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A VARIABLE PROJECTION METHOD
FOR SOLVING SERPARABLE NONLINEAR
LEAST SQUARES PROBLEMS

Abstract

Consider the separable nonlinear least squares problem of

finding a € R" and BS R< which, for given data (yi, ti) i=1,..., m

and functions goj(g, t)j=1, 2,..., n{m>n), minimize the functional
2

r(a, o) = || y-@@ al]
~ o) ~ NS

2

where CIJ(OL)i ] =(pj(05,ti:). This problem can be reduced to a nonlinear

~ 3 ~s

least squares problem involving o only and a linear least squares
problem involving a only. The reduction is based on the results of

Golub and Pereyra, SIAM J. Numerical Analysis, April 1973, and

on the trapezoidal decomposition of &, in which an orthogonal matrix

Q and a permutation matrix P are found such that

QPR = (+R s\ Ir
ol o

where R is nonsingular and upper triangular. To develop an algorithm
to solve the nonlinear least squares problem a formula - is proposed

for the Frechet derivation D (@2(%)) where Q is partitioned into

Q] }r‘
Q=
Q }m—r‘




INTRODUC TION

Golub and Pereyra [4] have recently proposed an algorithm

for solving the separable nonlinear least squares problem in which,

for given data (yi, ti) i=1, 2, ..., m and given functions
goj(g, t), j=1,2, ..., n (m>n) where o = (oz1 L PYRI ak), the
vectors ¢ and a = (a] » Bgees an) are determined which minimize the

nonlinear functional

2
r(a, g)=||¥—®(g)§}llz (1.1)

where q)(%)i,j =(pj(%, ti)'
This problem often arises in the physical and biological sciences when
one wants to Tit data in a least squares sense {o a nonlinear model as
in exponential fitting.

The approach taken by Golub and Pereyra uses the explicit
coupling between ¢ and 2 to reduce (1.1) to two subproblems. The
first subproblem is a nonlinear least squares problem in the variable

;\x) and involves finding that o which minimizes
1 2
Pz(%) = | Pq)(%)z Hz (1.2)

where P =1-P and P is the orthogonal projection of the

1
®la) @ (e) o ()

linear space spanned by the columns of ®(a). The second subproblem
~nt

is simply a linear least squares problem of finding 3 which minimizes

2
|y - @@a || (1.3)
~ 2




where a minimizes (1.2). In practice the common methods used to
solve nonlinear least squares problems, such as Gauss-Newton [6],
Marquardt's scheme [ 5], and the various quasi-Newton methods [ 2],
have required less time to solve (1. 2) than to solve (1.1). The va-
riable projection approach of Golub and Pereyra has also proved
more efficient than methods which separate a and o but do not use

the explicit coupling given in (1. 2).

In this paper we will describe a modification of the variable
projection approach based on the trapezoidal decomposition of a matrix.
According to this decomposition (see [3] and [7]), there exists an or-
thogonal matrix Q and a permutation matrix P such that for a given

m X n matrix ® of rank r
RIS
Q&P = (1.4)
Ol0O

where R is an r X r nonsingular upper triangular matrix. The matrix
Q is not unique. If two matrices Q and Q' both satisfy (1 . 4) and they

are partitioned into

r
< %
Q=|— and Q' =|— )
Q, Q[

Then there exists an (m-r) X (m-r) orthogonal matrix Z such that
ZQ,=Q', . (1.5)

1
The matrix P used by Golub and Pereyra can be represented as

& ()




If Q is partitioned into

Q1 r
Q = - ?
Q
. 1 _ 1
then QP®(a) and since ||QP®%)}\/’|| 5 = HP@(%)ZH o
ro(e) = [[Q a)sz = rila) . (1.6)

Because of (1. 5) the non-uniqueness of @Q does not affect r'3(%).
Thus, using the same proof given for theorem 2.1 of Golub and Pereyra

[4], one can prove

Theorem 1.

Let r{a, a) and r,(e) be defined as above. If in the open set
~ ~t 3'\)

Qc Rk, &(a) has constant rank r < min{m,n) and

(a} if & is a critical point (or global minimizer in §) of
r‘3(951) and 'é; is the vector of shortest length which minimizes

Hy" (g) Hza (1.7)
then (a a) is a critical point of r‘( a) (or a global minimizer
for o in Q) and r(a,a) = r,(a),
ot ~ e~ 3 ~
(b) if (E,g) is a global minimizer of r*(a,g) in €, then ;&; is a

global minimizer of r‘3(9£l) in & and r‘3(§) =r(a,q) if a is

defined as in (1.7).




Most of the algorithms designed for nonlinear least squares
problems of minimizing H flor) H 2 require the Frechet derivative,
D(f(g)). In section 2 we show how to compute D(Qz(a)y) so that it may be

~N A&

used in one such algorithm.




Section 2

Many of the algorithms for solving the nonlinear least squares

problem of minimizing
2

| fa) ||
La AV z

are variants of the Gauss-Newton-Marquardt algorithm. In this method

iteratively by

one begins with an arbitrary ao and determines (x(J)
~ ~S

setting
where
f.(Ot(J)) -

and K:l.l- is the pseudo inverse as described by Penrose [8] of the matrix

~ o~

o)
v. X,
J

where D(f(q) is the Frechet derivative of i(o,z) and Xj is the upper

~NONG

triangular Cholesky factor of a k X k positive definite matrix and Vj

is chosen so that

. 2 . 2
RSN N Y
n, Ny 2 ~ 2




To use such an algorithm on r~3(%) given in equation (1.6) we
need an expression for D(Qz(oz)). This is provided in the following

theorem.

Theorem 2.
Given an m X n matrix A of rank r, there exist an orthogonal
matrix Q and a permutation matrix P such that
R|s
QAP =
O |0
where R is an r X r nonsingular upper trianguiar matrix and if Q

and P are partitioned into

Q1 r
Q = |— and P = (P, | P,)
1 2
Qz m—rpr
r n-r
then
_ -1
D(Qz) = —QZD(A) PR Q. (2.1)
Proof

The proof depends on the following properties given in the de~

composition:

Q, AP, = R (2.2)

QA = 0 (2.3)
T _

QQ, = I (2. 4)

12 y




and the rule for differentiating a product
D(AB) = D(A)B + AD(B). (2.6)

Note that statements (2.2) through (2. 5) do not specify a unique Q)
and, as we shall see, it is this freedom that is important.
The derivative D(Qz(cx)) is an m-r X k X m tensor. If the
~nJ

tensor by matrix product DQZQT is partitioned into
T
D(QZ)Q = (X :VY)

where X is an (m-r) X k x r tensor and Y is an (m-r) x k X (m-r)

tensor, then

D(QZ(%)) = (X:Yv)a = ><<:,z1 +YQ, (2.7)

Our problem reduces to imposing conditions on X -and Y.
From (2. 3) and (2.6) we obtain

D(QZ)A +Q,D(A) = 0

2

which by (2.7) gives

XQ A+YQ2A+Q D(A) = 0

1 2

or

><c;1 API +Q2D(A)P1 =0

so that by (2. 3)




XR

- QZD(A)P1

_ -1
X = -QZD(A)PjR

Differentiating (2. 4) yields

T T _
)+ D(QZ)QZ =0

which by (2. 4), (2.5), and (2.6) gives
Y +Y = 0. (2.8)

Without further specifying conditions on Qz, we can place no other
conditions on Y. We note that (2.8) is satisfied when Y is the 0 matrix.

Golub [9] has pointed out another proof to theorem 2. His proof
is based on D(PA(a)), which as proved in Golub and Pereyra [4] is

given by

1 1 - 1 T
D(PA(a)) = - PA(g)D(A(g))A(g) - (PA(%)D(A(%))A(’%) ) (2.9)

~N

where A~ is any matrix that satisfies

AAA = A and (AAT)T = AA




L
Ala),

~

Since Q (a)TQ () = P
2'\1 z ~e

a,(@) D@, +D@,) a,e) = DEy

~

- - T
- @} (@)@, (@D(A)A@)7) - (Q,@D(Al)AE) ) Q) .
The general solution to this Recatti equation .is given by

D(Q,(@)) = - Q,(@)D(Al@)AQ)” + Z(a)
where

Q,le) " Zlo) + Z(@) TQ,la) = 0 . (2.10)

In particular if Z(x) is 0, we get
)

D(Qz(%)) = —-Qz(%)D(A(%))A(%)_ .

Since P R_1Q is a candidate for A~ and since our condition on Y in

1 1

(2.7) is equivalent to that given in (2.10), the two proofs give the same
result.

Of course, the Qz given in Theorem 2 will not necessarily be
the one that a particular computational scheme might produce. However,

if a different Q,, call it Q‘z, is computed, this is of little consequence,

2,

for if

-1
- QZD(CP(g))P] R Qy

. VX,
J J
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—ap(@)P, R a,y
and K! =
I v.X,

i

equation (1.5) guarantees that

1
+ 2 + [ S

i\, i\ o
~Y ~
so that the same iterates are generated whether Qz or Q'z is used.
To compute D(QZ(%()y) we proceed as follows:
~J
(1) Determine ®(a) and D(&(a)).
In general D(®) will have many zero columns. It is suggested

that only its nonzero columns be stored.

(2) Determine the trapezoidal decomposition of & by finding an

m X m orthogonal matrix Q and a permutation matrix P such that

Qap - _Ei)i
0|0

where R is an r X r nonsingular upper triangular matrix. Parti-

tion P into

P=(P, | P, .
r n—-r
We suggest that Q be the product of r Householder transforma-
tions where the i'th transformation Qi is designed to zero the

last (m—i) elements of the i'th column of Q‘i Q

4 Qe

The matrix Q does not have to be explicitly formed. Only the
information required to generate the transformations need be

stored. For details concerning the generation and application



11

of Householder transformations see Bjorck and Golub [1].

Set v = Qy. Vv o=
~ ~s ~
The vector i is \42.
(4) Solve Rb = Vi and set ¢

(5) Set X = -Q D(<I>)5.

r

me-r

><1 r
xz Mep

The Frechet derivative of i is Xz, an (m-r) x k matrix.

See Golub and Pereyra [ 4] concerning the multiplication of

a vector by a tensor.

in some cases the amount of computation in step 5 can be

reduced if the matrix D = QD(®) is formed. v| f D is partitioned into

D =

then D(i) is D

2 2
(m® = n

of D. Thus forming D is a good idea if

only once in the model.

2S- This implementation is more efficient only if

Np-k)/2 -np < 0 where p is the number of nonzero columns

each nonlinear variable appears

For details about the Marquardt algorithm and a method for

- . +e
ff tly computing K. f, (&
efficiently comp g J"ﬁ(("

Pereyral4].

)) we refer the reader to Golub and
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Computational results

The algorithm just described was implemented in a FOR-
TRAN program and tested on 2 problems on the CDC 6400 at
Aarhus University, Denmark. The results were compared with
those given by Jennings' and Osborne's version of the Marquardi-
Levenberg algorithm (see [6]) for the function r(a, a) in (1.1) and

~ ~J
Pz(a, o) in (1.2).
~NT oy
The first prohlem was the exponential fitting problem given

in [4] of fitting data to the model

~0yt —0pt

a1 + aze + a3e .
Here - <p1(%, t) =1, 902(93, 1) = e %2t ang (p3(g, t) = e @3t In table 1 ,
the results for this problem are given.

ra) r o) r5la)

Number of
Derivative Evaluations 26 4 4
Number of
Function Evaluations 32 4 4
Time in seconds 2.913 .613 . 485

Table 1.

The second problem was that of - fitting gaussians with ex-

ponential background also given in [4] Here the model was

—apt e—oag(t-—ag)g +a ~o, (t-ag o (t-as F

a1 2 3 + a,e

€ 4

The results are given below.
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r(o) r.(a) rLlo)
Number of 27 3
Derivative Evaluations 9 8 8
Number of
Function Evaluations 11 10 10
Time in seconds 6,862 8. 61 6. 587
Table 2.

The results agreed wiith our expectations that because the
L
expression for D(Qz(g)) in (2.1) is simpler than that of D(P®(a))

o

in (2.9), the time for r_(q) would be consistently less than that
~J

3
for r‘3(9$).

A greater time differential has been observed when D(&®) was
a complicated expression which one would not care to form explicitly.

For example, one pollution problem was proposed . in which D(®)

was the product of a tensor B times a matrix A. When using r*3(%)
one could form the vector ¢ = AP1 F%—1 Q‘X/ and then apply B to <,
thereby saving a significant amount of time over performing a tensor
by matrix product to form D(®) and applying the result to P1R_1 Qy.
When the problem was approached using PZ(%)’ in order to cover the
second term in (2. 9), one had to either compute D(®) explicitly so
D(cT;)T would be available or determine the matrix BTP&)X and then

T

1
perform a matrix by matrix multiplication to form ATB PCL%’ Both

alternatives required much work,
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