variable penalty heuristic we describe next, on the algorithm (55)—(57) without
interchange, we solved this problem in 35 and 45 iterations, for D = 6 and D = &, respectively.

We chose penalties A\Y to make 2! a Weighted combination of the vectors b[ ]: specifically,

A =2a;/ ”b[i]‘ , which yielded z! = 0.5 (3011, a;b
the limiting Value L for the variable penalty, we Con31dered the fact that in the objective of

problem (55), the original terms, with weights a;, compete with the penalty terms, with weights
A;. Thus, for balancing purposes, we let L be a multiple of the average weight, L. = 8 % ZI‘ 1G4,

St a . In choosing
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Convergence of ADI

le+ 02 7 | T
- fixed, median - - - -
fixed, best —
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le — 08 ' ' '
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FIGURE 2: lz-error in the z iterates for the Fermat- Weber problem with K = 15, n = 4, for the vartable- and
fized-penalty ADI methods. The variable-penalty method converges faster than the best case of the
fized-penalty method.

with @ chosen such that the initial penalties A? lie on both sides of L. After experimentation
we set @ = 0.075/n. For the example problem this yielded L = 0.092. The initial penalties
were in [0.019, 0.234]; nine were above L and six were below. The penalties were updated
every T' = 10 iterations. If a penalty were initially below L, it was increased by a factor of
1.05 until it exceeded L. Otherwise, it was reduced by a factor of 0.98 down to L.

A =

K3

1.05 AT, if AT <L
max{0.98 \I=T L}, otherwise

The increasing update could thus be selected only a finite number of times. Thus assump-
tion 1.3 was met.

In Figure 2 we display the iterative decrease in the error magnitude for the z iterates in the
example problem with D = 8. The thick line corresponds to the variable penalty algorithm,
while the thin line corresponds to the fixed penalty algorithm with the best value A = 0.21.
The dotted line corresponds to the fixed penalty algorithm for A = 1.285, which results in
the median number of iterations among all values in the interval [0.01, 2.5]. The rate of
convergence was almost linear for all three cases. The reduced count of iterations resulted
from a larger decrease of the error per iteration: the average decrease in the error was 6% for
the median, 32% for the best of fixed penalty and 42% for the variable penalty.

For this example we also ran the algorithm with all penalties fixed at the limit L. The
performance was markedly worse than that of the variable case, since it took 63 iterations to
termination for D = 6 and 84 iterations for D = 8.

In table 1 we compare the performance of this variable penalty method against fixed penalty,
for an accuracy of at least 6 and 8 significant digits. The table reports the median number
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Performance of ADI

Number of iterations
n | K || variable | fixed penalty | percentile || variable | fixed penalty | percentile
penalty | best | median | fix < var || penalty | best | median | fix < var
10 49 49 210 7.55 65 64 274 7.31
15 55 47 211 6.90 72 62 283 6.90
2|25 74 55 225 12.18 95 70 300 12.33
50 87 60 222 21.71 118 79 293 22.49
75 102 65 231 24.16 132 82 302 24.84
10 39 38 258 4.39 52 48 349 4.35
15 42 39 249 4.98 56 50 334 5.24
4125 44 39 252 3.06 57 50 333 3.27
50 48 43 259 3.73 62 53 332 4.12
75 52 45 262 6.31 68 56 338 7.10
10 34 35 338 0.96 44 45 446 1.20
15 36 37 340 0.73 46 46 446 0.90
8125 37 37 330 1.33 48 45 426 1.51
50 38 39 342 1.14 49 48 439 1.43
75 40 41 345 0.86 52 50 434 1.29
10 33 35 464 0.41 42 43 598 0.59
15 33 35 431 0.37 43 44 563 0.65
16 | 25 34 37 437 0.29 43 46 554 0.41
50 36 38 465 0.20 45 47 584 0.33
75 36 39 476 0.31 46 48 598 0.39
6 accurate digits 8 accurate digits
TABLE 1: Number of iterations for the ADI method with fixzed and variable penalty on the random Fermat- Weber

of iterations for the 49 problems in each class. We ran the fixed penalty algorithm with 100
penalty values equally spaced in the interval [0.01, 2.5]. In the column labeled ‘best’ we list
the fewest number of iterations to termination; they correspond to the best choice of fixed
penalty. The column labeled ‘median’ lists the median number of iterations over all fixed
penalty choices in [0.01, 2.5]. Under ‘percentile’ we list the percentage of fixed penalty values
which result in an iteration count no worse than that of the variable penalty, aggregated over

problems.

all 49 problems in the corresponding class.

The table indicates that, as the dimension n of the problem increases, the benefit of main-
taining multiple varying penalties becomes more pronounced, as the fixed penalty percentile
decreases at an almost quadratic rate for many cases. For sufficiently large problems, the

percentile ranking of the variable penalty method is better than the 99th percentile.

20




7 Conclusions and future directions

In recent years there has been a renewed interest in both the theoretical and computational
properties of the alternating directions method for optimization, especially in the framework
of parallel computing. The basic method exhibits many desirable characteristics, such as
convergence under mild assumptions, stability (due to the proximal terms) and flexibility in the
implementation: the ADI problems may be solved inexactly, their order may be interchanged,
the primal iterates may be relaxed and the starting point may be arbitrary. Another attractive
feature, given today’s diverse parallel computing systems, is the capability of the method to
lead to both fine- and coarse-level decomposition algorithms for large scale problems, such as
block angular ones.

In this article we have extended the ADI method along two directions: we characterized
convergence in the absence of uniqueness of minimizers (absence of strong convexity, essentially)
and in the presence of variable positive definite penalty. The first extension allowed us to derive
a new decomposition scheme for the block angular problem. The second one can lead to the
design of efficient heuristics for the acceleration of convergence.

In the future we plan to investigate further the computational benefits of variable penalty.
For instance, in the examples we presented we employed only diagonal penalties; the theory
allows general spd matrices H'. A possible strategy is to choose H! such that the quadratic
proximal terms are approximately diagonalized. Techniques for the local acceleration of linear
convergence, such as Aitken’s A%-method [25, section 5.9], may also be beneficial.

An open problem is convergence under partial updates in (8), i.e. when, in the computation
of the new multipliers, the old value at iteration ¢ is used for some components of (z, z) and
the new value at iteration ¢ + 1 is used for the rest. These incomplete updates may be com-
putationally attractive in a distributed environment where communication is expensive or the
solution times for the subproblems in a decomposition vary widely. Another attractive option
is the modification of the multiplier updates to include second order (Hessian) information.
Such updates, although computationally expensive, may yield faster convergence.

When applied to linear block angular problems, the coarse grain ADI decomposition
schemes require solving quadratic problems at each iteration. To overcome this computational
drawback we may iteratively linearize the quadratic term, as done in [44, 33], [15, section 2.5.1]
for the method of multipliers, or replace it with a piecewise linear local approximation, as done
in the convex optimization methods in [29, 28].

On the theoretical level, an open issue is whether the convergence properties are preserved
if the quadratic penalty is replaced by other penalty functions, such as Bregman’s [45, 11], or
the class of strongly convex functions employed in the auxiliary problem method [7].

References

[1] A.A. Assad. Multicommodity network flows: A survey. Networks, 8:37-91, 1978.
[2] D.P. Bertsekas. Multiplier methods: A survey. Automatica, 12:133-145, 1976.

[3] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice Hall, Englewood Cliffs, New Jersey, 1989.

[4] J. Céa. Lectures on Optimization — Theory and Algorithms. Lectures on Mathematics and Physics,
vol. 53. Tata Institute, Bombay, 1978. Distributed by Springer Verlag, Berlin.

21



[5]

[15]
[16]
[17]

[18]

G. Cheng and M. Teboulle. A proximal-based decomposition method for convex minimization
problems. Mathematical Programming, Series A, 64(1):81-110, 1994.

Y.C. Cheng. On the gradient-projection method for solving the nonsymmetric linear complemen-
tarity problem. Journal of Optimization Theory and Applications, 43:527-541, 1984.

G. Cohen and D.L. Zhu. Decomposition coordination methods in large scale optimization problems:
The nondifferentiable case and the case of augmented lagrangians. In J.B. Cruz, editor, Advances
wn Large Scale Systems Theory and Applications, pages 203-266. JAI Press, Greenwich, CT, 1983.

J. Douglas and H.H. Rachford Jr. On the numerical solution of heat conduction problems in two-
and three-space variables. Transactions of the American Mathematical Society, 82:421-439, 1956.

J. Eckstein. Splitting Methods for Monotone Operators with Applications to Parallel Optimiza-
tion. PhD thesis, Massachusetts Institute of Technology, Department of Civil Engineering, 1989.
Available as Technical Report LIDS-TH-1877, MIT 1989.

J. Eckstein. The alternating step method for monotropic programming on the Connection Machine

CM-2. ORSA Journal on Computing, 5(1):293-318, 1993.

J. Eckstein. Nonlinear proximal point algorithms using Bregman functions, with applications to
convex programming. Mathematics of Operations Research, 18:202-226, 1993.

J. Eckstein and D.P. Bertsekas. On the Douglas-Rachford splitting method and the proximal point
method for maximal monotone operators. Mathematical Programming, Series A, 55(3):293-318,

1992.

J. Eckstein and M. Ferris. Operator splitting methods for monotone linear complementarity prob-
lems. Technical Report TMC-239, Thinking Machines Corporation, Cambridge, Massachusetts,
1992.

J. Eckstein and M. Fukushima. Some reformulations and applications of the alternating direction
method of multipliers. In W.W. Hager, D.W. Hearn, and P.M. Pardalos, editors, Large Scale
Optimization: State of the Art, pages 115-134. Kluwer Academic, Dordrecht, The Netherlands,
1994.

W. Findeisen, F.N. Bailey, M. Brdys, K. Malinowski, P. Tatjewski, and A. Wozniak. Control and
Coordination in Hierarchical Systems. 1TASA series. John Wiley & Sons, 1980.

M. Fortin and R. Glowinski, editors. Augmented Lagrangian Methods: Applications to the Numer-
tcal Solution of Boundary-Value Problems. North-Holland, Amsterdam, 1983.

M. Fukushima. Application of the alternating direction method of multipliers to separable convex
programming problems. Computational Optimization and Applications, 1:93-111, 1992.

D. Gabay. Applications of the method of multipliers to variational inequalities. In M. Fortin and
R. Glowinski, editors, Augmented Lagrangian Methods: Applications to the Numerical Solution of
Boundary- Valued Problems, pages 299-331. North-Holland, Amsterdam, 1983.

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via
finite element approximation. Computers and Mathematics with Applications, 2:17-40, 1976.

R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear
Mechanics. Society for Industrial and Applied Mathematics, 1989.

Ye. G. Golshtein. The block method of convex programming. Soviet Mathematics Doklady, 33:584—
587, 1986.

Ye. G. Golshtein. A general approach to decomposition of optimization systems. Soviet Journal

of Computer and Systems Sciences, 25(3):105-114, 1987.

22



[23]

[24]

G.H. Golub and C.F. Van Loan. Matriz Computations. The Johns Hopkins University Press,
Baltimore, Maryland, second edition, 1989.

S.P. Han and G. Lou. A parallel algorithm for a class of convex problems. SIAM Journal on
Control and Optimization, 26:345-355, 1988.

P. Henrici. Elements of Numerical Analysis. John Wiley, New York, 1966.

M. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and Applications,
4:303-320, 1969.

R.A. Horn and C.R. Johnson. Matriz Analysis. Cambridge University Press, 1993.

P.V. Kamesam and R.R. Meyer. Multipoint methods for separable nonlinear networks. Mathemat-
tcal Programming Study, 22:185-205, 1984.

C.Y. Kao and R.R. Meyer. Secant approximation methods for convex optimization. Mathematical
Programming Study, 14:143-162, 1981.

S. Kontogiorgis. Alternating Directions Methods for the Parallel Solution of Large-Scale Block-
Structured Optimization Problems. PhD thesis, University of Wisconsin—-Madison, Department of
Computer Sciences, 1994. Available as Report MP 94-13.

S. Kontogiorgis, R. De Leone, and R.R. Meyer. Alternating direction splittings for block angular
parallel optimization. Journal of Optimization Theory and Applications, 90(1), 1996. To appear.

P.L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM
Journal on Numerical Analysis, 16(6):964-979, 1979.

J.M. Mulvey and A. Ruszczynski. A diagonal quadratic approximation method for large scale
linear programs. Operations Research Letters, 12:205-215, 1992.

J.M. Mulvey and H. Vladimirou. Solving multistage stochastic networks: An application of scenario

aggregation. Networks, 21(6):619-643, 1990.

L.M. Ostresh Jr. On the convergence of a class of iterative methods for solving the Weber location

problem. Operations Research, 26:597-609, 1978.

D.W. Peaceman and H.H. Rachford Jr. The numerical solution of parabolic and elliptic differential
equations. STAM Journal, 3:28-42, 1955.

B.T. Polyak. Introduction to Optimization. Optimization Software, Inc., Publications Division,

1987.

M.J.D. Powell. A method for nonlinear constraints in minimization problems. In R. Fletcher,
editor, Optimization, pages 283-298. Academic Press, 1969.

R.T. Rockafellar. The multiplier method of Hestenes and Powell applied to convex programming.
Journal of Optimization Theory and Applications, 12:555-562, 1973.

R.T. Rockafellar. Augmented lagrangians and applications of the proximal point algorithm in
convex programming. Mathematics of Operations Research, 1:97-116, 1976.

R.T. Rockafellar and R. J.-B. Wets. Scenarios and policy aggregation in optimization under un-
certainty. Mathematics of Operations Research, 16:119-147, 1991.

J.E. Spingarn. Partial inverse of a monotone operator. Applied Mathematics and Optimization,

10:247-265, 1983.

J.E. Spingarn. Applications of the method of partial inverses to convex programming: Decompo-
sition. Mathematical Programming, 32:199-223, 1985.

23



[44] G. Stephanopoulos and A.W. Westerberg. The use of Hestenes” method of multipliers to resolve
dual gaps in engineering system optimization. Journal of Optimization Theory and Applications,

15:285-309, 1975.

[45] P. Tseng and D.P. Bertsekas. On the convergence of the exponential multiplier method for convex
programming. Mathematical Programming, 60:1-19, 1993.

24



