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We report the results of an association study of melanoma that 
is based on the genome-wide imputation of the genotypes of 
1,353 cases and 3,566 controls of European origin conducted 
by the GenoMEL consortium. This revealed an association 
between several SNPs in intron 8 of the FTO gene, including 
rs16953002, which replicated using 12,313 cases and 55,667 
controls of European ancestry from Europe, the USA and 
Australia (combined P = 3.6 × 10−12, per-allele odds ratio for 
allele A = 1.16). In addition to identifying a new melanoma-
susceptibility locus, this is to our knowledge the first study 
to identify and replicate an association with SNPs in FTO not 
related to body mass index (BMI). These SNPs are not in  
intron 1 (the BMI-related region) and exhibit no association 
with BMI. This suggests FTO’s function may be broader than  
the existing paradigm that FTO variants influence multiple 
traits only through their associations with BMI and obesity.

Cutaneous melanoma is a disease predominantly of fair-skinned 
individuals. Established risk factors include a family history of 
melanoma1, pigmentation phenotypes such as an inability to tan2–5 
and many melanocytic nevi6,7. Established genetic risk factors include 

rare, highly penetrant variants, at least 11 common variants of lower 
effect identified by genome-wide association studies (GWAS)8,9 
(many related to pigmentation or nevus count10,11) and muta-
tions of intermediate effect in the MITF gene identified through a  
candidate-gene approach in indidviduals affected with melanoma and 
renal-cell carcinoma12 and sequencing genomes of multiply affected 
melanoma families13.

The FTO gene was first found to be associated with obesity in 
GWAS of type 2 diabetes14 and obesity15,16. Most14,17–21 but not 
all22,23 studies found no association between FTO and type 2 diabetes 
risk after adjustment for BMI. The strongest associations were with 
variants in intron 1 of FTO, but linkage disequilibrium (LD) stretches 
across introns 1 and 2 and exon 2. No SNP outside intron 1 has been 
previously associated with any trait, and no SNP in intron 1 has been 
associated with any trait unrelated to BMI.

The GenoMEL consortium focuses on genetic susceptibility to 
melanoma and has conducted two melanoma GWAS (Phase 1 and 
Phase 2) using samples from populations of European or Israeli 
ancestry9,11. Genotypes of the 1,373 cases and 3,571 controls from  
Phase 1 of the GenoMEL GWAS of melanoma9 were imputed, giving  
2.6 million SNPs, each tested for association with melanoma risk using  
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geographic region as a covariate (Online Methods). The most signifi-
cant SNP in a region not previously associated with melanoma was 
in FTO. Three SNPs in intron 8 of FTO were significant at P < 10−5, 
the most significant being rs16953002 (P = 5.59 × 10−6, per-allele 
odds ratio (OR) = 1.33, risk allele A, risk allele frequency = 0.19) and 
rs12596638 (P = 4.43 × 10−6, per-allele OR = 1.34, risk allele A, risk 
allele frequency = 0.19; in strong LD, r2 = 0.96). We confirmed impu-
tation quality by subsequent genotyping (Online Methods).

Following this finding, we imputed a region 1 Mb either side of 
rs16953002 for 1,449 cases and 4,043 controls in GenoMEL melanoma 
GWAS Phase 2 (ref. 11) and regressed SNP dosage on melanoma case-
control status with geographic region as a covariate. In this analy-
sis, we genotyped rs16953002 (P = 0.015, OR = 1.16) and imputed 
rs12596638 (P = 0.023, OR = 1.15). Combining all GenoMEL GWAS 
data gave five SNPs within 18 kb with P < 10−4 in intron 8 of FTO and 
over 250 kb from the closest SNP associated with BMI (Fig. 1).

We sought replication (mainly using existing GWAS data) 
using other samples of European ancestry from Europe, Australia 
and the United States, totaling 10,865 cases and 51,624 controls 
(Supplementary Table 1). All replication samples combined exhibited 
association between rs16953002 and melanoma with an allelic OR of 
1.14, P = 4.8 × 10−9, with all sample sets showing OR estimates in the 
same direction as the original finding and with no evidence of het-
erogeneity. When we combined these data with the GenoMEL sample 
data, we observed strong evidence of association with melanoma:  
P = 3.6 × 10−12, per-allele OR = 1.16, 95% confidence interval (1.11, 
1.20), and no evidence of heterogeneity (I2 = 0; Online Methods, 
Fig. 2 and Table 1).

BMI has, at best, a weak effect on risk of melanoma24,25. Given the 
clear association between variants in FTO and BMI, we investigated 
whether the melanoma-associated SNPs showed any association with 
BMI or, conversely, whether the known BMI-associated SNPs showed 
any association with melanoma.

BMI data were available for 37% of cases and 59% of controls (many of 
the GenoMEL samples and seven of the replication sets; Supplementary 
Table 1), with additional controls collected in Iceland to give 63,518 
samples from Iceland with BMI data and 14,222 from elsewhere with 
BMI data. Adjusting log(BMI) for age and age-squared, and regressing 
this on SNP genotype, with case-control status and sex as covariates, 
there was no significant association between rs16953002 and BMI with 
a combined P value of 0.15 (Supplementary Fig. 1). A more powerful 

data set for assessing BMI-SNP associations is that of the GIANT  
consortium26 (http://www.broadinstitute.org/collaboration/giant/
index.php/GIANT_consortium_data_files). In the GIANT consortium 
data, allele A of rs16953002 was very weakly associated with decreased  
BMI (P = 0.0156 in 123,852 individuals, indicating at most a very  
small effect size).

In contrast, the genotyped SNP in the FTO region that was most 
strongly associated with BMI in the GenoMEL data was rs8050136 
(P = 8.7 × 10−56 in all our data sets combined; Supplementary Figs. 2 
and 3). In the GIANT data set this association with BMI reached  
P = 1 × 10−59.

We also found very little LD between the two SNPs (r2 = 0.000039 
in 35,583 Icelandic controls and r2 < 0.006 in every other control set). 
In a recent study in which FTO was sequenced, only SNPs in intron 1  
were associated with BMI27. It could be that the rs16953002-BMI 
association in the GIANT data is due to a very well-powered data set 
picking up on slight LD. The great difference between the strength of 
association between BMI at rs8050136 and at rs16953002 can clearly 
be seen in a plot of the GIANT results (Supplementary Fig. 4).

rs8050136 was not associated with melanoma, having a combined 
meta-analysis P value with GenoMEL of 0.19 (per-allele OR = 1.02; 
Supplementary Fig. 5). Therefore, from our data, the known BMI-
related SNPs were associated with BMI but not with melanoma risk, 
and the melanoma-associated SNPs exhibited no evidence of asso-
ciation with BMI (Table 1). We also found no association between 
melanoma risk and adjusted BMI in the GenoMEL data (P = 0.96).
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The association between rs16953002 and melanoma risk was con-
sistent across geographic regions (Fig. 2 and Supplementary Fig. 6), 
and we found no significant difference in effect across subsets of 
the GenoMEL data defined by sex, tumor site, family history, early 
onset of disease and multiple primary tumors or association with any  
established melanoma-related trait (nevus count or sun sensitivity; 
data not shown). The association between rs16953002 and melanoma 
risk persisted in the subset of samples with BMI recorded even after 
adjusting for BMI (P = 0.01) despite a substantial reduction in sample 
size (Supplementary Table 2 and Supplementary Note).

We split the GenoMEL data into quartiles defined by adjusted BMI 
of controls and regressed case/control status on rs16953002 with sex 
as a covariate in each quartile. The association was stronger for those 
samples in the first quartile (lowest BMI) than those in the other 
quartiles (OR = 1.66, P = 3.00 × 10−5 versus maximum OR = 1.03, 
minimum P = 0.82; Supplementary Fig. 7), a difference that was 
significant (P = 0.0005). This is consistent with rs16953002 only 
being associated with melanoma risk in those people with low BMI. 
When we attempted to replicate the results defining BMI quartiles in 
each population, samples collected in Australia exhibited a similar  
effect (P = 0.003), but samples collected in other countries out-
side of the UK gave more equivocal results (Supplementary Fig. 7;  
P = 0.6 for all replicate samples and P = 0.06 with GenoMEL samples 
included). However, in the nine replication studies for which BMI 
data were available, rs16953002 always had the greatest association 
with melanoma risk for those in quartile 1 or 2.

Although the functional effect(s) of FTO is far from understood, 
evidence points to a variety of possible effects on BMI-related traits. 
However, a loss-of-function mutation in FTO caused gross develop-
mental defects in nine members of a Palestinian family, suggesting a 
broader function for FTO28.
FTO has been associated with end-stage renal disease29, acute 

coronary syndrome30, myocardial infarction31, all-cause mortality32, 
Alzheimer’s disease33 and osteoarthritis34. Even after adjustment for 
BMI, some BMI-related traits exhibit association with FTO variants, 
but it may be that BMI simply correlates with a weight-related factor 
that acts more directly on the trait of interest. Given that BMI is a risk 
factor for many cancers, the BMI-related SNPs in intron 1 of FTO 
have been studied in some of these cancers. A study of lung, kidney 
and upper aero-digestive cancers revealed no significant effect overall 
after correction for multiple testing35. The largest study of FTO and 
endometrial cancer found an association with a known BMI-associated  
SNP (P = 0.01)36 that disappears after adjustment for BMI.

Thus, there is little evidence of variants in FTO being associated with 
any trait unrelated to BMI. It may be that the melanoma-associated  
SNPs are in LD with functional SNPs outside of FTO, but given the 
low level of LD in the region (Fig. 1) this seems unlikely. It should be 
noted that our most significant SNP, rs16953002, is only 31 kb from 
exon 9 of FTO, over 146 kb from exon 8 of FTO and over 202 kb from 
the nearest other gene, IRX3. SNPs overlapping regulatory elements, 
such as transcription factor–binding sites, can be identified using the 
recent Encyclopedia of DNA Elements (ENCODE) data as well other 
data sources37,38. In these data for the FTO gene, 2,148 SNPs have 

been identified, only eight of which reach the highest score possible 
without expression quantitative trait locus (eQTL) data (score 2a: 
‘likely to affect binding’). Six of these SNPs are in intron 1, the location 
of most of the BMI-associated SNPs, five of these in a 5.4-kb region 
less than 1 kb from rs8050136. The other two SNPs are 13 kb apart 
from one another in intron 8 and, notably, one of these is rs16953002, 
the melanoma-associated SNP (Supplementary Note).

In conclusion, this is the first time to our knowledge that any vari-
ant in FTO has been shown to have a replicable association with a trait 
without being associated with BMI. It is also the first time that any 
variant in FTO outside intron 1 has been shown to have any associa-
tion with any trait. As such, this will be of interest to researchers in 
the fields of both cancer genetics and obesity research.

URLs. GenoMEL, http://www.genomel.org/; Wellcome Trust Case 
Control Consortium, http://www.wtccc.org.uk/; RegulomeDB, http://
regulomedb.org/; and Epidemiological Study on the Genetics and 
Environment of Asthma study, https://egeanet.vjf.inserm.fr/.

METHODS
Methods and any associated references are available in the online 
version of the paper.
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ONLINE METHODS
Samples. Approval for these studies was obtained at each recruiting center. 
Informed consent was obtained from all participants.

Phase 1 of the original GenoMEL GWAS consisted of cases and controls 
collected from eight centers in six European countries. These were supple-
mented with controls from the Wellcome Trust Case Control Consortium 
(WTCCC)19. Standard quality-control measures were applied to both sam-
ples and SNPs, giving a total of 1,353 cases and 3,571 controls. Phase 2 of the 
GenoMEL GWAS consisted of cases and controls from ten centers (four not 
in Phase 1) in eight European countries and in Israel, supplemented again by 
samples from the WTCCC. In both phases, cases were preferentially selected 
to have a family history of melanoma, multiple primary tumors or an early 
age of onset. After quality control, 1,450 cases and 4,047 controls remained 
(quality control and samples are described in ref. 11). We obtained 680 sup-
plementary UK cases and 1,785 controls from a population-based study of 
incident melanoma cases diagnosed between September 2000 and December 
2006 from a geographically defined area of Yorkshire and the northern region 
of the UK9,40,41. Controls were ascertained by contacting general practitioners 
to identify eligible individuals. These controls were frequency-matched with 
cases for age and sex from general practitioners who also had cases as part of 
their patient register. An additional 220 controls were sex- and age-matched 
and from the same primary care practice as incident cases of colorectal cancer 
recruiting from hospitals in Leeds42.

The only GenoMEL center that collected BMI data was Leeds. In Leeds, two 
studies were used: a family-based study that did not collect BMI and a case-
control study that did collect BMI (see Supplementary Table 1).

For details of replication samples, see Supplementary Note.

Genotyping. Most GenoMEL Phase 1 samples were genotyped on the Illumina 
HumanHap300 BeadChip version 2 duo array (with 317,000 tagging SNPs), 
with the exception of the French cases, which were genotyped on the Illumina 
HumanCNV370k array. The GenoMEL Phase 2 samples were genotyped on 
the Illumina 610k array.

In the genotyping of the UK case-control samples, rs16953002 and 
rs12596638 were genotyped using the Taqman assays C__34511379_10 and 
C__11776446_10, respectively (Applied Biosystems). We performed 2- l PCR 
in 384-well plates using 10 ng of DNA (dried), using 0.05 l assay mix and 1 l 
Universal Master Mix (Applied Biosystems) according to the manufacturer’s 
instructions. End-point reading of the genotypes was performed using an ABI 
7900HT Real-time PCR system (Applied Biosystems).

Imputation. Imputation was conducted genome-wide on the GenoMEL 
Phase 1 samples, excluding SNPs with minor allele frequency (MAF) < 0.03, 
Hardy-Weinberg equilibrium (HWE) P < 10−4 (in controls) and missing-
ness > 0.03. IMPUTEv2 (refs. 43,44) was used and the reference panel con-
sisted of 120 European samples from HapMap release #24 (NCBI build36, 
November 2008). After the initial genome-wide imputation had identified 
the FTO region as a candidate region, additional imputation of this region  
(1 Mb either side of rs16953002, chromosome 16: 53114824–55114824) was 
conducted based on the 1000 Genomes Phase 1 integrated variant set (March 
2012 release, excluding SNPs with MAF <0.001 in the CEU European samples).  

The number of well-imputed SNPs (Impute quality metric (info) score > 0.8) 
in the region increased from 1,245 to 4,874, although the most significant 
three SNPs remained the same. The first P values quoted for rs16953002 and 
rs12596638 (P = 5.59 × 10−6 and P = 4.43 × 10−6, respectively) were from the 
genome-wide imputation, but all subsequent analyses are based on the FTO  
regional imputation.

Imputed genotypes were analyzed as expected genotype counts based on 
the posterior probabilities (gene dosage) using SNPTEST2 (ref. 45) assuming 
an additive model with geographic region as a covariate. Only those with an 
‘info’ score > 0.8 are considered to be of sufficient quality. The FTO region was 
imputed and analyzed in the GenoMEL Phase 2 data in the same way.

Imputation quality was confirmed by genotyping 3,694 of the previously 
imputed samples from GenoMEL Phase 1 at rs16953002. The imputed geno-
type with the highest posterior probability was correct in 97% of cases (increas-
ing to 98% if we only consider those genotypes where the maximum posterior 
probability is > 0.8). Given this strong confirmation of the quality of the impu-
tation, unless otherwise stated we present the result using the imputed Phase 1 
results, rather than interleaving imputed and genotyped data indiscriminately. 
In the Supplementary Note and Supplementary Table 2 results are presented 
using only genotyped data for comparison with the imputed results.

In the replication samples, rs16953002 and rs8050136 were genotyped, 
with the exception of rs8050136 being imputed in the samples collected  
at Harvard.

Meta-analysis. Meta-analyses assume fixed effects unless otherwise stated. In 
all cases, heterogeneity between studies is measured with the I2 metric; it has 
been suggested that values below 31% are of “little concern” and those above 
56% should induce “considerable caution”46. Where I2 is >31%, a random- 
effects meta-analysis is applied. Here the method published in ref. 47 was 
used to estimate the between-studies variance, ˆ2. An overall random effects 
estimate was then calculated using the weights ˆ /( ˆ )1 2

i , where i is the  
variance of the estimated effect. ˆ2 = 0 for the fixed-effects analyses.
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