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Abstract—In many information processing tasks, one is often confronted with very high-dimensional data. Feature selection

techniques are designed to find the meaningful feature subset of the original features which can facilitate clustering, classification, and

retrieval. In this paper, we consider the feature selection problem in unsupervised learning scenarios, which is particularly difficult due

to the absence of class labels that would guide the search for relevant information. Based on Laplacian regularized least squares,

which finds a smooth function on the data manifold and minimizes the empirical loss, we propose two novel feature selection

algorithms which aim to minimize the expected prediction error of the regularized regression model. Specifically, we select those

features such that the size of the parameter covariance matrix of the regularized regression model is minimized. Motivated from

experimental design, we use trace and determinant operators to measure the size of the covariance matrix. Efficient computational

schemes are also introduced to solve the corresponding optimization problems. Extensive experimental results over various real-life

data sets have demonstrated the superiority of the proposed algorithms.

Index Terms—Feature selection, dimensionality reduction, manifold, regularization, regression, clustering.

Ç

1 INTRODUCTION

IN many applications in computer vision, pattern recogni-
tion, and data mining, the objects (e.g., images and texts)

are usually represented as points in high dimensional
euclidean space. High dimensionality significantly in-
creases the time and space requirements for processing
the data. Moreover, learning tasks, such as classification,
clustering, and retrieval, that are analytically or computa-
tionally manageable in low dimensional spaces may
become completely intractable in spaces of several hun-
dreds or thousands dimensions [10], [16]. To overcome this
problem, feature selection [6], [17], [31], [32], [35] and
extraction [20], [21], [26], [27] techniques are designed to
reduce the dimensionality by finding a meaningful feature
subset or feature combinations. Feature selection and
extraction techniques can be applied for data preprocessing
and facilitate other learning tasks such as classification,
clustering, and retrieval.

Feature selection methods can be classified into super-
vised and unsupervised methods. Supervised feature selec-
tion methods usually evaluate the feature importance by the
correlation between feature and class label. The typical
supervised feature selection methods include Pearson
correlation coefficients, Fisher score, Kolmogorov-Smirnov
test, ReliefF [23], Lasso [16], and SVM-RFE [14]. However, in

practice, there is usually no shortage of unlabeled data but
labels are expensive. Hence, it is of great significance to
develop unsupervised feature selection algorithms which
can make use of all of the data points. In this paper, we
consider the problem of selecting features in unsupervised
learning scenarios, which is a much harder problem due to
the absence of class labels that would guide the search for
relevant information.

Unsupervised feature selection algorithms can be
roughly classified into two categories. The first category of
approaches aims to maximize some clustering performance.
Wolf and Shashua proposed a feature selection algorithm
called Q� � [32]. The algorithm optimizes over a least-
squares criterion function which measures the clusterability
of the input data points projected onto the selected
coordinates. The optimal coordinates are those for which
the cluster coherence, measured by the spectral gap of the
corresponding affinity matrix, is maximized [32]. A
remarkable property of the algorithm is that it always
yields sparse solutions. Some other approaches in this
category include sequential unsupervised feature selection
[9], wrapper approach based on expectation maximization
(EM) [11], and the maximum entropy-based method [2].
The second category of approaches selects the most
representative features which can best preserve the geome-
trical structure of the data space. Data variance is perhaps
the simplest criterion for selecting representative features.
This criterion essentially projects the data points along the
dimensions of maximum variances. Note that the Principal
Component Analysis (PCA) algorithm shares the same
principle of maximizing variance, but it involves feature
transformation and obtains a set of transformed features
rather than a subset of the original features. Recently, the
Laplacian score algorithm [17] and its extensions [34] have
been proposed to select those features which can best reflect
the underlying manifold structure.

In this paper, we propose a novel variance minimization
criterion to feature selection. The central idea of our
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approaches is to explore both discriminative and geometrical
information in the data. In other words, our goal is to find a
feature subset which respects the underlying manifold
structure and can improve the learning performance the
most if the selected features are used. Suppose we have a
regression task at hand after feature selection. We want the
predicted response as robust as possible, and the parameter
estimates have small variance. Particularly, our approaches
are based on Laplacian regularized least squares (LapRLS,
[4]), a regularized regression model which explicitly takes
into account the underlying manifold structure in the data. It
is interesting to note that the covariance matrix of the
parameters is not dependent on the class label, but only on
the random examples. Thus, we propose to select those
features so that the size of the resulting covariance matrix, as
well as the expected prediction error, is minimized. This
way, our feature selection approaches explicitly take into
account both discriminative and geometrical structures in
the data. In statistics, there are many different optimality
criteria to measure the size of the covariance matrix, leading
to different algorithms. We adopt the most popular,
A-optimality and D-optimality, and introduce two novel
feature selection algorithms, called Laplacian regularized
A-Optimal Feature Selection (LapAOFS) and Laplacian regular-
ized D-Optimal Feature Selection (LapDOFS), respectively. In
A-optimality, the trace of the parameter covariance matrix,
that is, the total variance of the parameter estimates, is
minimized. In D-optimality, the determinant of the para-
meter covariance matrix is minimized. D-optimal feature
selection is motivated by reference to the ellipsoidal
confidence regions for the parameters of the regression
model [1]. We also introduce efficient computation schemes
to solve these two optimization problems.

The organization of the paper is as follows: In the next
section, we provide a brief description of the relatedwork. In
Section 3, we introduce the experimental design perspective
for feature selection. We then present the proposed
LapAOFS algorithm and the optimization scheme in Sec-
tion 4. Section 5 presents the LapDOFS algorithm and its
optimization scheme. The extensive experimental results on
three real-life data sets are presented in Section 6. Finally, we
provide some concluding remarks and suggestions for
future work in Section 7.

2 RELATED WORK

The work most related to our proposed approaches is
Laplacian Score [17]. On the other hand, our approaches are
motivated from optimal experimental design [1] in statis-
tics. Therefore, in this section, we provide a brief descrip-
tion of Laplacian Score and optimal experimental design.

2.1 Laplacian Score

Laplacian score is a recently proposed unsupervised feature
selection algorithm [17]. The basic idea of Laplacian score is
to evaluate the feature according to its locality preserving
power, or its consistency with the manifold structure.

Suppose we have m data points, x1; . . . ;xm. Let Lr

denote the Laplacian score of the rth feature. Let fri denote
the ith sample of the rth feature. Define

f r ¼
�
fr1; . . . ; frm

�T
:

In order to approximate the manifold structure, one can
construct a nearest neighbor graph with weight matrix W
[17]. The importance of a feature can be thought of as the
degree to which it respects this graph structure. To be
specific, a “good” feature should be the one on which two
data points are close to each other if and only if there is an
edge between these two points. A reasonable criterion for
choosing a good feature is to minimize the following
objective function:

Lr ¼
P

ij

�
fri � frj

�2
Wij

V arðf rÞ
: ð1Þ

There are many choices of the weight matrix W . Let NðxiÞ
denote the set of k nearest neighbors of xi. The simplest
definition of W is as follows:

Wij ¼ 1; xi 2 NðxjÞ or xj 2 NðxiÞ;
0; otherwise:

�
ð2Þ

Let D be a diagonal matrix, Dii ¼
P

j Wij. The weighted data
variance can be computed as follows:

V arðf rÞ ¼ efTr Def r;
where

ef r ¼ f r �
fTr D1

1TD1
1:

Define L ¼ D�W , which is usually called the Laplacian
matrix. It is easy to see that [17]

X

ij

�
fri � frj

�2
Wij ¼ 2fTr Lf r ¼ 2efTr Lef r:

Finally, the Laplacian score of the rth feature is reduced to

Lr ¼
efTr Lef r
efTr Def r

: ð3Þ

Both Laplacian score and our proposed algorithms
explicitly make use of the manifold structure. However,
unlike Laplacian score, which is based on a graph model,
our proposed algorithms are motivated from the question
that how the selected features can improve the performance
of a manifold regularized regression model. Our proposed
algorithms and framework of analysis provide a new
perspective from experimental design [1] for feature
selection.

2.2 Optimal Experimental Design

In statistics, the problem of selecting samples to label is
typically referred to as experimental design [1]. The sample
x is referred to as experiment, and its label is referred to as
measurement. The variances of the parameter estimates and
predictions depend on the particular experimental design
used and should be as small as possible. Poorly designed
experiments waste resources by yielding unnecessarily
large variances and imprecise predictions [1].

We consider a linear regression model

y ¼ wTxþ �;

where w is the weight vector and � is an unknown error
with zero mean. Different observations have errors that are

2014 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 10, OCTOBER 2011



independent, but with equal variances �2. We define fðxÞ ¼
wTx to be the learner’s output given input x and the weight
vector w. Suppose we have a set of measured (labeled)
samples, ðz1; y1Þ; . . . ; ðzk; ykÞ. The maximum likelihood
estimate for the weight vector, bw, is that which minimizes
the sum squared error:

JsseðwÞ ¼
Xk

i¼1

�
wTzi � yi

�2
: ð4Þ

We define y ¼ ðy1; . . . ; ykÞT and Z ¼ ðz1; . . . ; zkÞ. The opti-
mal solution is given by

bw ¼ ðZZT Þ�1Zy:

It is easy to check that the mean and covariance matrix of
the parameters have the following expression [1]:

Eðbw�wÞ ¼ 0;

and

CovðbwÞ ¼ �2ðZZT Þ�1:

Thus, the predicted value of the response given by by ¼ bwTx

has the variance [1]

varðbyÞ ¼ �2xT ðZZT Þ�1
x:

In order to minimize the variances of the parameter
estimates and the predicted response, different optimality
criteria have been proposed, out of which A and
D-optimality have received the most attentions. In
A-optimality, the trace of the parameter covariance matrix
is minimized, equivalent to minimizing the average
variance. In D-optimality, the determinant of the parameter
covariance matrix is minimized. D-optimality was moti-
vated by reference to the ellipsoidal confidence regions for
the parameters of the linear model. A D-optimal design
minimizes the content of this confidence region and so
minimizes the volume of the ellipsoid [1].

Experimental design techniques have conventionally
been used to select the most informative samples. In our
work, we take a different perspective to apply experimental
design techniques to select the most informative features.

3 A VARIANCE MINIMIZATION CRITERION TO

FEATURE SELECTION

3.1 The Problem

Let X ¼ ðx1; . . . ;xmÞ be an n�m data matrix. We denote
the row vectors of X by fTi 2 IRm (i ¼ 1; . . . ; n), each
corresponding to a feature, and define the feature set
F ¼ ff 1; . . . ; fng. The problem of feature selection is to find
the most informative feature subset S ¼ fg1; . . . ;gkg � F .
Let XS be a new data matrix by only keeping those features
in S and xS

i be the ith column vector of XS .

3.2 The Objective Function

We consider the linear regression model by using the
selected feature subset S:

y ¼ wTxS þ �; ð5Þ

where � is an unknown error with zero mean. Different
observations have errors that are independent, but with
equal variances �2. Suppose yi is the label of the ith data
point. Thus, the maximum likelihood estimate for the
weight vector, bw, is given by minimizing the sum squared
error in (4).

However, the ordinary linear regression fails to take into
account the intrinsic geometrical structure of the data. In
this work, we consider the case where the probability
distribution that generates the data is supported on a
submanifold of the ambient space [3], [19], [28], [24]. Let W
be a similarity matrix capturing the neighborhood structure
in the data and D be a diagonal matrix, Dii ¼

P
j Wij, and

L ¼ D�W . The matrix L is called graph Laplacian [8]. Belkin
et al. have applied graph Laplacian as a smoothing operator
to ensure the learned function varies smoothly along the
geodesics of the data manifold, and hence the learning
performance can be improved [4]. By incorporating the
Laplacian regularizer into the sum squared error, they
proposed Laplacian regularized least squares (LapRLS, [4]):

JLapRLSðwÞ ¼
Xm

i¼1

�
wTxS

i � yi
�2

þ �1

2

Xm

i;j¼1

�
wTxS

i �wTxS
j

�2
Wij

þ �2kwk2;

ð6Þ

where W is a weight matrix defined in (2). The solution to
the minimization problem (6) is given as follows:

bw ¼ ðXSðXSÞT þ �1X
SLðXSÞT þ �2IÞ�1XSy; ð7Þ

where I is a k� k identity matrix. Define

H ¼ XSðXSÞT þ �1X
SLðXSÞT þ �2I:

Thus, bw ¼ H�1XSy. Let � ¼ �1X
SLðXSÞT þ �2I. Noticing

that y ¼ ðXSÞTwþ �, the bias can be computed as
follows [18]:

Eðbw�wÞ
¼ H�1XSðXSÞTw�w

¼ H�1ðXSðXSÞT þ �� �Þw�w

¼ ðI �H�1�Þw�w

¼ �H�1�w:

ð8Þ

By noticing that CovðyÞ ¼ �2I, the covariance matrix of the
parameter bw can be computed as follows [18]:

CovðbwÞ
¼ CovðH�1XSyÞ
¼ H�1XSCovðyÞðXSÞTH�1

¼ �2H�1XSðXSÞTH�1

¼ �2H�1
�
H � �ÞH�1

¼ �2
�
H�1 �H�1�H�1

�
:

For any data point xS , let by ¼ bwTxS be its predicted
observation. The expected squared prediction error is

HE ET AL.: A VARIANCE MINIMIZATION CRITERION TO FEATURE SELECTION USING LAPLACIAN REGULARIZATION 2015



Eðy� byÞ2

¼ Eðy� bwTxSÞ2

¼ �2 þ ðxSÞT ðEðw� bwÞðw� bwÞT ÞxS

¼ �2 þ ðxSÞT ðEðw� bwÞEðw� bwÞT þ Covðw� bwÞÞxS

¼ �2 þ ðxSÞT ðH�1�wwT�H�1 þ �2H�1 � �2H�1�H�1ÞxS:

ð9Þ

Since �1 and �2 are usually set to be very small, we have [18]

CovðbwÞ � �2H�1; ð10Þ

and

Eðy� byÞ2 � �2 þ �2ðxSÞTH�1xS: ð11Þ

Inspired from experimental design principles [1], we
propose selecting those features such that the size of the
parameter covariance matrix is minimized. By minimizing
the size of H�1, the expected squared prediction error for a
new point can also be minimized. Using different measures
of the size of the covariance matrix, the optimal features can
be obtained by solving the following optimization problems:

Laplacian Regularized A-Optimal Feature Selection:

min
S�F

Tr
�
H�1

�
: ð12Þ

Laplacian Regularized D-Optimal Feature Selection:

min
S�F

det
�
H�1

�
: ð13Þ

4 LAPLACIAN REGULARIZED A-OPTIMAL FEATURE
SECTION

In this section, we discuss how to solve the optimization
problem (12) of LapAOFS. The matrix H can be rewritten as
follows:

H ¼ XSðI þ �1LÞðXSÞT þ �2I:

Since L is positive semidefinite (PSD), I þ �1L is positive
definite and invertible. By using the Woodbury formula
[13], we have

H�1 ¼ 1

�2

I � 1

�2
2

XS ðI þ �1LÞ�1 þ 1

�2

ðXSÞTXS
� ��1

ðXSÞT :

We define

M ¼ �2ðI þ �1LÞ�1:

Thus,

H�1 ¼ 1

�2

I � 1

�2

XSðM þ ðXSÞTXSÞ�1ðXSÞT :

Noticing that TrðABÞ ¼ TrðBAÞ, we have

TrðH�1Þ

¼ k

�2

� 1

�2

TrðXS�M þ ðXSÞTXS��1ðXSÞT Þ

¼ k

�2

� 1

�2

TrððM þ ðXSÞTXSÞ�1ðXSÞTXSÞ

¼ k

�2

� 1

�2

TrððM þ ðXSÞTXSÞ�1

ðM þ ðXSÞTXS �MÞÞ

¼ k

�2

� 1

�2

TrðI �
�
M þ ðXSÞTXS��1

MÞ

¼ k�m

�2

þ 1

�2

TrððM þ ðXSÞTXSÞ�1MÞ:

ð14Þ

Thus, the optimal solution of LapAOFS can be obtained by
minimizing

min
S�F

TrððM þ ðXSÞTXSÞ�1MÞ: ð15Þ

As defined above, the matrix XS only contains the selected
features, i.e., g1; . . . ;gk. Therefore, we can rewrite ðXSÞTXS

as follows:

ðXSÞTXS ¼
Xk

i¼1

gig
T
i :

To simplify the optimization problem (15), we introduce
n indicator variables, �1; . . . ; �n. �i ¼ 1 if the ith feature is
selected and 0 otherwise. Thus, we have

ðXSÞTXS ¼
Xn

i¼1

�if if
T
i ¼ XT

�1 0 0 0

0 �2 0 0

0 0 . .
.

0

0 0 0 �n

0
BBB@

1
CCCAX:

Let ����T ¼ ð�1; . . . ; �nÞ. The optimization problem (15) can be
rewritten as follows:

min
����

Tr M þXT

�1 0 0 0

0 �2 0 0

0 0 . .
.

0

0 0 0 �n

0
BBBB@

1
CCCCA
X

0
BBBB@

1
CCCCA

�1

M

0
BBBB@

1
CCCCA
;

s:t:
Xn

i¼1

�i ¼ k; �i 2 f0; 1g:

ð16Þ

4.1 Sequential Optimization

In the following, we describe a sequential optimization
scheme to select the most informative features. Suppose k

ð� 0Þ features have been selected, i.e., g1; . . . ;gk 2 F . The
ðkþ 1Þth feature can be selected by solving the following
problem:

gkþ1 ¼ argmin
g

Tr M þ
Xk

i¼1

gig
T
i þ ggT

 !�1

M

0
@

1
A: ð17Þ
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Define

Ak ¼ M þ
Xk

i¼1

gig
T
i ;

and

A0 ¼ M:

The optimization problem (17) reduces to finding

gkþ1 ¼ argmin
g

Tr
��

Ak þ ggT
��1

M
�
: ð18Þ

By using the Sherman-Morrison formula [13], we have

�
Ak þ ggT

��1 ¼ A�1
k � A�1

k ggTA�1
k

1þ gTA�1
k g

: ð19Þ

Thus,

Tr
��

Ak þ ggT
��1

M
�

¼ TrðA�1
k MÞ �

Tr
�
A�1

k ggTA�1
k M

�

1þ gTA�1
k g

¼ TrðA�1
k MÞ �

Tr
�
gTA�1

k MA�1
k g
�

1þ gTA�1
k g

¼ TrðA�1
k MÞ � gTA�1

k MA�1
k g

1þ gTA�1
k g

:

Since TrðA�1
k MÞ is a constant when selecting the ðkþ 1Þth

feature, the ðkþ 1Þth optimal feature is given by

gkþ1 ¼ argmax
g

gTA�1
k MA�1

k g

1þ gTA�1
k g

: ð20Þ

Once gkþ1 is obtained,A
�1
kþ1 can be updated according to (19).

4.2 Convex Optimization

In this section, we introduce another optimization scheme
for solving (16). Due to the combinatorial nature, the
optimization problem (16) is NP-hard. In order to solve it
efficiently, we relax the integer constraints on �is and allow
them to take real nonnegative values. Moreover, for feature
selection, it is desired that �is can be sufficiently sparse. In
other words, there is only a subset of �is whose values are
positive and any other �is are zero. This way, we can
simply select those features whose corresponding �is are
positive. The sparseness of ���� can be controlled through
minimizing the ‘1-norm of ���� [16], i.e., k����k1. Since �is are
nonnegative, k����k1 ¼ 1T����, where 1 is a column vector of all
ones. Finally, the optimization problem becomes

min
����

Tr M þ
Xn

i¼1

�if if
T
i

 !�1

M

0
@

1
Aþ �1T����;

s:t: ���� � 0;

ð21Þ

where � is a regularization parameter which controls the
sparseness of ����. The following theorem shows that the
optimization problem (21) is convex.

Theorem 4.1. The optimization problem (21) is convex with
variable ���� 2 IRn.

Proof. Since the matrix M is symmetric and positive
definite, we can decompose it as follows:

M ¼ UUT ; U ¼ ðu1; . . . ;umÞ:
Thus, we have

Tr M þ
Xn

i¼1

�if if
T
i

 !�1

M

0
@

1
A

¼ Tr UT M þ
Xn

i¼1

�if if
T
i

 !�1

U

0
@

1
A:

We define fðAÞ ¼ TrðUTA�1UÞ ¼Pm
i¼1 u

T
i A

�1ui. We
know that the matrix fractional function uT

i A
�1ui is a

convex function of A [7]. Therefore, fðAÞ is also convex.
We define

gð����Þ ¼ M þ
Xn

i¼1

�if f
T :

Since gð����Þ is an affine function, the composition f � g is
convex [7]. Clearly, �1T���� is a convex function of ����.
Therefore, the function f � gþ �1T���� is convex. It is easy
to see that the constraint function (�����) is also convex.
Thus, the optimization problem (21) is convex with
variable ���� 2 IRn. tu
By introducing a new variable P 2 IRm�m, the optimiza-

tion problem can be equivalently rewritten as follows:

min
P;����

TrðP Þ þ �1T����;

s:t: P �SSþm
UT

 
M þ

Xn

i¼1

�if if
T
i

!�1

U;

���� � 0;

ð22Þ

where SSþm denotes the set of symmetric positive semidefinite

m�m matrices and A �SSþm
B denotes that A�B is sym-

metric and positive semidefinite.
In the following, we discuss how to use Schur comple-

ment theorem [7] to cast the optimization problem (22) as a
SemiDefinite Programming (SDP). Suppose A, B, and C are,
respectively, p� p, p� q, and q � q matrices, and A is
invertible. Let

Q ¼ A B
BT C

� �
:

The Schur complement of the block A of the matrix Q is the
p� p matrix C �BTA�1B. The Schur complement theorem
states that Q is positive semidefinite if and only if C �
BTA�1B is positive semidefinite [7]. By using the Schur
complement theorem, the optimization problem (22) can be
expressed as

min
P;����

TrðP Þ þ �1T����;

s:t:
M þPn

i¼1 �if if
T
i U

UT P

 !
�SSþ

2m
0;

���� � 0:

ð23Þ
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The above optimization problem can be solved by using

interior-point methods [7].

5 LAPLACIAN REGULARIZED D-OPTIMAL FEATURE
SELECTION

Since detðH�1Þ ¼ ðdetðHÞÞ�1, minimizing detðH�1Þ is

equivalent to maximizing detðHÞ. By using matrix determi-

nant lemma [15], we have

detðHÞ
¼ detðXSðI þ �1LÞðXSÞT þ �2IÞ
¼ detð�2IÞdet

�
I þ �1L

�

� det ðI þ �1LÞ�1 þ 1

�2

ðXSÞTXS
� �

¼ ð�2ÞkdetðI þ �1LÞð�2Þ�m

� detð�2ðI þ �1LÞ�1 þ ðXSÞTXSÞ:
Let c ¼ ð�2Þk�m

detðI þ �1LÞ, which is a constant, and

M ¼ �2ðI þ �1LÞ�1. Notice that ðXSÞTXS ¼Pk
i¼1 gig

T
i ; thus

detðHÞ ¼ c 	 det M þ
Xk

i¼1

gig
T
i

 !
:

The optimization problem (13) reduces to

max
fg1;...;gkg�F

det M þ
Xk

i¼1

gig
T
i

 !
: ð24Þ

5.1 Sequential Optimization

In the following, we describe a sequential optimization

scheme to solve the above problem. Suppose k features

have been selected, i.e., g1; . . . ;gk, k � 0. We define

Ak ¼ M þ
Xk

i¼1

gig
T
i ; ð25Þ

and

A0 ¼ M: ð26Þ
Thus, the ðkþ 1Þth optimal feature is given by

gkþ1 ¼ argmax
g2F

detðAk þ ggT Þ: ð27Þ

Again, using the matrix determinant lemma [15], we have

detðAk þ ggT Þ ¼ ð1þ gTA�1
k gÞdetðAkÞ: ð28Þ

Notice that detðAkÞ is a constant when selecting the

ðkþ 1Þth optimal feature. Therefore,

gkþ1 ¼ argmax
g2F

gTA�1
k g: ð29Þ

Once gkþ1 is obtained, detðAkþ1Þ can be obtained according

to (28). A�1
kþ1 can be updated according to (19).

5.2 Concave Optimization

Similarly to LapAOFS, the optimization problem (13) can

also be relaxed to a concave optimization problem as

max
����

log det M þ
Xn

i¼1

�if if
T
i

 !
� �1T����;

s:t: ���� � 0:

ð30Þ

Since M þPn
i¼1 �if if

T
i is an affine function of ���� and log det

is a concave function, their composition logDetðM þPn
i¼1 �if if

T
i Þ is a concave function of ����. Thus, the objective

function logDetðM þPn
i¼1 �if if

T
i Þ � �1T���� is concave. The

constraint function is linear. Therefore, the optimization

problem (30) is a concave optimization problem. The

optimization problem (30) is typically referred to the as

determinant maximization problem and can be solved by

interior-point methods [30]. Please see [30] for details.

6 COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we discuss the computational cost of our

proposed algorithms.

6.1 LapAOFS

In Section 4, we have described two optimization schemes

to solve the objective function of LapAOFS. For the

sequential optimization scheme, each iteration consists of

the following two steps:

1. solving the problem (20), and
2. updating A�1

kþ1 according to (19).

The evaluation of gTA�1
k MA�1

k g=ð1þ gTA�1
k gÞ needs Oðm2Þ

operations. In order to solve problem (20), we need to

calculate this equation for all of the n features. So, the

complexity of the first step is Oðnm2Þ. The second step

applies the Sherman-Morrison formula to computing A�1
kþ1,

and it is easy to check that the complexity is Oðm2Þ. Thus,
the cost per iteration is Oðnm2Þ. Suppose our goal is to select

k features, then the total cost of the sequential scheme is

Oðknm2Þ.
For the convex optimization scheme, the state-of-the-art

SDP solvers [25], [29] typically use interior-point methods to

solve the SDPproblem. It has been proven that theworst-case

complexity of the interior point solvers for SD’s depends

quadratically on the number of variables and polynomially

with an exponent of roughly 2.5 on the size of the Positive

Semidefinite matrix [5]. In problem (23), the number of

variables is ðnþm2Þ and the size of the PSD matrix is 2m, so

the worst-case complexity is Oððnþm2Þ2m2:5Þ.

6.2 LapDOFS

The sequential optimization method for solving LapDOFS is

similar to that for LapAOFS. At each iteration, we need to

solve the problem (29) and update A�1
kþ1. The complexity of

solving the problem (29) is the same as that of solving the

problem (20), i.e., Oðnm2Þ. So, the total cost of the sequential
method is still Oðknm2Þ.

For the concave optimization, in the worst case, solving

the determinant maximization problem needs Oð ffiffiffi
n

p Þ New-

ton iterations and each iteration requires Oððn2 þm2Þn2Þ
operations [30]. So, the total cost of the concave relaxation is

Oððn2 þm2Þn2:5Þ.
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7 EXPERIMENTAL RESULTS

In this section, several experiments are carried out to show
the effectiveness of our proposed LapAOFS and LapDOFS
methods for feature selection. We perform clustering and
nearest neighbor classification experiments by only using
the selected features. The following five unsupervised
feature selection algorithms are compared:

. Our proposed LapAOFS algorithm.

. Our proposed LapDOFS algorithm.

. Laplacian Score [17].

. Q� � algorithm [32].

. Data Variance.

The Variance method selects those features of maximum
variances in order to obtain the best expressive power.
Laplacian score aims to preserve the local manifold
structure. The Q� � algorithm aims to maximize the
cluster coherence. In our LapAOFS and LapDOFS algo-
rithms, the regularization parameters �1 and �2 are both set
to 0.01 and the number of nearest neighbors (k) is set to 4.
We have presented both sequential and convex (concave)
optimization schemes for LapAOFS and LapDOFS. How-
ever, convex (concave) optimization is very time consum-
ing. Therefore, we adopt sequential optimization schemes
in our experiments. In the following, we begin with a
description of the data preparation.

7.1 Data Preparation

Three real world data sets were used in our experiments. The

first one is theMNISThandwrittendigit database,1whichhas

a training set of 60,000 images (denoted as set A) and a testing

set of 10,000 images (denoted as set B). In our experiments,we

take the first 1,000 images fromsetAand the first 1,000 images

from set B as our data set. Each class (digit) contains around

200 images. Each digit image is of size 28� 28 and therefore

represented by a 784-dimensional vector.
The second one is the COIL20 image library2 from

Columbia. It contains 20 objects. The images of each objects
were taken 5 degrees apart as the object is rotated on a
turntable and each objects has 72 images. The size of each
image is 32� 32 pixels, with 256 gray levels per pixel. Thus,
each image is represented by a 1,024-dimensional vector.

The third one is the AT&T face database3 which consists
of a total of 400 face images, of a total of 40 subjects
(10 samples per subject). The images were captured at
different times and have different variations including
expressions (open or closed eyes, smiling or nonsmiling)
and facial details (glasses or no glasses). The images were
takenwith a tolerance for some tilting and rotation of the face
up to 20 degrees. The original images were normalized (in
scale and orientation) such that the two eyes were aligned at
the same position. Then, the facial areas were cropped into
the final images for matching. The size of each cropped
image is 32� 32 pixels, with 256 gray levels per pixel. Thus,
each face image can be represented by a 1,024-dimensional
vector.

7.2 Data Clustering

We perform K-means clustering by using the selected
features and compare the results of different algorithms in
this test.

7.2.1 Evaluation Metric

The clustering algorithm generates a cluster label for each
data point. The clustering performance is evaluated by
comparing the generated class label and the ground truth.
In our experiments, the accuracy (AC) and the normalized
mutual information metric (NMI) are used to measure the
clustering performance [33]. Given a point xi, let ri and si
be the obtained cluster label and the label provided by the
ground truth, respectively. The AC is defined as follows:

AC ¼
Pm

i¼1 �ðsi;mapðriÞÞ
m

;

where m is the total number of samples and �ðx; yÞ is the
delta function that equals 1 if x ¼ y and equals 0 otherwise,
andmapðriÞ is the permutation mapping function that maps
each cluster label ri to the equivalent label from the data set.
The best mapping can be found by using the Kuhn-
Munkres algorithm [22].

Let C denote the set of clusters obtained from the ground
truth and C0 obtained from our algorithm. Their mutual
information metric MIðC;C0Þ is defined as follows:

MIðC;C0Þ ¼
X

ci2C;c0j2C0
pðci; c0jÞ 	 log2

pðci; c0jÞ
pðciÞ 	 pðc0jÞ

;

where pðciÞ and pðc0jÞ are the probabilities that a sample point
arbitrarily selected from the data set belongs to the clusters ci
and c0j, respectively, and pðci; c0jÞ is the joint probability that
the arbitrarily selected data point belongs to the clusters ci as
well as c0j at the same time. In our experiments, we use the
normalized mutual information as follows:

NMIðC;C0Þ ¼ MIðC;C0Þ
maxðHðCÞ; HðC0ÞÞ ;

where HðCÞ and HðC0Þ are the entropies of C and C0,
respectively. It is easy to check that NMIðC;C0Þ ranges
from 0 to 1. NMI ¼ 1 if the two sets of clusters are identical,
and NMI ¼ 0 if the two sets are independent.

7.2.2 Clustering Results

For each data set, the evaluations were conducted by using
different numbers of clusters (k). For MNIST, k ¼ 3; 5; 7; 9.
For each given cluster number k ð¼ 3; 5; 7Þ, 20 test runs were
conducted on different randomly chosen clusters, and the
final performance scores were computed by averaging
the scores from the 20 tests. For k ¼ 9, there are only
10 possible combinations by removing each one of the
10 digit classes. In this case, we averaged the scores from
the 10 tests. For each test, we applied different algorithms to
select ‘ features and applied K-means for clustering. The
K-means was applied 10 times with different start points
and the best result in terms of the objective function of
K-means was recorded. Fig. 1 shows the plots of clustering
performance, in terms of accuracy and normalized mutual
information, versus the number of selected features (‘). For
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COIL20, the number of clusters is taken to be 5, 10, and 15.

Fig. 2 shows the plots of clustering performance versus the

number of selected features. For AT&T, the number of

clusters is taken to be 10, 20, and 30. Fig. 3 shows the

clustering performance comparison.
As we can see, our proposed LapAOFS and LapDOFS

algorithms consistently outperform all of the other feature

selection algorithms on the MNIST, COIL20, and AT&T data

sets. Both LapAOFS and LapDOFS converge to the best

results very fast, with typically nomore than 100 features. For

all of the other methods, they usually require 300 
 600

features to achieve a reasonably good result, as can be seen

from Figs. 1, 2, and 3. It would be interesting to note that, on

the COIL20 data set, our proposed algorithms perform

surprisingly well by using only 10 features. For example,

when five classes are used and only 10 features are selected,

the clustering accuracy (normalized mutual information) for

LapAOFS and LapDOFS are 78.9 (72.4 percent) and 76.3 per-

cent (70.4 percent), respectively. These results are even

comparable to the clustering results by using all of the 1,024

features, that is, 81.4 percent in accuracy and 78.2 percent in

normalized mutual information. We can see similar results

when 10 and 15 classes are used for clustering. The Variance,

Laplacian score, and Q� � algorithms perform comparably

to one another on the MNIST and COIL20 data sets. On the

AT&T data set, Laplacian score performs slightly better than

Variance and Q� �, especially when the number of selected

features is less than 100.
Since the goal of feature selection is to reduce the

dimensionality of the data, in Tables 1, 2, and 3 we report

the detailed clustering performance (accuracy and normal-

ized mutual information) by using 100 features for each

algorithm. The last two columns of each table record the

average clustering performance over different numbers of
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Fig. 1. Clustering accuracy and normalized mutual information versus the number of selected features on the MNIST data set.



clusters. As can be seen, LapAOFS and LapDOFS signifi-
cantly outperform the other three methods on all the three
data sets. Laplacian score performs the second best.

Comparing with Laplacian score, LapAOFS achieves
16.9 percent (16.2 percent), 22.0 percent (21.8 percent), and
10.9 percent (10.7 percent) relative error reduction in average
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Fig. 2. Clustering accuracy and normalized mutual information versus the number of selected features on the COIL20 data set.

Fig. 3. Clustering accuracy and normalized mutual information versus the number of selected features on the AT&T data set.



accuracy (average normalized mutual information) on the
MNIST, COIL20, and AT&T data sets, respectively. Simi-
larly, LapDOFS achieves 17.2 percent (16.7 percent), 21.1 per-
cent (22.2 percent), and 11.4 percent(12.0 percent) relative
error reduction in average accuracy (average normalized
mutual information) on theMNIST, COIL20, andAT&T data
sets, respectively. The last row of each table records the
clustering performances by using all the features.

7.3 Nearest Neighbor Classification

In this section, we evaluate the discriminating power of
different feature selection algorithms. We consider the
nearest neighbor classifier. The good features should yield
high classification accuracy.

We perform leave-one-out cross validation as follows:
For each data point xi, we find its nearest neighbor x0

i. Let
cðxiÞ be the class label of xi. The nearest neighbor
classification accuracy is thus defined as

Accuracy ¼ 1

m

Xm

i¼1

�
�
cðxiÞ; cðx0

iÞ
�
;

wherem is the number of data points and �ða; bÞ ¼ 1 if a ¼ b
and 0 otherwise. Figs. 4, 5, and 6 show the plots of nearest
neighbor classification accuracy versus the number of
selected features.

As can be seen, on all three data sets, LapAOFS and

LapDOFS consistently outperform the other three methods.

Similarly to clustering, both LapAOFS and LapDOFS con-

verge to the best result very fast, with no more than 100

features. Particularly on the COIL20 data set, LapAOFS and

LapDOFS can achieve 100 and 99.51 percent classification

accuracybyusingonly30 features, respectively.That is, outof

1,440 data points, only seven data points are misclassified by
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TABLE 1
Clustering Performance (Percent) by Using 100 Features on the MNIST Data Set

The last row records the clustering performance by using all of the 784 features.

TABLE 2
Clustering Performance (Percent) by Using 100 Features

n the COIL20 Data Set

The last row records the clustering performance by using all of the 1,024
features.

TABLE 3
Clustering Performance (Percent) by Using 100 Features

on the AT&T Data Set

The last row records the clustering performance by using all of the 1,024
features.

Fig. 4. Nearest neighbor classification accuracy versus the number of
selected features on the MNIST data set.

Fig. 5. Nearest neighbor classification accuracy versus the number of
selected features on the COIL20 data set.



LapDOFS and all of the data points are correctly classified by
LapAOFS. On this data set, the Q� � algorithm performs
comparably to our algorithms andmuch better thanVariance
and Laplacian Score, especially when the number of selected
features is less than 100. On theMNIST data set, the Variance
andQ� � algorithmsperform comparably to each other, and
Laplacian Score performs the worst. On the AT&T data set,
Laplacian Score and Q� � perform comparably and Var-
iance performs the worst.

Similarly to clustering, in Table 4 we show the nearest
neighbor classification accuracy for each algorithm using

only 100 features. As can be seen, both LapDOFS and
LapAOFS achieve comparable results to that using all of the
features.

7.4 Parameters Selection

Our algorithms have three parameters, that are, regulariza-
tion parameters (�1 and �2) and number of nearest
neighbors (k). For unsupervised feature selection, model
selection is especially difficult since there is no label
information available. Thus, standard model selection
method such as cross validation cannot be applied. In this
section, we evaluate how the algorithms perform with
different values of the parameters. The data set used for this
test is the AT&T face database. By applying LapAOFS and
LapDOFS, we select 100 features.

Figs. 7a, 7b, and 7c show the average clustering accuracy
over 10, 20, and 30 clusters as a function of each of these
three parameters. Figs. 7d, 7e, and 7f show the classification
accuracy as a function of each of these three parameters. As
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Fig. 6. Nearest neighbor classification accuracy versus the number of
selected features on the AT&T data set.

TABLE 4
Nearest Neighbor Classification Accuracy Comparison

by Using 100 Selected Features

The last row records the performance by using all of the features.

Fig. 7. The clustering and classification accuracies versus parameters �1, �2, and k.



we can see, the performance of LapAOFS and LapDOFS is
very stable with respect to these parameters. Moreover,
LapAOFS and LapDOFS can achieve significantly better
performance than the other three algorithms over a large
range of �1 and �2. The Laplacian Score algorithm shares the
same parameter k with our proposed algorithms, which
defines the “locality” of the data manifold. Recall that the
Laplacian regularization is based on the assumption that
two data points may share the same label if they are
sufficiently close to each other. However, as k increases, two
points within the same neighborhood may have different
labels and the Laplacian regularizer can no longer capture
the local geometrical and discriminant structures. From
Figs. 7c and 7f, we can see that the performance of both our
algorithms and Laplacian Score decreases as k increases.
However, comparing to Laplacian Score, our algorithms are
much more stable. From these results, we see that the
selection of parameters is not a very crucial problem in our
proposed algorithms.

7.5 Summary

The clustering and nearest neighbor classification experi-
ments on three databases have been systematically per-
formed. These experiments reveal a number of interesting
points:

1. On all three data sets, LapAOFS and LapDOFS
consistently outperform the other three algorithms
for both clustering and nearest neighbor classifica-
tion. As the number of selected features increases,
the clustering and nearest neighbor classification
performance for all the methods increase and the
performance difference among different methods
gets smaller.

2. Our proposed algorithms perform especially well
when the number of selected features is small (e.g.,
‘ < 100). By using only 100 features, the performance
of our proposed LapAOFS and LapDOFS algorithms
are comparable to and sometimes even better than
(see Tables 1, 2, 3, and 4) the performance by using
all the features. Therefore, comparing to Variance,
Laplacian Score, and Q� �, our algorithms can
achieve much more compact representation without
sacrifice of discriminating power.

3. In all the cases, the difference between LapAOFS
and LapDOFS is very small. This indicates that the
choice of different experimental design criteria may
not be very critical.

8 CONCLUSIONS AND FUTURE WORK

This paper presents two novel feature selection algorithms,
called LapAOFS and LapDOFS, from an experimental
design perspective. By using A-optimality criterion,
LapAOFS selects those features such that the trace of the
parameter (corresponding to the selected features) covar-
iance matrix is minimized. Likewise, LapDOFS aims to
minimize the determinant of the parameter covariance
matrix. Since our proposed algorithms essentially aim to
minimize the expected prediction error of the data points,
they can have more discriminating power. In comparison

with one simple method, that is, Variance, and two state-of-
the-art methods, namely, Laplacian Score and Q� �, the
experimental results validate that the new methods achieve
significantly higher accuracy for clustering and classifica-
tion. Our proposed LapAOFS and LapDOFS algorithms
perform especially well when the number of selected
features is less than 100.

In this paper, we applied A and D-optimality criteria to
evaluate the size of the parameter covariance matrix. There
are also many other choices of the design criteria, such as E
and G-optimality. E-optimality maximizes the minimum
eigenvalue of the parameter covariance matrix and
G-optimality minimizes the maximum variance of the
predicted values [1]. Although our empirical tests show that
the feature selection approach is not sensitive to the choice of
optimality criteria, it is worthwhile to further investigate the
performance of other optimality criteria for feature selection.
Moreover, in this paper we consider the unsupervised
feature selection problem. It remains unclear how to make
use of label information to enhance the feature selection
algorithms when it is available. The simplest way might be
incorporating the label information into the graph structure.
For example, if two points share the same label, then we can
assign a large weight on the edge connecting them. Finally,
the framework of analysis presented here is primarily
focused on feature selection. However, the experimental
design techniques have been conventionally applied to data
selection (or active learning) [1], [12], [18]. It is thus natural to
perform both data and feature selection simultaneously
within the experimental design framework.We are currently
exploring these problems in theory and practice.
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