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Abstract Variance-component methods are popular and flexible analytic tools for
elucidating the genetic mechanisms of complex quantitative traits from pedigree data.
However, variance-component methods typically assume that the trait of interest fol-
lows a multivariate normal distribution within a pedigree. Studies have shown that
violation of this normality assumption can lead to biased parameter estimates and
inflations in type-I error. This limits the application of variance-component methods
to more general trait outcomes, whether continuous or categorical in nature. In this
paper, we develop and apply a general variance-component framework for pedigree
analysis of continuous and categorical outcomes. We develop appropriate models us-
ing generalized-linear mixed model theory and fit such models using approximate
maximum-likelihood procedures. Using our proposed method, we demonstrate that
one can perform variance-component pedigree analysis on outcomes that follow any
exponential-family distribution. Additionally, we also show how one can modify the
method to perform pedigree analysis of ordinal outcomes. We also discuss extensions
of our variance-component framework to accommodate pedigrees ascertained based
on trait outcome. We demonstrate the feasibility of our method using both simulated
data and data from a genetic study of ovarian insufficiency.
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1 Introduction

Mixed-model procedures (see [34] for an overview) have an impressive history in the
statistical analysis of clustered, hierarchical, and spatial data. Researchers also have
applied mixed models extensively to perform genetic analyses of correlated trait data
from relatives within pedigrees. Initially, studies applied such mixed models to famil-
ial trait data to assess whether a quantitative trait of interest contained a significant ge-
netic component and was heritable [22, 30]. Such analyses consist of partitioning the
trait variance within a family into estimated components due to separate genetic and
environmental effects and subsequently examining whether the estimated component
of variance due to the genetic effect has a significant impact on the trait of interest.
Amos [5] and Almasy and Blangero [4] later extended this variance-component (VC)
method to perform linkage analysis of quantitative trait data by modeling a separate
component of variation due to a putative major-gene locus of interest. Additional
studies demonstrated further extensions of the VC framework to allow for interaction
testing [35] as well as outcome data from longitudinal studies [11].

The VC method has many appealing practical features for pedigree analysis of
quantitative trait data. Compared to relative-pair based methods (e.g. [20, 26]), VC
methods utilize a framework that is more flexible and permits easier modeling of
covariates and interaction effects. More importantly, many studies have shown that
variance-component methods often have more power than relative-pair methods for
detecting linkage [41, 48, 49]. Nevertheless, VC methods require strong assumptions
for valid inference. In particular, traditional VC methods typically rely on the assump-
tion that the familial trait data follow a multivariate normal distribution in order to
facilitate analyses. One can test this assumption using diagnostic tools such as those
described in [22] and [10]. If the distributional assumption is violated, the traditional
variance-component method may yield biased parameter estimates and elevated type-
I error rates for testing different effects. For example, Allison et al. [3], Blangero
et al. [6], and Epstein et al. [17] demonstrated these problems for quantitative data
derived from Laplace, χ2, and censored normal distributions, respectively. More-
over, the normality assumption severely hinders the potential application of variance-
component pedigree analysis to categorical outcomes, such as presence/absence of
disease (binary outcome) or a disease-severity scale (ordinal outcome).

Even if one can transform the trait data to approximate normality, Allison et al. [3]
and Blangero et al. [6] demonstrated the traditional variance-component method still
yields inference problems when the transformed data have a standardized kurtosis
greater than zero, which indicates more probability in the tails of the distribution than
for a normal distribution. This finding impedes our interpretation of results for data
that naturally follow a gamma distribution (Fig. 1). Typically, variance-component
analysis of gamma-distributed data proceeds by first applying an appropriate nor-
mality transformation (such as a logarithmic transformation) and then applying the
traditional variance-component method to the transformed data. However, the trans-
formed data may still have a positive kurtosis (as shown in Fig. 2). In such a situation,
one could perhaps find a better transformation for the data that reduces the kurtosis;
however, such a transformation could be difficult to obtain.
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Fig. 1 Gamma(2, v)
distribution

Fig. 2 Kurtosis of
Gamma(2, v) data transformed
to approximate normality

If the assumptions of the traditional variance-component method are violated, one
can apply robust variance-component methods that allow for trait distribution mis-
specification [5, 6, 12] although it is unclear whether such methods are applicable
to categorical outcomes. Moreover, if the trait distribution is approximately known,
modeling the distribution could lead to increased power and more efficient parame-
ter estimates relative to the robust methods. In an earlier paper [17], we extended
the variance-component method to test for linkage of a major gene that influences
censored normal data using generalized linear mixed model (GLMM) theory [7]. Re-
sults indicated that linkage analyses of censored normal data using our tobit variance-
component method had improved efficiency and more appropriate type-I error rates
compared to application of traditional variance-component methods that explicitly
assumed trait normality.

Given this success, we now develop a general variance-component framework for
pedigree analysis of non-normal data that follow an exponential-family distribution,
which includes Bernoulli, Poisson, and gamma distributions as special cases. Addi-
tionally we also develop a VC framework for pedigree analysis of ordinal categorical
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data. Like the tobit VC method, we base this framework on the GLMM framework
proposed by Breslow and Clayton [7]. Our proposed method generalizes the work of
Duggirala et al. [13, 14] and Hasstedt [21], who analyzed binary and polychotomous
traits, respectively, using VC methods, but assumed trait values were determined by
liability values being above or below specific thresholds. Our method is also related
to the work of Burton et al. [8], who applied GLMM theory to analyze binary trait
data but did not test for linkage. Further, the authors employed Gibbs–Sampling pro-
cedures for inference whereas we employ approximate maximum-likelihood proce-
dures for this purpose.

We organize the rest of this article as follows. We first describe the general VC
framework for pedigree analysis of an arbitrary trait with an exponential-family dis-
tribution and subsequently extend the framework to accommodate ordinal data. We
next discuss approximate maximum-likelihood procedures for fitting our VC models
followed by discussion of appropriate hypothesis testing of heritability and linkage
for an outcome of interest. We use simulated pedigree data to evaluate our VC frame-
work and further illustrate our approach with an application to a genetic study of
ovarian insufficiency. We then make some concluding remarks about our approach
and discuss potential extensions.

2 Generalized Linear Mixed Models for Pedigree Analysis

2.1 Likelihood Derivation Using Generalized Linear Mixed Models

Consider a family of n relatives. Let yj be the trait value of the j th relative and
y = (y1, y2, . . . , yn) be the trait data for the family. We assume yj originates from
the sum of independent effects due to observed and unobserved factors both genetic
and environmental in nature. Observed factors consist of fixed covariates such as
age and gender. We denote Xj as a vector of such fixed factors (covariates) for the
j th relative. We assume the unobserved random factors that influence yj consist of
a major-gene locus of interest and a number of independent genes of small effect
(polygenes). While we will not do so here, we easily could assume other random
effects such as two or more major genes, gene–gene interaction, or unobserved shared
environment. We assume the alleles of the major gene and polygenes act additively on
the trait; the additive-alleles assumption is easily relaxed. We define MGj and PGj ,
to be the additive allelic effects of the unobserved major gene and polygenes for the
j th relative. We assume MGj and PGj , are independent and normally distributed
with means zero and variances σ 2

mg and σ 2
pg, respectively. Finally, we denote Uj =

MGj + PGj as the total unobserved genetic effects for the j th relative and U =
(U1,U2, . . . ,Un) as the set of unobserved genetic effects for the family. Conditional
on U , the familial trait values y = (y1, y2, . . . , yn) are independent.

We construct the likelihood of the family’s trait data L(y1, y2, . . . , yn) as a func-
tion of the fixed and unobserved effects. We first integrate this likelihood across the
unobserved genetic effects U such that

L(y1, y2, . . . , yn) =
∫ n∏

j=1

L(yj |U)L(U)dU. (1)
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We assume a subject’s trait value conditional on the unobserved genetic effects fol-
lows an exponential-family distribution such that L(yj |U) = f (μj ,ϕ), where f (·) is
an exponential-family density function, μj = E[yj |U ] is the conditional trait mean,
and ϕ denotes nuisance parameters. The exponential-family distributions include
gamma, binomial, Poisson, and normal distributions [33].

To model the relationship between yj |U and both the fixed and random effects,
we employ a link function g that models μj on Xj and Uj such that

g(μj ) = Xt
jβ + Uj . (2)

Here, β denotes a vector of regression coefficients for the covariates Xj . For simplic-
ity, we assume Xj contains an intercept. Once we specify the link function g in (2),
we can reparameterize the likelihood in (1) as a function of β and Uj .

The specification of both f (μj ,ϕ) and g(μj ) depends on the trait distribution. For
a normally-distributed trait, f (μj ,ϕ) is a probability density function for a normal
distribution with mean μj and variance σ 2

e , while the link function is the identity
link g(μj ) = μj . For a binary trait, f (μj ,ϕ) is a probability mass function for a
Bernoulli distribution with mean μj and the link function is the logit link g(μj ) =
logit(μj ). For a gamma-distributed trait, f (μj ,ϕ) is a probability density function
for a gamma distribution with mean μj and scale parameter ν, while g(μj ) is either
a log link function g(μj ) = log(μj ) or a reciprocal link function g(μj ) = μ−1

j . One
typically applies the log link function, since the reciprocal link function can lead to
unstable estimation procedures. We note that examples of f (μj ,ϕ) and g(μj ) for
other distributions are found in [33].

The final step in constructing likelihood (1) is specification of the distribution of
the unobserved genetic effects U . As the genetic effects will induce similarity among
relatives, there will be covariance among the Uj for different relatives in a family. As
shown by [24] and [22], we can write the covariance for two non-inbred relatives j

and k as

Cov(Uj ,Uk) = σ 2
mg · πjk + σ 2

pg · 2φjk. (3)

Here, πjk denotes the proportion of alleles shared identical by descent (IBD) at the
major gene by j and k. A relative pair shares two alleles IBD at a locus if the alleles
are physical copies of the same ancestral allele. For autosomal loci, the proportion of
alleles shared IBD by a relative pair at a particular locus is equivalent to the number of
alleles shared IBD by the pair divided by 2. Generally, we cannot observe πjk but can
estimate it using a multipoint algorithm based on available genetic marker data (for
example, the algorithms of [27] and [18]). 2φjk is the expected proportion of genes
shared IBD by the relative pair, where φjk is called the kinship coefficient [24]. For
any relative pair, 2φjk is a known function of the relationship of the pair. For example,
2φjk = 1 for monozygotic-twin pairs, 0.5 for full-sib pairs and parent-offspring pairs,
0.25 for half-sib pairs and avuncular pairs, and 0.125 for full-cousin pairs.

Using the covariance structure in (3), we assume that the random genetic effects U

follow a multivariate normal distribution with mean vector 0 and covariance matrix

Σ = σ 2
mg · Π + σ 2

pg · 2Φ. (4)
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Here, Π and 2Φ are n×n matrices with (j, k)th elements πjk and 2φjk , respectively.
VC studies typically assume a multivariate normality assumption for U and this as-
sumption certainly will hold if the underlying genes act additively and independently
on the trait [28, 29].

2.2 Extension to Ordinal Data

While ordinal data do not follow one of the traditional exponential-family dis-
tributions described in the previous section, we can still implement a variance-
component procedure for pedigree analysis of such categorical data. Suppose yj

denotes an ordinal outcome that takes one of M possible values. We assume there
is a clear ordering of these values such that, for example, larger outcome values
would denote increased severity compared to smaller outcome values. We model
the ordinal outcome using a variation of the proportion-odds model as described
in [32]. Let p

(m)
j = P [yj = m|Uj ] denote the probability that relative j has ordi-

nal outcome m(m = 1, . . . ,M) conditional on the random genetic effects and define
γ

(m)
j = P [yj ≤ m|Uj ] = ∑m

t=1 p
(t)
j as the corresponding cumulative probability that

relative j has an ordinal outcome in the range between 1 and m. Using these defini-
tions, we can model the ordinal data by fitting M − 1 proportional-odds models

log

(
γ

(m)
j

1 − γ
(m)
j

)
= θm + Xt

jβ + Uj (1 ≤ m ≤ M − 1), (5)

where θm denotes a specific intercept for category m. Here, we assume the same slope
β for each of the M − 1 proportional-odds models. If interest exists, we could also
generalize the model in (5) to model different slopes β(m) for each category, which
corresponds to fitting M − 1 cumulative logit models.

Using the model in (5), we can write the likelihood in (1) by noting that the
subject-specific piece of the likelihood corresponds to

L(yj = m|Uj ) =
{

γ
(m)
j − γ

(m−1)
j m > 1,

γ
(1)
j m = 1,

(6)

which is a function of parameters (β, θ) in (5). We complete specification of the
likelihood (1) for ordinal data by assuming (as done previously) that the random ge-
netic effects U follow a multivariate normal distribution with the covariance structure
shown in (4).

2.3 Inference Methods

For a sample of I independent families, we construct the full likelihood as LF =∏I
i=1 Li , where L denotes the likelihood in (1) and i indexes family. We use LF

to obtain estimates of fixed and random effects that maximize the likelihood. If the
trait follows a normal distribution, then the integral in likelihood (1) has a closed-
form solution and maximum-likelihood inference [30] is straightforward. However,
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if the trait follows a non-normal distribution, the integral does not have a closed-form
solution, which complicates inference.

To resolve the intractability of the integral for non-normal data, statisticians
have developed inference methods that maximize an approximate version of LF .
Such procedures include the Solomon–Cox [44] approximation, penalized quasi-
likelihood [7], and Gibbs sampling [8, 50]. Here, we apply an approximate
maximum-likelihood approach for inference called adaptive Gaussian quadra-
ture [38] that is implemented in the SAS [39] procedure NLMIXED. This method
approximates the integral in LF using a weighted sum over predefined weights for
Ui (Gauss–Hermite integration). Adaptive Gaussian quadrature then maximizes the
approximate likelihood using one of several optimization algorithms. We use a quasi-
Newton maximization procedure, which is the default algorithm implemented in
NLMIXED.

Accurate likelihood approximation in adaptive Gaussian quadrature requires a
suitable set of evaluation points (known as quadrature points) and their corresponding
weights. In SAS NLMIXED, one can either directly choose the number of quadrature
points for analysis or let the program adaptively select the appropriate number. For
the latter procedure, NLMIXED selects the number of quadrature points by evaluat-
ing the log-likelihood function at its initial parameter values for increasing number
of quadrature points until two successive evaluations has a relative difference smaller
than 0.0001. Unless otherwise noted, we use this adaptive procedure to select the
number of quadrature points for pedigree analysis to ensure a likelihood that is well
approximated. We note that adaptive Gaussian quadrature with one quadrature point
corresponds to a Laplace approximation [7], which is computationally fast but may
not accurately approximate the likelihood. As the number of quadrature points in-
creases, the likelihood approximation becomes more accurate, but the complexity of
the maximization algorithm also increases, leading to longer computer run times.

2.4 Testing the Heritability and Linkage Hypotheses

To test whether a trait outcome is heritable within the family sample, we perform the
hypothesis test H0 : σ 2

pg = 0 vs. HA : σ 2
pg > 0. We test this hypothesis by calculating

the likelihood ratio statistic, 2 loge(L̂A/L̂0), where L̂A and L̂0 are the maxima of LF

fit under the alternative and null hypotheses. Under the null hypothesis, σ 2
pg is set

to 0 while, under the alternative hypothesis, σ 2
pg is estimated together with the other

unknown parameters (σ 2
mg is not modeled under either hypothesis). As the value of

σ 2
pg under the null hypothesis is on the boundary of the parameter space, the likelihood

ratio statistic is asymptotically distributed as a 1/2:1/2 mixture of χ2
1 and a point

mass of zero under the null hypothesis [40]. As an alternative to a likelihood-ratio test,
we also can employ a score statistic [31] that has the appealing feature of robustness
in the presence of random-effect distribution misspecification.

The hypothesis test for linkage at the major gene is H0 : σ 2
mg = 0 vs. HA : σ 2

mg > 0.
We test this hypothesis by calculating a likelihood ratio statistic, which is also asymp-
totically distributed as a 1/2:1/2 mixture of χ2

1 and a point mass of zero under the
null hypothesis. Under the null hypothesis, σ 2

mg is set to 0 while, under the alternative

hypothesis, σ 2
mg is estimated together with the other unknown parameters.
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2.5 Adjusting for Non-random Sampling

One often employs non-random sampling in genetic studies to increase the informa-
tion content of the sample. For a family-based analysis of a rare genetic disease, a
common ascertainment-sampling scheme is to collect families with at least one or at
least two affected relatives. For a quantitative trait, a common sampling scheme is to
collect families with a proband whose trait value is found in one or the other tail of
the population distribution.

If one applies the random-sampling LF to ascertained data, results often will be
biased [9]. Therefore, given non-random sampling, we adjust LF to account for the
ascertainment criterion by dividing the unconditional likelihood by the probability
of the ascertainment event. Let ASCi denote the ascertainment criterion for family i.
The proper ascertainment-adjusted likelihood for this family takes the form:

L(yi1, yi2, . . . , yini
|ASCi ) = L(yi1, yi2, . . . , yini

)

L(ASCi )

=
∫ ∏ni

j=1 L(yij |Ui)L(Ui) dUi∫
L(ASCi |Ui)L(Ui) dUi

(7)

and the ascertained-adjusted likelihood for I sampled families takes the form
LF,ASC = ∏I

i=1 Li,ASC , where Li,ASC denotes the ascertained-adjusted likelihood for
the ith family shown in (7). Using this ascertainment-adjusted likelihood, we expect
to obtain unbiased population-based estimates of (β,σ 2

mg, σ
2
pg, ϕ) [16, 19], although

certain situations may occur where the estimates are not identifiable; an example of
this for binary data can be found in [15].

3 Simulation Studies

3.1 Simulation Design

We used simulated pedigree data to examine bias, type-I error, and power of our gen-
eral VC framework for genetic analysis of both continuous and categorical outcomes.
We assumed variable number of simulated pedigrees consisting of sibships of vari-
ous sizes. For a given sibship, we simulated marker data by inserting a major gene at
55 cM on a 110 cM chromosome. We simulated a 10 cM map of 12 genetic markers
each with four equally-frequent alleles. For each locus, we randomly assigned alleles
to the parents of the sibship, after which we created offspring genotypes using the
Haldane mapping function. We then removed the parental genotypes from the data
set.

We examined the performance of our VC framework for pedigree analysis of
both continuous and categorical outcomes. For continuous outcomes, we simulated
gamma-distributed data using the model in (2) where we assumed g(μ) = log(μ)

and the covariance matrix Σ in (4). For fixed effects, we assumed an intercept with
β = log(2), a categorical covariate with two equally-frequent outcomes that has an
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effect of βcat = 0.5, and a continuous covariate derived from a standard normal distri-
bution that has an effect of βcon = 0.1. We assumed the scale parameter of the gamma
distribution to be ν = 2.0 and varied (σ 2

mg, σ
2
pg) among different combination of val-

ues to investigate the performance of our gamma VC model to detect heritability and
linkage.

We analyzed the gamma-distributed data using two different procedures. First,
we analyzed the untransformed data using the gamma variance-component method.
Then, we applied a logarithmic transformation to the data to obtain approximate nor-
mality and applied the traditional variance-component method for analysis. For link-
age analyses, we estimated IBD sharing at the major-gene locus using the Lander–
Green [27] algorithm as implemented in Genehunter [25]. We performed pedigree
analysis for each procedure by maximizing the appropriate likelihood in the SAS
procedure NLMIXED.

For categorical pedigree analysis, we simulated a three-level ordinal outcome
(with possible values 0, 1, and 2) using the proportional-odds model in (5) and the
likelihood in (6). Within (5), we set θ0 = −1 and θ1 = 1, such that we would ex-
pect to observe levels of 0, 1, and 2 in approximately 25%, 50%, and 25% of our
sample, respectively. We assumed a categorical covariate with two equally-frequent
outcomes that has an effect of βcat = 0.2, and a continuous covariate derived from
a standard normal distribution that has an effect of βcon = 0.05. We then varied
(σ 2

mg, σ
2
pg) among different combination of values. For linkage analysis, we again

used the Lander–Green algorithm to estimate IBD sharing. We implemented the pro-
cedure in SAS procedure NLMIXED.

3.2 Simulation Results: Continuous Outcomes

Tables 1 and 2 summarize results of heritability analyses of gamma-distributed data
for 200 sibpairs using both our proposed gamma VC model and the traditional VC
model (after a log transformation). Within Table 1, we show the power of the two
models to detect a genetic effect under different levels of σ 2

pg. We chose values of

σ 2
pg corresponding to approximate heritability values of 0, 0.10, 0.20, and 0.30 for

the log-transformed data. Based on these results, we see that both approaches have
appropriate type-I error when the null hypothesis of σ 2

pg = 0 holds. However, un-
der alternative models, we observe that the gamma VC method is substantially more

Table 1 Power of heritability analysis for gamma-distributed data

Power to Reject H0 : σ 2
pg = 0 at α = 0.05

Heritability(σ 2
pg)

VC Model 0.0 (0.0) 0.1 (0.08) 0.2 (0.17) 0.3 (0.29)

Gamma 0.043 0.501 0.890 0.990

Traditional 0.049 0.207 0.371 0.688

Results are based on 1000 replicates of data sets consisting of 200 sibpairs. Gamma data were generated
using scale parameter of 2.0. Heritability refers to the approximate proportion of variance explained by
genetic factors for log-transformed data. Traditional VC model was applied to trait data after a log trans-
formation
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Table 2 Heritability analysis of gamma-distributed data: parameter estimates

Gamma VC Model Traditional VC Model

Parameter
True
Value

Mean Empirical
SE

Mean
Model SE

Mean Empirical
SE

Mean
Model SE

Heritability = 0.10

σ 2
pg 0.08 0.080 0.052 0.054 0.093 0.087 0.103

βcon 0.10 0.099 0.040 0.039 0.100 0.044 0.042

βcat 0.50 0.502 0.081 0.078 0.502 0.088 0.085

Heritability = 0.20

σ 2
pg 0.17 0.166 0.067 0.068 0.161 0.106 0.116

βcon 0.10 0.102 0.043 0.042 0.102 0.047 0.045

βcat 0.50 0.500 0.085 0.084 0.500 0.090 0.090

Heritability = 0.30

σ 2
pg 0.29 0.285 0.089 0.087 0.281 0.133 0.133

βcon 0.10 0.098 0.046 0.046 0.097 0.048 0.048

βcat 0.50 0.502 0.097 0.092 0.502 0.100 0.095

Results are based on 1000 replicates of data sets consisting of 200 sibpairs. Gamma data were generated
using scale parameter of 2.0. Heritability refers to the approximate proportion of variance explained by
genetic factors for log-transformed data. Traditional VC model was applied to trait data after a log trans-
formation

powerful for testing for heritability compared to traditional VC analysis of the log-
transformed data. This result is further supported by Table 2, which shows parameter
estimates and estimated standard errors for model parameters. Both VC approaches
yielded unbiased parameter estimates and estimated standard errors that closely mir-
rored the empirical standard errors. However, we observe that the estimated standard
errors for σ̂ 2

pg under the gamma VC model are substantially smaller than those from
the traditional VC model, which further demonstrates the improved efficiency of the
gamma VC model for testing heritability.

While the gamma VC yields improved performance for testing for an overall ge-
netic effect compared to traditional VC analysis of log-transformed data, we inter-
estingly observe that both procedures yield similar inference for testing linkage. We
simulated data sets comprised of 400 sibpairs and generated data under the gamma
VC model using simulated values of (σ 2

mg, σ
2
pg) that, for log-transformed data, corre-

sponded to major-gene heritability values (defined as the proportion of trait variance
explained by the major gene) of 0 and 0.10 and overall heritability values (defined
as the proportion of trait variance explained by major gene and polygenes) of 0.30
and 0.50. As observed in Table 3, we see that both VC methods have appropriate
type-I error when the major-gene heritability is 0 and have similar power for testing
a major-gene locus whose major-gene heritability is 0.10. We observed these results
for overall heritability values of both 0.30 and 0.50.

Table 4 shows parameter estimates derived from the gamma and traditional VC
models for simulation models where the major-gene heritability values are 0.10. For
each VC model, we observe that mean parameter estimates are unbiased and the
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Table 3 Power of linkage analysis for gamma-distributed data

Power to Reject H0 : σ 2
mg = 0 at α = 0.05

Overall Heritability = 0.30 Overall Heritability = 0.50

Major-Gene
Heritability = 0.00

Major-Gene
Heritability = 0.10

Major-Gene
Heritability = 0.00

Major-Gene
Heritability = 0.10

VC Model (σ 2
mg, σ 2

pg) = (0.00,0.29) (0.10,0.20) (0.00,0.66) (0.14,0.52)

Gamma 0.054 0.196 0.053 0.196

Traditional 0.041 0.148 0.055 0.196

Results are based on 1000 replicates of data sets consisting of 400 sibpairs. Gamma data were generated
using scale parameter of 2.0. Overall (major-gene) heritability refers to the approximate proportion of
variance explained by all genetic factors (major gene) for log-transformed data. Traditional VC model was
applied to trait data after a log transformation

Table 4 Linkage analysis of gamma-distributed data: parameter estimates

Gamma VC Model Traditional VC Model

Parameter
True
Value

Mean Empirical
SE

Mean
Model SE

Mean Empirical
SE

Mean
Model SE

Heritability = 0.30

σ 2
mg 0.10 0.119 0.102 0.112 0.137 0.115 0.136

σ 2
pg 0.20 0.187 0.117 0.114 0.190 0.137 0.142

βcon 0.10 0.103 0.032 0.032 0.103 0.033 0.034

βcat 0.50 0.498 0.067 0.065 0.497 0.069 0.067

Heritability = 0.50

σ 2
mg 0.14 0.155 0.134 0.160 0.155 0.134 0.168

σ 2
pg 0.52 0.504 0.167 0.168 0.507 0.187 0.200

βcon 0.10 0.101 0.038 0.038 0.101 0.039 0.039

βcat 0.50 0.499 0.076 0.076 0.498 0.077 0.090

Results are based on 1000 replicates of data sets consisting of 400 sibpairs. Gamma data were generated
using scale parameter of 2.0. Heritability refers to the approximate proportion of variance explained by
genetic factors for log-transformed data. Major-gene heritability for both models was approximately 0.10.
Traditional VC model was applied to trait data after a log transformation

mean standard errors generally match the empirical standard errors (although the
mean model-based standard errors for the variance parameters slightly overestimate
the empirical values). As in Table 2, we again observe that the estimated standard
errors for σ 2

pg are smaller for the gamma VC model than for the traditional VC model.

For σ 2
mg, we observe that the gamma VC model yields smaller standard errors for

estimates of this parameter compared to the traditional VC model when the overall
heritability of 0.30. For overall heritability of 0.50, the two VC models yield similar
standard-error estimates for σ 2

mg.
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Table 5 Pedigree analysis of
ordinal data: parameter
estimates

Results are based on 1000
replicates of data sets consisting
of 300 sibtrios

Ordinal VC Model

Parameter
True
Value

Mean Empirical
SE

Mean
Model SE

Model 1

σ 2
pg 2.00 1.970 0.650 0.708

βcon 0.05 0.049 0.082 0.080

βcat 0.20 0.192 0.161 0.162

Model 2

σ 2
mg 0.50 0.521 0.482 0.539

σ 2
pg 1.50 1.450 0.747 0.827

βcon 0.05 0.049 0.085 0.081

βcat 0.20 0.202 0.164 0.161

3.3 Simulation Results: Ordinal Categorical Outcomes

Table 5 shows parameter estimates from application of the ordinal VC model to
3-level ordinal outcomes from simulated data sets comprised of 300 sibtrios that were
generated under one of two models. Consistent with our results from the gamma VC
simulations, we found that mean parameter estimates are unbiased. For fixed effects,
we also found that model-based standard errors corresponded well with empirical
values. However, for variance parameters, we found that model-based standard er-
rors for the variance parameters differed somewhat from empirical values. This result
suggests that one should use score or likelihood-ratio tests, rather than Wald tests, for
testing heritability and linkage under the ordinal VC model.

Using likelihood-ratio statistics, we found that our ordinal VC model had excel-
lent power for testing heritability H0 : σ 2

pg = 0 vs. HA : σ 2
pg > 0 in data sets consist-

ing of 3-level ordinal data on 300 sibtrios. In choosing simulation values for σ 2
pg,

we note that exp(
√

σ 2
pg) corresponds roughly to the average spread of risk of be-

ing in level 1 (compared to level 0) or being in level 2 (compared to levels 0–1)
due to within-family polygenic effects [37]. We assumed values of σ 2

pg of 0.5, 1.0,
and 2.0, which corresponded to ∼2, ∼2.7, and ∼4-fold increase or decrease in per-
family risk compared to the overall risk. For σ 2

pg of 0.5, 1.0, and 2.0, we found that
we had power of 0.57, 0.90, and 0.99, respectively, at α = 0.05 to detect the over-
all genetic effect. We also found our approach had appropriate type-I error under
the null hypothesis (empirical size of 0.047 at α = 0.05). For testing linkage H0 :
σ 2

mg = 0 vs. HA : σ 2
mg > 0, we found that our ordinal VC model had appropriate

size at α = 0.05 and α = 0.01 for data sets consisting of 300 sibtrios assuming values
of σ 2

pg ranging between 0.5 and 2.0 (results not shown). Power to detect linkage under

these simulated models increased with increasing values of σ 2
mg. For example, assum-

ing a total genetic variance σ 2
mg + σ 2

pg = 2.0, we had power of 0.25 to detect linkage

when σ 2
mg = 0.5 and power of 0.53 to detect linkage when σ 2

mg = 1.0 at α = 0.05.
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4 Application to Genetic Study of Ovarian Insufficiency

Ovarian insufficiency is a complex disorder that encompasses a variety of conditions
related to reproductive dysfunction within women. Such reproductive issues include
premature ovarian failure (cessation of menses prior to age 40), altered menstrual-
cycle characteristics, and infertility. Many researchers have shown that a premutation
within the fragile X mental retardation 1 gene (FMR1) leads to an increased risk for
ovarian insufficiency [2, 36, 46]. The FMR1 premutation is clinically defined as hav-
ing 55–199 unmethylated CGG repeats in the 5′ untranslated region of the gene [43].
When the premutation further expands to over 200 repeats during transmission from
mother to child, it becomes a full mutation that hypermethylates the FMR1 gene and
leads to the separate disorder of fragile X syndrome. Interestingly, studies have shown
that the FMR1 full mutation does not associate with ovarian insufficiency; hence, only
premutation carriers have increased risk for this condition [42]. This disorder is now
commonly referred to as fragile X-associated primary ovarian insufficiency (FXPOI).

The FMR1 premutation plays a substantial genetic role in the development of ovar-
ian insufficiency. For example, the prevalence of premature ovarian failure in FMR1
premutation carriers is 20% whereas it is only 1% in the general population [42].
However, once adjusted for FMR1 premutation status, it is unclear how much of the
remaining residual variation in ovarian-insufficiency outcomes are explained by ad-
ditional genetic factors. If significant residual heritability of these outcomes exists,
this would motivate the formation of additional studies for further gene mapping of
these outcomes.

To investigate whether these reproductive outcomes have significant residual her-
itability after adjusting for FMR1 premutation status, we applied our VC framework
to a reproductive-history data set consisting of 680 women from 225 families who
have a history of fragile X syndrome (and, hence, are enriched for being premutation
carriers) and 321 women from 219 families from the general population. We focused
on the outcome of menstrual-cycle length in the last year of natural cycling. The dis-
tribution of this outcome in the data set is shown in Fig. 3. The estimated skewness of
the outcome was 8.48 and the estimated kurtosis was 93.31. We obtained a p-value
of p < 0.0001 for a test of normality using a Shapiro–Wilk test.

We were unsuccessful in our attempts to transform menstrual-cycle length to ap-
proximate normality using log, square-root, or reciprocal transformations. Therefore,
as done previously in [2], we formed a 3-level ordinal variable for menstrual-cycle
length based on the 25th and 75th percentiles of the outcome distribution. We defined
a short cycle as a menstrual length less than or equal to 25 days, an average cycle to
be a length between 25 and 30 days, and a long cycle to be a length greater or equal
to 30 days. Using this ordinal variable, we examined whether menstrual-cycle length
had significant residual heritability after adjusting for FMR1 premutation status by
applying the ordinal VC model in (5) to this outcome. Using the likelihood in (1) and
the model in (5), we tested the hypothesis H0 : σ 2

pg = 0 vs. HA : σ 2
pg > 0 after ad-

justing for the fixed effects of FMR1 repeat size, age when last cycled, smoking, and
ethnicity (Caucasian or non-Caucasian). As done previously [2], we modeled FMR1
repeat size as a categorical variable with four levels: <59 repeats (normal), 59–79
repeats (low-premutation group), 80–100 repeats (medium-premutation group), and
>100 repeats (high-premutation group).
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Fig. 3 Distribution of
menstrual cycle length

Table 6 Heritability analysis of
ordinal cycle data

aReference is normal FMR1
group (<59 repeats)
bRace category: 1 = Caucasian,
0 = Non-Caucasian
cLikelihood-Ratio Statistic

Parameter Estimate SE P-value

FMR1 Premutation Statusa

Low −0.590 0.235 0.012

Medium −0.537 0.191 0.005

High −0.196 0.291 0.501

Smoking −0.192 0.160 0.231

Age of interview 0.001 0.007 0.865

Raceb 0.590 0.222 0.008

σ 2
pg 0.949 0.690 0.027c

Table 6 shows results of the application of the proportional-odds ordinal VC model
to the reproductive-history data set. Supporting the work in the previous studies of
[46] and [2], we found that FMR1 premutation status was significantly associated
with menstrual-cycle length. In particular, compared to FMR1 normal carriers, we ob-
serve that low- and medium-premutation carriers showed decreased risk for medium
cycles (compared to short cycles) and long cycles (compared to medium and short
cycles) (p = 0.012 for low-premutation carriers, p = 0.005 for medium-premutation
carriers). Interestingly, high-premutation carriers showed no change in risk compared
to normal carriers (p = 0.501). Using a likelihood-ratio statistic, we tested for the ex-
istence of a residual polygenic effect by considering H0 : σ 2

pg = 0 vs. HA : σ 2
pg > 0

and found significant evidence of additional genetic factors that influence the out-
come (p = 0.027). Our ordinal VC model yields a variance estimate of σ̂ 2

pg = 0.949,
which corresponds to a ∼2.6-fold change in per-family risk compared to the aver-
age risk. This finding supports previous work by Hunter et al. [23], who found evi-
dence for additional genetic factors influencing age of menopause (another indicator
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of ovarian function) after adjusting for FMR1 premutation status in the same set of
samples.

5 Discussion

In this paper, we show a general VC framework for pedigree analysis of continu-
ous and categorical outcomes that do not follow the multivariate normal distribution
assumed by traditional variance-component procedures. Using simulated data, we
demonstrate the procedure returns unbiased estimates of both fixed and random ef-
fects and has appropriate size for testing heritability and linkage of a trait of interest.
For continuous non-normal outcomes, such as those that follow a gamma distribu-
tion, we also show that our proposed approach can lead to improved power for testing
certain genetic hypotheses relative to traditional VC methods. We also demonstrate
that our approach is applicable to real genetic data sets, as shown by our heritability
analysis of ordinal menstrual-cycle data from a genetic study of ovarian insufficiency.

We developed our general VC framework for the purpose of heritability or linkage
analysis of a complex trait of interest. We could also extend our framework to test
whether a specific genetic marker is in linkage disequilibrium (LD) with the trait of
interest; that is, associated with the trait in the presence of linkage. We would base
this LD extension on the work of Abecasis et al. [1], who extended the traditional VC
framework to test for marker association at a linked gene locus for nuclear families.
The authors assumed the trait data conditional on offspring and parental genotypes
at the marker of interest follow a multivariate normal distribution with a given mean
structure and covariance matrix. They modeled the parentally-transmitted alleles of
the offspring as a covariate in the mean structure, while modeling the effects of the
linked gene locus and polygenes in the covariance structure (as shown in equations (3)
and (4)). The authors partitioned the offspring genotype effects into between-family
and within-family components and showed that a test of the within-family genotype
effect was a valid test of LD in the presence of potential confounders such as popu-
lation stratification. Using these ideas, we could modify the general VC framework
in similar fashion to develop a procedure for LD mapping of general continuous and
categorical outcomes. We will explore this idea in a subsequent paper.

For non-normally distributed outcomes, our general VC framework yields a like-
lihood that is intractable due to the fact that the integration of the likelihood over the
random genetic effects does not yield a simple closed-form solution. To resolve such
intractability in analysis, we used approximate maximum-likelihood procedures as
implemented in SAS PROC NLMIXED. However, we can use other statistical algo-
rithms to circumvent this issue. We could maximize the likelihood using the Gibbs
sampler [8, 50] as implemented in the computer program WinBUGS [45]. However,
the procedure is computationally slower than maximum-likelihood procedures and
cannot, under ascertainment sampling, maximize the correct ascertainment-adjusted
likelihood (6) [16]. One could employ the method of penalized quasi-likelihood [7].
For this method, one approximates the integral using Laplace’s method [47] to ob-
tain an approximate quasi-likelihood that can be modified into a penalized quasi-
likelihood for maximization [27]. While this method works well in many situations,
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it tends to underestimate variance parameters when the trait of interest is categorical
[7]. Also, one likely will have difficulty constructing the appropriate ascertainment-
adjusted penalized quasi-likelihood for non-random samples.

For non-normal data, our proposed general variance-component framework max-
imizes the appropriate likelihood using adaptive Gaussian quadrature. As this maxi-
mization procedure requires numerical integration, it is computationally more inten-
sive than the typical maximization procedures (Fisher Scoring or Newton–Raphson)
used for the traditional variance-component method. The degree of the computational
complexity for our method depends on both the number of quadrature points used for
likelihood approximation (which we selected using the adaptive procedures available
in SAS NLMIXED) and the dimension of the integral in the likelihood. As both of
these quantities increase, so does the amount of computer time required for success-
ful likelihood maximization. The number of quadrature points needed for accurate
likelihood approximation depends on the type of data analyzed as fewer points are
needed for continuous data relative to discrete data. The dimension of the likelihood
integral will increase with the size of the family. Therefore, our proposed framework
may have prohibitive computer-run times for linkage analysis of discrete data sets
from large families given current computational resources.

To reduce the amount of computer time for linkage analysis using our general
variance-component method, one could perform the analyses using a Laplace ap-
proximation, which corresponds to 1 quadrature point. For a Laplace approximation,
maximization of the likelihood for our general variance-component method typically
only requires a few seconds. For continuous non-normal data such as gamma data or
censored normal data, the resulting variance-component analyses typically have the
same linkage power and type-I error as compared with the same variance-component
analyses using adaptive procedures for quadrature-point selection, although we ob-
serve bias in the variance estimates [17]. Therefore, we can use a Laplace approx-
imation to perform an efficient genome scan for identifying regions linked to these
continuous traits. We would then recommend repeating the analyses on these linkage
regions using more quadrature points to obtain unbiased estimates of these variance
parameters. While the Laplace approximation is suitable for linkage tests for contin-
uous non-normal data, the same cannot be said for discrete binary traits. Simulation
results (not shown) reveal the Laplace approximation yields tests for binary traits that
have little or no power to detect linkage. Therefore, a Laplace approximation appears
to be useful for variance-component linkage analysis only when one is studying con-
tinuous data.
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