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The ADI method operates on the augmented Lagrangian associated with problem (1)L�(x; z; p) := G1(x) + G2(z) + pT (Ax+ b�Bz) + �2 kAx+ b� Bzk22 (2)in which p is a tentative dual multiplier and � is a positive scalar. From standard dualitytheory, if (x�; z�; p�) is a saddlepoint of the augmented Lagrangian, then (x�; z�) is a primalsolution of (1) and p� is an associated dual multiplier.In the method of multipliers [26, 38, 39, 2] a saddlepoint is located by an iterative process,consisting of a minimization of the augmented Lagrangian, followed by a steepest-ascent updateof the multipliers. (xt+1; zt+1) 2 argminx; z L� (x; z; pt)pt+1 = pt + � rp L� (xt+1; zt+1; pt)A computational drawback of this algorithm is that the quadratic penalty term kAx+ b� Bzk22in L�(x; z; pt) is not separable with respect to x and z. To overcome this, the primal mini-mization can be carried out in two steps in a block Gauss-Seidel fashion.xt+1 2 argminx L� (x; zt; pt)zt+1 2 argminz L� (xt+1; z; pt)pt+1 = pt + � rp L� (xt+1; zt+1; pt)This is equivalent to the following scheme.xt+1 2 argminx G1(x) + ptT�Ax+ �2 


Ax+ b� Bzt


22 (3)zt+1 2 argminz G2(z)� ptT�Bz + �2 


Axt+1 + b� Bz


22 (4)pt+1 = pt + (Axt+1 + b� Bzt+1) (5)This is the ADI method; it consists of solving in each iteration two optimization problems,the objective function of which contains both Lagrangian and proximal terms. Then theLagrangian terms are adjusted in proportion to the violation of the constraints. Arbitrary p0and z0 can be chosen as starting point, and, in the basic case, the penalty � is constant.The method has been studied extensively in the theoretical frameworks of both Lagrangianfunctions (Glowinski with Chan, Marrocco, Fortin and Le Tallec [16, 20]), and maximal mono-tone operators (Lions and Mercier [32], Gabay [18], Eckstein and Bertsekas [9, 12]). The con-nection to the proximal point algorithm is discussed in Rockafellar [40]. It has been shown [32]that the method is an instance of the Douglas-Rachford splitting [8] for �nding a zero of a max-imal monotone operator. Several other decomposition schemes, such as the algorithm of Hanand Lou [24], Spingarn's method of partial inverses [42, 43], the progressive hedging algorithmof Rockafellar and Wets [41] and Golshtein's block method of convex programming [21, 22] arealso instances of the Douglas-Rachford splitting (see [9] for a demonstration).Eckstein and Bertsekas [12] and Cheng and Teboulle [5] have constructed ADI variantswhich allow for inexact minimization. The former also permits relaxation of the primal iterates;in the latter, quadratic proximal terms replace the augmented Lagrangian penalty terms. Inthe Peaceman-Rachford variant [18], based on [36], a multiplier update is interpolated between2



the two problems. This algorithm requires more stringent assumptions for convergence andis less robust numerically [16]. Fukushima [17] presents an ADI method for the dual problemof (1). ADI methods have been constructed for several other classes of problems, such asvariational inequalities [19] and the monotone linear complementarity problem [13].The existing literature on the basic ADI algorithm (3)-(5) treats the slightly simpler casewhere B = I and b = 0. Convergence has been proved under assumption 1.1 and additionalones that guarantee that the original problem and/or the ADI problems are uniquely solvable.Such assumptions are: A has full column rank and G2 is the sum of a closed, proper, convexfunction and a strictly convex C1 function [16, chapter 3]; A has full column rank [9, 12], [3,chapter 3]. The dual algorithm in [17] requires that both primal and dual problems be feasibleand that the solution set of the primal be bounded. We will show here that it is possible todispense with the uniqueness assumption and still obtain a solution of (1) by ADI.Previous theoretical work on (3)-(5) has focused on the case of a �xed penalty �. It has beenproven that, under additional assumptions of coercivity and Lipschitz continuity, the rate ofconvergence is linear. Then an optimal value of � exists and is related to the constants in theseproperties [32, section 1.3.3]. In the general case, a good value of � is determined empirically,after experimentation and examination of the characteristics of the problem. In network 
owproblems, accelerated convergence has been observed with heuristics that vary the penalty for�nitely many iterations, or even use a separate penalty for each linear constraint [34, 10, 31].In this article we present convergence results for a general variable penalty algorithm,in which a symmetric positive de�nite (spd) matrix H t is employed in the Lagrangian andproximal term, to allow for linear transformations of the constraints. This leads to the followingextension of algorithm (3)-(5).xt+1 2 argminx G1(x) + ptTH tAx+ 12 


Ax+ b� Bzt


2Ht (6)zt+1 2 argminz G2(z)� ptTH tBz + 12 


Axt+1 + b�Bz


2Ht (7)pt+1 = pt + (Axt+1 + b� Bzt+1) (8)Update H t (9)The next assumption guarantees that the algorithm is well-de�ned.Assumption 1.2 Problems (6) and (7) are solvable.We impose a modest control on the growth of the penalty.Assumption 1.3 The eigenvalues of the spd matrices H t are uniformly bounded from be-low away from zero, and, with �nitely many exceptions, the eigenvalues of H t � H t+1 arenonnegative.This assumption implies that �H t	 and its eigenvalues converge. (This can be shown byusing lemma 2.9). This assumption allows us to vary the penalty in an arbitrary fashion for a�nite number of iterations; thereafter, the variation must be such that H t �H t+1 is positivesemide�nite. The added 
exibility in the initial stages can be computationally bene�cial.This article is organized as follows: in section 2 we prove the main result, the convergencetheorem for the algorithm (6){(9), and present an implementable construction of a penalty�H t	 satisfying assumption 1.3. A characteristic of the extended algorithm is that, although3



the primal iterates may not converge, they are feasible in the limit, and also the limit of theobjective value is optimal. (This is in common with other algorithms, such as the subgradientmethod for nondi�erentiable optimization in [37, section 5.3.2].) We present an example illus-trating this characteristic in section 3. In section 4 we provide a sequence of corollaries thatmainly address primal convergence and �nite termination. As an application, in section 5 wederive a decomposition scheme for block angular optimization in which we also have conver-gence to the optimal objective value even in the absence of primal convergence. Finally, weexamine computational performance on a class of dual block angular problems in section 6.2 The convergence theoremIn this section we prove the following convergence theorem for the extended method.Theorem 2.1 Let assumptions 1.1, 1.2 and 1.3 hold. Then, for any sequence of iterates�(xt; zt; pt; H t)	 produced by the ADI algorithm (6){(9),(i) f(Axt; Bzt)g converges, and the limit satis�es the constraints of problem (1).(ii) fG1(xt)+G2(zt)g converges to the optimal value of the objective function for problem (1).(iii) �H tpt	 converges to an optimal dual multiplier for problem (1).(iv) Any minimizers of problems of the form (6) and (7) in which H tpt, Axt+1 and Bzt are�xed at their limit values are optimal for problem (1).Note that in (iii) we consider a dual multiplier independently of a primal solution. This isbecause of the following lemma, which describes a well-known property of saddlepoints: dualsare associated with the problem, not with speci�c primal solutions.Lemma 2.2 Let X0 be a set in IRn, and de�ne the functions � : X0 ! IR and g : X0! IRs.Suppose that (x1; u1) is a saddlepoint with respect to � and g, i.e.�(x1) + uT g(x1) � �(x1) + u1Tg(x1) � �(x) + u1T g(x) 8u 2 IRs; 8 x 2 X0 :If (x2; u2) also satis�es these conditions, then so do (x1; u2) and (x2; u1).We will use the following minimum principle lemma, which specializes [4, theorem 2.3].Lemma 2.3 Let X0 be a convex subset of IRn. Suppose J : X0 ! IR is a function of theform J = J1 + J2, where J1 and J2 are convex and J2 is di�erentiable on X0. If �x minimizesJ , then J1(x)� J1(�x) +rJ2(�x)T (x� �x) � 0; 8x 2 X0.We will also use the following lemma, due to Cheng [6, lemma 2.1].Lemma 2.4 Let �at	 and ��t	 be two sequences of nonnegative numbers, with P1t=0 �t <1and at+1 � at + �t. Then �at	 converges.In order to prove theorem 2.1, we state and prove a collection of lemmas. We begin byshowing, in lemma 2.5, that the iterates �(Axt; Bzt; pt)	 are bounded. Then we establish that�G1(xt) +G2(zt)	 converges to the optimal objective value for problem (1) and that, in thelimit, �(Axt; Bzt)	 satis�es the constraints of problem (1) (lemma 2.6). In lemma 2.7 weshow that �Axt	, �Bzt	 and �H tpt	 converge, and that the limit of �H tpt	 is an optimaldual for (1). Finally, lemma 2.8 shows how to obtain a primal solution for (1) by solving two4



minimization problems which employ the limits of �Axt	, �Bzt	 and �H tpt	 as �xed terms inthe objective.The proof employs the saddlepoint approach of [3, chapter 3] and [20, chapter 3]. An im-portant di�erence is that we do not assume minimizer uniqueness for problems (1), (6) or (7).Also, the use of variable penalty requires a more complex argument, involving lemma 2.4. An-other novelty is the use of lemma 2.2, which allows us to consider primal and dual componentsof saddlepoints separately.Lemma 2.5 Let the assumptions of theorem 2.1 hold. Then �Axt	, �Bzt	 and �pt	 arebounded.Proof: Applying lemma 2.3 to problem (6) with the correspondencesJ1(x) = G1(x); J2(x) = ptTH tAx+ 12 


Ax+ b�Bzt


2Htyields [pt +Axt+1 + b� Bzt]TH tA(xt+1 � x) � G1(x)� G1(xt+1) 8x 2 IRn (10)which, after using (8), becomes[pt+1 +B(zt+1 � zt)]TH tA(xt+1 � x) � G1(x)�G1(xt+1) 8x 2 IRn (11)Applying the lemma to problem (7) with the correspondencesJ1(z) = G2(z); J2(z) = �ptTH tBz + 12 


Axt+1 + b� Bz


2Htwe get in a similar fashion� pt+1TH tB(zt+1 � z) � G2(z)�G2(zt+1) 8z 2 IRs (12)Let (x�; z�; p�) be a saddlepoint for problem (1). ThenAx� + b = Bz� (13)and also G1(x�) +G2(z�) � G1(x) + G2(z) + p�T (Ax+ b� Bz) 8x 2 IRn; 8z 2 IRsFor the iterates (xt; zt) this implies, after taking (8) into account,G1(x�) +G2(z�) � G1(xt+1) + G2(zt+1) + p�T (pt+1 � pt) (14)Substituting x� for x in (11) we obtain[pt+1 + B(zt+1 � zt)]TH tA(xt+1 � x�) � G1(x�)�G1(xt+1) (15)By (13) and (8) A(xt+1 � x�) = pt+1 � pt + B(zt+1 � z�) (16)5



and (15) can be rewritten as[pt+1 +B(zt+1 � zt)]TH t[pt+1 � pt +B(zt+1 � z�)] � G1(x�)�G1(xt+1) (17)Substituting z� for z in (12) we obtain� pt+1TH tB(zt+1 � z�) � G2(z�)� G2(zt+1) (18)Adding (14), (17) and (18) yields(pt+1 � pt)T [H tpt+1 � p�] + [B(zt+1 � zt)]TH tB(zt+1 � z�)+ (pt+1 � pt)TH tB(zt+1 � zt) � 0 (19)The identities2 (pt+1 � pt)T [H tpt+1 � p�] = 

pt+1 � pt

2Ht + 

pt+1 � (H t)�1p�

2Ht � 

pt � (H t)�1p�

2Ht2 [B(zt+1 � zt)]TH tB(zt+1 � z�) = 

B(zt+1 � zt)

2Ht + 

B(zt+1 � z�)

2Ht � 

B(zt � z�)

2Htallow (19) to be written as

pt+1 � pt

2Ht + 

B(zt+1 � zt)

2Ht + 2(pt+1 � pt)TH tB(zt+1 � zt) �

pt � (H t)�1p�

2Ht + 

B(zt � z�)

2Ht � 

pt+1 � (H t)�1p�

2Ht � 

B(zt+1 � z�)

2Ht (20)The left hand side equals 


(pt+1 � pt) +B(zt+1 � zt)


2Ht :We can provide an upper bound for the right hand side. We de�ne�t := 


pt � (H t)�1p�


2Ht + 


B(zt � z�)


2Ht (21)By assumption 1.3, H t �H t+1 is ultimately positive semide�nite, and thus, for any vector c,ultimately kck2Ht � kck2Ht+1 . Then we have, for the right hand side

pt � (H t)�1p�

2Ht + 

B(zt � z�)

2Ht � 

pt+1 � (H t)�1p�

2Ht � 

B(zt+1 � z�)

2Ht =�t � 

B(zt+1 � z�)

2Ht � 

pt+1 � (H t)�1p�

2Ht ��t � 

B(zt+1 � z�)

2Ht+1 � 

pt+1 � (H t)�1p�

2Ht =�t � 

B(zt+1 � z�)

2Ht+1 � 

pt+1

2Ht � kp�k2(Ht)�1 + 2pt+1T p� ��t � 

B(zt+1 � z�)

2Ht+1 � 

pt+1

2Ht+1 � kp�k2(Ht)�1 + 2pt+1Tp� =�t � �t+1 + �tfor �t := kp�k2(Ht+1)�1 � kp�k2(Ht)�1 (22)Thus (20) implies that ultimately0 � 


(pt+1 � pt) + B(zt+1 � zt)


2Ht � �t � �t+1 + �t (23)6



This is the key inequality in establishing convergence. Since the matrix H t�H t+1 is ultimatelypositive semide�nite, so ultimately is (H t+1)�1 � (H t)�1 [27, corollary 7.7.4], and therefore�t � 0, ultimately. A telescopic summation shows thatkXt=0 �t = kp�k2(Hk+1)�1 � kp�k2(H0)�1 ; 8k � 0Because of assumption 1.3, these partial sums are uniformly bounded from above. ThenP1t=0 �t converges and, by lemma 2.4, ��t	 converges. It follows that each of �pt	 and �Bzt	is bounded. Then, by (16), �Axt	 is also bounded.If the penalty were constant, �t in (23) would be identically zero. Then, for any saddlepoint(x�; z�; p�), f�tg would be nonincreasing and Fej�er-monotone, meaning that no step increasesthe distance to any solution point. This is also a property of the proximal point algorithm [42].Lemma 2.6 Let the assumptions of theorem 2.1 hold. Then,(i) �pt+1 � pt	 �! 0 , �B(zt+1 � zt)	 �! 0 , �Axt + b� Bzt	 �! 0 .(ii) �G1(xt) +G2(zt)	 converges to the optimal objective value for problem (1).Proof: Substituting zt for z in (12) yields� pt+1TH tB(zt+1 � zt) � G2(zt)� G2(zt+1) (24)We write (12) for t = t � 1 and let z = zt+1. We obtain� ptTH t�1B(zt � zt+1) � G2(zt+1)�G2(zt) (25)Adding (24) and (25) yields, after rearranging,(pt+1 � pt)TH tB(zt+1 � zt) � ptT (H t�1 �H t)B(zt+1 � zt) (26)We now combine (26) and (23) and get�t � �t+1 + �t � 2 ptT (H t�1 �H t)B(zt+1 � zt) � 


pt+1 � pt


2Ht + 


B(zt+1 � zt)


2Ht � 0 (27)Since ��t	 converges and ��t	 converges to zero, ��t � �t+1 + �t	 converges to zero. Becauseof the boundedness of �pt	 and �Bzt	 and assumption 1.3, nptT (H t�1 �H t)B(zt+1 � zt)oconverges to zero. Therefore, by dominance, both �pt+1 � pt	 and �B(zt+1 � zt)	 converge tozero. Then, because of (8), �Axt + b�Bzt	 also converges to zero. This concludes the proofof part (i).Let again (x�; z�) be a solution of problem (1). We take limits in (14) and use the fact that�pt+1 � pt	 �! 0. We getG1(x�) + G2(z�) � lim inft nG1(xt) +G2(zt)o (28)Adding (17) and (18) yieldsG1(x�) + G2(z�) � G1(xt+1) + G2(zt+1) + (pt+1 � pt)TH t[pt +B(zt+1 � zt)]+ [B(zt+1 � zt)]TH tB(zt+1 � z�) (29)7



We take limits in (29), using the boundedness of �pt	 and �Bzt	, assumption 1.3 and part (i).We obtain lim supt nG1(xt) +G2(zt)o � G1(x�) +G2(z�) (30)Combining (28) and (30) we getlim supt nG1(xt) + G2(zt)o � G1(x�) + G2(z�) � lim inft nG1(xt) +G2(zt)owhich implies that limt �G1(xt) +G2(zt)	 = G1(x�) + G2(z�). This proves part (ii).Lemma 2.7 Let the assumptions of theorem 2.1 hold. Then,(i) �Axt	, �Bzt	 and �H tpt	 converge.(ii) The limit of �H tpt	 is an optimal dual for problem (1).Proof: Let (�; %) be an accumulation point of the bounded sequence �(Bzt; H tpt)	. Weprove �rst that % is an optimal dual for problem (1), then we show that (�; %) is unique. Theconvergence of �Axt	 then follows from the convergence of �Bzt	 and part (i) of lemma 2.6.The sequence �(Axt; H tpt; Bzt)	 is also bounded. Then there exists a subsequence�(Axj ; Hjpj ; Bzj)	, j 2 J , which converges to (�; %; �), such that �+ b = �.We add (11), (12) and (14) for iterates with indices in J . We haveG1(x�) + G2(z�) + pj+1THj(Axj+1 + b�Bzj+1) + [B(zj+1 � zj)]THj(Axj+1 � Ax) �G1(x) +G2(z) + p�T (pj+1 � pj) + pj+1THj(Ax+ b�Bz)8j 2 J ; 8x 2 IRn; 8z 2 IRs (31)Taking the limit, and using the facts that �Axj	 is bounded and that �Axj + b� Bzj	 �! 0,�Hjpj+1	 �! % and �B(zj � zj+1)	 �! 0, we obtainG1(x�) + G2(z�) � G1(x) +G2(z) + %T (Ax+ b�Bz) 8x 2 IRn; 8z 2 IRs (32)i.e. % is an optimal dual for problem (1).We will now show that the point (�; %) is unique. Suppose �(Bzt; H tpt)	 has anotheraccumulation point (�1; %1). Then there exists a subsequence n(xk; zk; pk)o, k 2 K, suchthat n(Axk + b;Hkpk)o �! (�1; %1), with %1 an optimal dual for problem (1), and alsonG1(xk) +G2(zk)o �! G1(x�) + G2(z�). We will now retrace our analysis and show that%1 = % and �1 = �.Since %1 is an optimal dual, we haveG1(x�) + G2(z�) � G1(xt+1) +G2(zt+1) + %1T (Axt+1 + b� Bzt+1) (33)We substitute xk for x in (11), and getG1(xt+1) + [pt+1 + B(zt+1 � zt)]TH tA(xt+1 � xk) � G1(xk) 8k 2 K (34)Substituting zk for z in (12) yieldsG2(zt+1)� pt+1TH tB(zt+1 � zk) � G2(zk) 8k 2 K (35)8



Adding (33), (34) and (35) yieldsG1(x�) + G2(z�) + (H tpt+1 � %1)T (Axt+1 + b�Bzt+1) �G1(xk) + G2(zk) + pt+1TH t(Axk + b�Bzk) + [B(zt+1 � zt)]TH t(Axk � Axt+1) (36)After taking the limit over k 2 K and using the fact that nAxko �! �1 � b and nBzko �! �1,the right hand side becomesG1(x�) + G2(z�) + [B(zt+1 � zt)]TH t(�1 � b� Axt+1)and, with the use of (8), inequality (36) becomes(pt+1 � pt)T [H tpt+1 � %1] + [B(zt+1 � zt)]TH t(Bzt+1 � �1) + (pt+1 � pt)TH tB(zt+1 � zt) � 0which is analogous to (19). Repeating the analysis from there on, we can show that thesequence �


pt � (H t)�1%1


2Ht + 


Bzt � �1


2Ht�analogous to ��t	 of (21), is convergent. Then all its subsequences must have the same limit.For the subsequence with indices k 2 K, n(Bzk ; Hkpk)o �! (�1; %1), and thus the sequencehas limit 0. Then, for the subsequence with j 2 J , we must have �(Bzj ; Hjpj)	 �! (�1%1).We now show how a primal solution for problem (1) can be obtained by solving two mini-mization problems which include in the objective the limit of �(Bzt; H tpt)	. We call a function' : IRm ! IR+ positive de�nite in case '(x) = 0 if and only if x = 0. Then we have the fol-lowing result.Lemma 2.8 Let �(Bzt; H tpt)	 converge to (�; %). Let ~x solveminx G1(x) + %TAx+ '1(Ax+ b� �)and let ~z solve minz G1(z)� %TBz + '2(� �Bz)in which '1 and '2 are continuous positive de�nite functions. Then (~x; ~z) solves (1).Proof : Since ~x is a minimizer, we have for all iterates xtG1(~x) + %TA~x+ '1(A~x+ b� �) � G1(xt) + %TAxt + '1(Axt + b� �) (37)Similarly we have for all iterates ztG2(~z)� %TB~z + '2(� � B~z) � G2(zt)� %TBzt + '2(� �Bzt) (38)Combining (37) and (38) yieldsG1(~x) + G2(~z) + %T (A~x+ b�B~z) + '1(A~x+ b� �) + '2(� �B~z) �G1(xt) +G2(zt) + %T (Axt + b� Bzt) + '1(Axt + b� �) + '2(� � Bzt)9



Let now (x�; z�) be a primal solution for (1). By lemma 2.6 and the continuity of '1 and '2,in the limit the above inequality becomesG1(~x) + G2(~z) + %T (A~x+ b� B~z) + '1(A~x+ b� �) + '2(� � B~z) � G1(x�) +G2(z�) (39)Since (x�; z�; %) is a saddlepoint for (1), we haveG1(x�) +G2(z�) � G1(~x) +G2(~z) + %T (A~x+ b�B~z) (40)Combining (39) and (40) shows that'1(A~x+ b� �) + '2(� � B~z) � 0Since '1 and '2 are positive de�nite, this is possible only if A~x+ b = � = B~z, i.e. if (~x; ~z) isprimal feasible for (1). Then from (39) and (40) it follows thatG1(~x) +G2(~z) = G1(x�) + G2(z�)i.e. (~x; ~z) is primal optimal for (1).A combination of the previous lemmas provides a proof for the master theorem.Proof of theorem 2.1: Part (i) can be proven by combining part (i) of lemma 2.6 and part(i) of lemma 2.7. Part (ii) is proven in part (ii) of lemma 2.6 and part (iii) is proven in part(ii) of lemma 2.7. Finally, part (iv) is a special case of lemma 2.8, since a norm is a continuouspositive de�nite function.We now display a sequence of spd matrices �H t	 satisfying assumption 1.3. It is basedon the following inequality, due to Weyl. We let �k(A), k = 1; : : : ; m, denote the k-th largesteigenvalue of a real symmetric m�m matrix A, i.e. �1(A) � �2(A) � : : :� �m(A).Lemma 2.9 [23, lemma 8.1.3] Let A and E be real symmetric m�m matrices. Then�k(A) + �m(E) � �k(A+ E) � �k(A) + �1(E); k = 1; : : : ; m:The following lemma describes the iterative construction.Lemma 2.10 Given a scalar L > 0, construct �H t	 as follows:Initialization. Choose an spd matrix H0 such that L � �m(H0).Iterative step. Given H t such that L � �m(H t), pick a symmetric m�m matrix Et such that0 � �k(Et) � �m(H t)� L, k = 1; : : : ; m. Let H t+1 = H t �Et. Then,(i) H t �H t+1 is positive semide�nite.(ii) H t+1 is spd, with eigenvalues satisfying L � �k(H t+1), k = 1; : : : ; m.Proof : By construction, H t � H t+1 = Et and 0 � �m(Et), i.e. H t � H t+1 is positivesemide�nite. This proves (i). For part (ii), lemma 2.9 shows that�k(H t+1) + �m(Et) � �k(H t) � �k(H t+1) + �1(Et); k = 1; : : : ; m:Since �m(Et) is nonnegative, �k(H t+1) � �k(H t). On the other hand, since �k(H t+1) ��k(H t)� �1(Et), and, by construction, �1(Et) � �m(H t)� L, we have �k(H t+1) � �k(H t)��m(H t) + L � L.From Weyl's inequality we can infer that the condition 0 < L � �k(H t+1) � �k(H t),k = 1; : : : ; m, is ultimately necessary if assumption 1.3 is satis�ed. If �H t	 consists of diagonalmatrices, this condition is also su�cient. In all cases, the condition implies that the eigenvaluesof H t are uniformly bounded from above, and that for each k = 1; : : : ; m, the nonincreasing,bounded sequence ��k(H t)	 converges to its in�mum.10



3 A simple exampleWe want to employ the ADI method to solveminx1; x2; x3; x4 � 0 x1 � x2 + x3 + x4subject to x1 � x2 = 1x3 + x4 = 1 (41)This problem can be mapped to problem (1) in a variety of ways. Here we takeG1 (x1; x2; x3) := ( x1 � x2 + x3 if x1 � x2 = 1 and x1; x2; x3 � 0+1 otherwiseand G2 (x4) := ( x4 if x4 � 0+1 otherwiseand write problem (41) as minx1; x2; x3; x4 G1(x1; x2; x3) + G2(x4)subject to x3 + x4 = 1This is in the form of problem (1), with A = [0 0 1], B = [�1] and b = �1. Observe that Ahas not full column rank. Both G1 and G2 are convex, proper, closed functions. We take, forsimplicity, H t = I; 8t. At each ADI iteration the two smaller problems are solved(xt+11 ; xt+12 ; xt+13 ) 2 argminx1; x2; x3 � 0 x1 � x2 + x3 + ptx3 + 12 

x3 + xt4 � 1

22subject to x1 � x2 = 1xt+14 = argminx4 � 0 x4 + ptx4 + 12 


xt+13 + x4 � 1


22and then the multipliers are updatedpt+1 = pt + �xt+13 + xt+14 � 1�For initialization with arbitrary (x04; p0) � 0, the iterates are given in closed form by�xt+11 ; xt+12 ; xt+13 ; xt+14 ; pt+1� = �1 + �; �; [�pt]+; 0; [pt]+ � 1� ; for any � � 0The sequence �(xt3; xt4; pt)	 converges to (1; 0;�1). For the choice xt1 = 1 + t and xt2 = t,both sequences �xt1	 and �xt2	 are divergent. However, for any t � 0, the vector (1 + t; t; 1; 0)is primal optimal for problem (41). 11



4 Corollaries4.1 An interchange variantThere is enough 
exibility in the variable penalty algorithm to allow for the rearrangement ofthe minimization problems per iteration.Corollary 4.1 Theorem 2.1 is valid for the algorithm (6){(9) with steps (6) and (7) inter-changed.This is due to the symmetry of problem (1) in x and z, in both the objective and theconstraints. From a computational perspective, we would choose to solve �rst the problemfor which it is easier to generate a good starting point, or which contains more data from theoriginal problem.4.2 Primal convergenceIn certain cases the convergence result can be strengthened. In particular, when the matricesA and B have linearly independent columns, we can guarantee primal convergence, as well.Corollary 4.2 Let the assumptions of theorem 2.1 hold, and let A and B have full columnrank. Then �(xt; zt)	 is uniquely de�ned and converges to a primal solution of problem (1).Proof: If A and B have full column rank, then the objective function in problems (6) and (7) isstrongly convex, and thus the minimizers are unique. By part (i) of theorem 2.1, �(Axt; Bzt)	converges, and the limit satis�es the constraints of problem (1). Since A and B have fullcolumn rank, �xt	 and �zt	 converge to �x and �z, respectively, so that A�x+ b = B�z, i.e. (�x; �z)is primal feasible for problem (1). Then,G1(�x) + G2(�z) � limt nG1(xt) +G2(zt)owhere the right hand side is the optimal value, by part (ii) of theorem 2.1. G1 and G2 are bothclosed, convex functions, thus lower semicontinuous, and so we must haveG1(�x) � lim inft nG1(xt)o and G2(�z) � lim inft nG2(zt)oCombining the three inequalities yieldsG1(�x)+G2(�z) � lim inft nG1(xt)o+lim inft nG2(zt)o � limt nG1(xt) + G2(zt)o � G1(�x)+G2(�z)which shows that the value G1(�x) +G2(�z) is optimal.A weaker result holds if we just assume that �(xt; zt)	 has accumulation points. These areguaranteed to exist if the e�ective domains of G1 and G2 or the nonempty level sets of G1+G2are compact.Corollary 4.3 Let the assumptions of theorem 2.1 hold. Then any accumulation point (�x; �z)of �(xt; zt)	 is a primal solution of problem (1).Proof: After going to a subsequence, if necessary, �(xt; zt)	 converges to f(�x; �z)g. In view ofpart (i) of theorem 2.1, A�x + b = B�z, i.e. (�x; �z) is primal feasible. By arguments similar tothose in the proof of the previous corollary, the value G1(�x) +G2(�z) is optimal.12



4.3 Finite terminationWe can provide a su�cient condition for �nite termination at an optimal point. Note that thiscorollary does not require assumption 1.3.Corollary 4.4 Let assumptions 1.1 and 1.2 hold. If iterates (xt; zt; pt) and (xt+1; zt+1; pt+1)are such that (pt; Bzt) = (pt+1; Bzt+1), then (xt+1; zt+1; H tpt+1) is a saddlepoint for prob-lem (1).Proof: By (8), pt = pt+1 implies Axt+1 + b = Bzt+1 (42)i.e. (xt+1; zt+1) is feasible for (1). Let (x�; z�) be optimal for (1). ThenG1(x�) + G2(z�) � G1(xt+1) +G2(zt+1) (43)Using the hypothesis in (29) yieldsG1(xt+1) +G2(zt+1) � G1(x�) + G2(z�) (44)Combining (43) and (44) we getG1(xt+1) +G2(zt+1) = G1(x�) + G2(z�) (45)i.e. the value of the objective function at (xt+1; zt+1) is optimal. We now add (11), (12)and (45) and use the hypothesis and (42). We obtainG1(x�) + G2(z�) � G1(x) +G2(z) + pt+1TH t(Ax+ b� Bz) 8x 2 IRn; 8z 2 IRs (46)This shows that H tpt+1 is an optimal dual for (1).If this condition is used as a stopping rule in the example in section 3, the algorithm (fornonnegative start) terminates �nitely at an optimal point.5 An ADI decomposition scheme for block angular problemsSeveral classes of models in applied optimization, including multicommodity network 
ow [1]and stochastic scenario analysis [41], require solving convex block angular problems (CBA) ofthe following form:minx[1]; x[2]; : : : ; x[K] f[1](x[1]) + f[2](x[2]) + : : : + f[K](x[K])subject to A[1]x[1] = b[1]A[2]x[2] = b[2]. . . A[K]x[K] = b[K]D[1]x[1] + D[2]x[2] + : : : + D[K]x[K] � d0 � x[i] � u[i]; i = 1; : : : ; K: (47)13



Each function f[i] is �nite-valued, convex and continuous, and, in many applications, quadraticin the vector x[i], i.e. f[i](x[i]) = c[i]Tx[i] + x[i]TQ[i]x[i], in which Q[i] is a real symmetricpositive semide�nite matrix. This includes the case of linear objective (Q[i] = 0). We denoteby  (� j B[i]) the indicator function of the feasible set B[i] for the block constraintsB[i] := fx[i] j A[i]x[i] = b[i] and 0 � x[i] � u[i]gThe variables interact only in the coupling constraints, de�ned by the matrix hD[1] : : :D[K]iand the shared resource vector d.For this class of problems we will derive a decomposition scheme based on the extended ADImethod. In mapping CBA onto problem (1), we choose to incorporate the block constraintsin the de�nition of G1 and represent the coupling constraints in the de�nition of G2 and asexplicit linear equality constraints. (Other mappings are discussed in [30].) We de�neG1 �x[1]; : : : ; x[K]� := KXi=1 f[i](x[i]) +  (x[i] j B[i])and G2 �d[1]; : : : ; d[K]� := 8><>: 0 if KXi=1 d[i] � d+1 otherwiseProblem CBA can be written asminx[i]; d[i] G1 �x[1]; : : : ; x[K]�+G2 �d[1]; : : : ; d[K]�subject to D[i]x[i] = d[i]; i = 1; : : : ; Kwhich is in the form of problem (1), with the correspondences b  0, A  D :=diag �D[1]; : : : ; D[K]�, and B  I . A multiplier vector p[i] is paired with each block of con-straints D[i]x[i] = d[i], i = 1; : : : ; K. For reasons to be explained soon, we employ a diagonalpositive penalty matrix �t, common to all blocks. We let the diagonal matrix �tK consist of Kcopies of �t placed along the diagonal. We write in shorthand x for the concatenation of thevectors x[1]; x[2]; : : : ; x[K], and similarly for d and p. At each iteration we solve two problemsxt+1 2 argminx f(x) + ptT�tKDx + 12 


Dx � dt


2�tKsubject to A[i]x[i] = b[i]0 � x[i] � u[i] ) i = 1; : : : ; K (48)dt+1 = argmind �ptT�tKd+ 12 


Dxt+1 � d


2�tKsubject to KXi=1 d[i] � d (49)Then we update the multipliers pt+1 = pt + Dxt+1 � dt+1 (50)14



and the penalty matrix �t.Problem (48) decomposes to the following K block problems.xt+1[i] 2 argminx[i] f[i](x[i]) + pt[i]T�tD[i]x[i] + 12 


D[i]x[i] � dt[i]


2�tsubject to A[i]x[i] = b[i]; 0 � x[i] � u[i] (51)Since D[i] may not have full column rank, xt+1[i] may not be unique. This nonuniqueness can bedealt with by the convergence theory we developed in section 2. Problem (49) has a stronglyconvex objective and therefore it is uniquely solvable. Because of our choice of diagonal penalty,the solution can be expressed in closed form.dt+1[i] = D[i]xt+1[i] + pt[i] � 1K " KXi=1 �pt[i] +D[i]xt+1[i] �� d#+ (52)Substitution in (50) yields pt+1[i] = 1K " KXi=1 �pt[i] +D[i]xt+1[i] �� d#+ (53)which shows that, for t � 1, the multipliers are equal across all blocks and nonnegative.This is a resource proximization (RP) splitting [31], in which the activities xt[i] always sat-isfy the block constraints and the target resource allocations dt[i] always satisfy the couplingconstraints. In the objective of problem (51) the vector D[i]x[i], which re
ects the consumptionof the shared resource d, is penalized by both price and proximal terms; the iterative adjust-ments (52) and (53) are such that, in the limit, consumption matches an optimal allocation.This is shown in the following theorem, which specializes the general theorem 2.1.Theorem 5.1 Assume thatCBA admits a Lagrangian saddlepoint, and that each function f[i]is either quadratic or has bounded level sets over the feasible set for the corresponding blockconstraints. Let �k(�t), the eigenvalues of the diagonal positive matrices ��t	, ultimatelysatisfy L � �k(�t+1) � �k(�t), for L > 0 given. Then any sequence �xt	 produced by thealgorithm (48){(50) for arbitrary start (p0; d0;�0) is such that(i) KPi=1 limt nD[i]xt[i]o � d.(ii) KPi=1nf[i](xt[i])o converges to the optimal value for CBA.(iii) nxt[i]o converges for all i 2 f1; : : : ; Kg such that D[i] has full column rank.Proof: The functions G1 and G2 are convex and closed, by construction, and also proper,since CBA is solvable, by hypothesis. The assumptions on the solvability of CBA and on thef[i]'s are su�cient to guarantee the solvability of problem (48). The objective in problem (49)is strongly convex and continuous, and therefore has compact level sets. The feasible regionis a nonempty polyhedral set, thus closed, and its intersection with a nonempty level set isa compact set. By the Bolzano-Weierstass theorem, the in�mum of the continuous objectiveover this intersection is attained; hence problem (49) is solvable. Also, by construction, thepenalty matrices ��t	 satisfy assumption 1.3. Thus all assumptions of theorem 2.1 are met.15



By lemma 2.6 (i), ndt[i]o converges, say to d�[i]. By part (i) of theorem 2.1, nD[i]xt[i] � dt[i]oconverges to zero and therefore nD[i]xt[i]o converges to d�[i]. Since PKi=1 dt+1[i] � d, we must havePKi=1 d�[i] � d. This proves part (i). Part (ii) follows from part (ii) of theorem 2.1. Part (iii)follows from part (i). If all matrices D[i] have full column rank, �xt	 converges to a primalsolution of CBA, by corollary 4.2.Our de�nitions of G1 and G2 have resulted in a coarse grain decomposition algorithm forCBA: the �rst ADI problem decomposes into independent block problems which can even besolved in parallel, while the second ADI problem has a simple closed form solution. Appropriatede�nitions of G1 and G2 can lead to a �ne grain (activity-level) decomposition scheme [14].The choice of granularity depends on the architecture of the target computing environment:a coarse grain method may perform better in a cluster of workstations, while a �ne grain onemay be better suited to a massively parallel system.In [31] we present computational results for an ultimately-�xed-penalty variant of the coarsegrain RP decomposition on the Connection Machine 5 parallel supercomputer. The CM-5 canbe viewed as a cluster of powerful processors linked by fast networks. On this system, theRP algorithm solved large-scale multicommodity network 
ow problems one to two orders ofmagnitude faster than the serial optimizer MINOS 5.4 on a DEC 5000 workstation.6 Computational experimentsIn the basic ADI method (3)-(5) a single penalty is used and is held �xed over all iterations.In this case the computational performance depends strongly on the value of the penalty.Experience on a variety of applications [16, chapter 5], [9, chapter 7], [17] has shown thatif the penalty is chosen too small or too large the solution time can signi�cantly increase.For certain simple problems an optimal value of � can be found by spectral techniques [16,chapter 1]. In the general case the choice of a good value of � is a question of considerableexperimentation and of familiarity with the characteristics of the problem. In such cases anappropriate variable penalty heuristic can result in computational savings.To illustrate this we apply both the �xed- and the variable-penalty methods to a problemfrom the ADI literature and compare results. We consider the Fermat-Weber problemminz 2 IRn KXi=1 ai 


z � b[i]


2 (54)in which the vectors b[i] and the weights ai > 0 are given. For n = 2 the problem has asingle-facility location interpretation: b[i] are shipment centers, represented as points in theplane; the sought minimizer is the location of the facility to be built, such that the sum ofthe transportation costs between the centers and the facility is minimized, where each cost isproportional to the euclidean distance.Specialized algorithms for this problem are reviewed in [35]. To cast it in a formatsuitable for ADI, we introduce auxiliary vectors of variables x[1]; : : : ; x[K], the combinationof which plays the role of the x variables, and rewrite it in a dual block angular form,16



as in [16, section 3.7.3] minx[1]; : : : ; x[K]; z 2 IRn KXi=1 ai 


x[i]


2subject to x[i] = z � b[i]; i = 1; : : : ; KWe pair a multiplier vector p[i] with each block of constraints and use a separate penalty value�i for each block. At each iteration we solve two strongly convex problemsxt+1 = argminx KXi=1 "ai 


x[i]


2 � x[i]T�tipt[i] + �ti2 


zt � b[i] � x[i]


22# (55)zt+1 = argminz KXi=1 "zT�tipt[i] + �ti2 


z � b[i] � xt+1[i] 


22# (56)Then we update the multiplierspt+1[i] = pt[i] + (zt+1 � b[i] � xt+1[i] ) (57)and the penalties �i. Because of the proximal terms, both problems have unique, closed formsolutions. xt+1[i] = 241� ai�ti 


�t[i]


235+ �t[i]; for �t[i] := zt � b[i] + pt[i]; i = 1; : : : ; K (58)zt+1 = ( KXi=1 �ti)�1 KXi=1 �ti hb[i] + xt+1[i] � pt[i]i (59)For a single penalty �, the updates agree with (7.40)-(7.43) in [16, section 3.7.3]. In this case,by (59) and (57) we have that PKi=1 pt+1[i] = 0, for t � 0, and thus (59) simpli�es tozt+1 = 1K KXi=1 hb[i] + xt+1[i] i ; t � 1 (60)We note that the earlier theory in [16, chapter 3] cannot characterize the convergence ofthis iterative scheme, because the objective function in (54) is not strictly convex. In contrast,our corollary 4.2 guarantees that �zt	 converges to a primal solution of the problem.To assess the impact of the penalty value on performance, we generated 20 classes of data,with the number of points K in f10; 15; 25; 50; 75g and the dimension n in f2; 4; 8; 16g. Foreach class we generated 49 random problems. The weights ai were uniformly distributed in[1; 10], while the components of b were uniformly distributed in [10; 100].In all runs we chose initial values z0 = p0 = 0. We terminated a run when all componentsof two successive (z; p) iterates agreed to at least D signi�cant digits, for D = 6 and D = 8.All runs were done on an IBM RS-6000/590 workstation using double precision arithmetic.We also solved the problems with the special-purpose Weiszfeld algorithm as emended in [35],and compared results. The objective function values at termination agreed to 6� 7 digits.17
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Figure 1: Number of ADI iterations as a function of the �xed penalty value on a Fermat-Weber problem withK = 15, n = 4, for termination accuracy of D = 6 and D = 8 signi�cant digits. Only a narrowrange of penalty values results in low iteration count (below 100).In Figure 1 we display the number of iterations to termination of the �xed penalty algorithmon an example problem with K = 15 and n = 4, as the penalty ranges from 0:01 to 2:5. Weobserve that only a very narrow range of penalty values o�ers good performance: the algorithmterminates in at most a hundred iterations only if the penalty is in [0:06; 0:45] for D = 6 and in[0:08; 0:36] for D = 8. Performance deteriorates dramatically for values outside this interval.This can be attributed to the following: If � >> 1, then xt+1[i] ' �t[i] and therefore zt+1 ' zt,i.e. the new estimate for z is very close to the previous one. On the other hand, if 0 < � << 1,then xt+1[i] ' 0 and zt+1 ' 1K PKi=1 b[i], i.e. zt+1 defaults to the average of the observations, apoor estimate, in general, because it ignores the weights ai. Small computational progress ismade in both cases.In this example the best penalty is 0:16 for 6-digit accuracy, resulting in 47 iterations, and0:21 for 8-digit accuracy, resulting in 58 iterations. For penalty values in [0:01; 2:5], the mediannumber of iterations was 263 for 6-digit accuracy, and 337 for 8-digit accuracy. Interchangingthe order in which problems (55) and (56) are solved (with x0 = p0 = 0) yielded similar results:for 6-digit accuracy, the best count was 45, for � = 0:16, and the median was 249; for 8-digitaccuracy, the best count was 57, for � = 0:185, and the median was 323.Using the variable penalty heuristic we describe next, on the algorithm (55){(57) withoutinterchange, we solved this problem in 35 and 45 iterations, for D = 6 and D = 8, respectively.We chose penalties �0i to make z1 a weighted combination of the vectors b[i]: speci�cally,�0i = 2 ai= 


b[i]


2, which yielded z1 = 0:5 (PKi=1 aib[i]= 


b[i]


2) = (PKi=1 ai= 


b[i]


2): In choosingthe limiting value L for the variable penalty, we considered the fact that, in the objective ofproblem (55), the original terms, with weights ai, compete with the penalty terms, with weights�i. Thus, for balancing purposes, we let L be a multiple of the average weight, L = � 1K PKi=1 ai,18
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Figure 2: l2-error in the z iterates for the Fermat-Weber problem with K = 15, n = 4, for the variable- and�xed-penalty ADI methods. The variable-penalty method converges faster than the best case of the�xed-penalty method.with � chosen such that the initial penalties �0i lie on both sides of L. After experimentationwe set � = 0:075=n. For the example problem this yielded L = 0:092. The initial penaltieswere in [0:019; 0:234]; nine were above L and six were below. The penalties were updatedevery T = 10 iterations. If a penalty were initially below L, it was increased by a factor of1:05 until it exceeded L. Otherwise, it was reduced by a factor of 0:98 down to L.�ti = ( 1:05 �t�Ti ; if �t�Ti < Lmaxf0:98 �t�Ti ; Lg; otherwiseThe increasing update could thus be selected only a �nite number of times. Thus assump-tion 1.3 was met.In Figure 2 we display the iterative decrease in the error magnitude for the z iterates in theexample problem with D = 8. The thick line corresponds to the variable penalty algorithm,while the thin line corresponds to the �xed penalty algorithm with the best value � = 0:21.The dotted line corresponds to the �xed penalty algorithm for � = 1:285, which results inthe median number of iterations among all values in the interval [0:01; 2:5]. The rate ofconvergence was almost linear for all three cases. The reduced count of iterations resultedfrom a larger decrease of the error per iteration: the average decrease in the error was 6% forthe median, 32% for the best of �xed penalty and 42% for the variable penalty.For this example we also ran the algorithm with all penalties �xed at the limit L. Theperformance was markedly worse than that of the variable case, since it took 63 iterations totermination for D = 6 and 84 iterations for D = 8.In table 1 we compare the performance of this variable penalty method against �xed penalty,for an accuracy of at least 6 and 8 signi�cant digits. The table reports the median number19



Performance of ADINumber of iterationsn K variable �xed penalty percentile variable �xed penalty percentilepenalty best median �x � var penalty best median �x � var10 49 49 210 7.55 65 64 274 7.3115 55 47 211 6.90 72 62 283 6.902 25 74 55 225 12.18 95 70 300 12.3350 87 60 222 21.71 118 79 293 22.4975 102 65 231 24.16 132 82 302 24.8410 39 38 258 4.39 52 48 349 4.3515 42 39 249 4.98 56 50 334 5.244 25 44 39 252 3.06 57 50 333 3.2750 48 43 259 3.73 62 53 332 4.1275 52 45 262 6.31 68 56 338 7.1010 34 35 338 0.96 44 45 446 1.2015 36 37 340 0.73 46 46 446 0.908 25 37 37 330 1.33 48 45 426 1.5150 38 39 342 1.14 49 48 439 1.4375 40 41 345 0.86 52 50 434 1.2910 33 35 464 0.41 42 43 598 0.5915 33 35 431 0.37 43 44 563 0.6516 25 34 37 437 0.29 43 46 554 0.4150 36 38 465 0.20 45 47 584 0.3375 36 39 476 0.31 46 48 598 0.396 accurate digits 8 accurate digitsTable 1: Number of iterations for the ADI method with �xed and variable penalty on the random Fermat-Weberproblems.of iterations for the 49 problems in each class. We ran the �xed penalty algorithm with 100penalty values equally spaced in the interval [0:01; 2:5]. In the column labeled `best' we listthe fewest number of iterations to termination; they correspond to the best choice of �xedpenalty. The column labeled `median' lists the median number of iterations over all �xedpenalty choices in [0:01; 2:5]. Under `percentile' we list the percentage of �xed penalty valueswhich result in an iteration count no worse than that of the variable penalty, aggregated overall 49 problems in the corresponding class.The table indicates that, as the dimension n of the problem increases, the bene�t of main-taining multiple varying penalties becomes more pronounced, as the �xed penalty percentiledecreases at an almost quadratic rate for many cases. For su�ciently large problems, thepercentile ranking of the variable penalty method is better than the 99th percentile.20



7 Conclusions and future directionsIn recent years there has been a renewed interest in both the theoretical and computationalproperties of the alternating directions method for optimization, especially in the frameworkof parallel computing. The basic method exhibits many desirable characteristics, such asconvergence under mild assumptions, stability (due to the proximal terms) and 
exibility in theimplementation: the ADI problems may be solved inexactly, their order may be interchanged,the primal iterates may be relaxed and the starting point may be arbitrary. Another attractivefeature, given today's diverse parallel computing systems, is the capability of the method tolead to both �ne- and coarse-level decomposition algorithms for large scale problems, such asblock angular ones.In this article we have extended the ADI method along two directions: we characterizedconvergence in the absence of uniqueness of minimizers (absence of strong convexity, essentially)and in the presence of variable positive de�nite penalty. The �rst extension allowed us to derivea new decomposition scheme for the block angular problem. The second one can lead to thedesign of e�cient heuristics for the acceleration of convergence.In the future we plan to investigate further the computational bene�ts of variable penalty.For instance, in the examples we presented we employed only diagonal penalties; the theoryallows general spd matrices H t. A possible strategy is to choose H t such that the quadraticproximal terms are approximately diagonalized. Techniques for the local acceleration of linearconvergence, such as Aitken's �2-method [25, section 5.9], may also be bene�cial.An open problem is convergence under partial updates in (8), i.e. when, in the computationof the new multipliers, the old value at iteration t is used for some components of (x; z) andthe new value at iteration t + 1 is used for the rest. These incomplete updates may be com-putationally attractive in a distributed environment where communication is expensive or thesolution times for the subproblems in a decomposition vary widely. Another attractive optionis the modi�cation of the multiplier updates to include second order (Hessian) information.Such updates, although computationally expensive, may yield faster convergence.When applied to linear block angular problems, the coarse grain ADI decompositionschemes require solving quadratic problems at each iteration. To overcome this computationaldrawback we may iteratively linearize the quadratic term, as done in [44, 33], [15, section 2.5.1]for the method of multipliers, or replace it with a piecewise linear local approximation, as donein the convex optimization methods in [29, 28].On the theoretical level, an open issue is whether the convergence properties are preservedif the quadratic penalty is replaced by other penalty functions, such as Bregman's [45, 11], orthe class of strongly convex functions employed in the auxiliary problem method [7].References[1] A.A. Assad. Multicommodity network 
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