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A VARIANT OF THE GENERALIZED
VECTOR VARIATIONAL INEQUALITY
WITH OPERATOR SOLUTIONS

SANGHO Kum

ABSTRACT. In a recent paper, Domokos and Kolumbén [2] gave an
interesting interpretation of variational inequalities (VI) and vector
variational inequalities (VVI) in Banach space settings in terms of
variational inequalities with operator solutions (in short, OVVI).
Inspired by their work, in a former paper [4], we proposed the
scheme of generalized vector variational inequality with operator
solutions (in short, GOVVI) which extends (OVVI) into a multi-
valued case. In this note, we further develop the previous work [4].
A more general pseudomonotone operator is treated. We present a
result on the existence of solutions of (GVVI) under the weak pseu-
domonotonicity introduced in Yu and Yao [8] within the framework
of (GOVVI) by exploiting some techniques on (GOVVI) or (GVVI)
in [4].

1. Introduction

In a recent paper, Domokos and Kolumbén [2] gave an interesting
interpretation of variational inequalities (VI) and vector variational in-
equalities (VVI) in Banach space settings in terms of variational inequal-
ities with operator solutions (in short, OVVI). They designed (OVVI)
to provide a unified approach to several kinds of (VI) and (VVI) prob-
lems in Banach spaces, and successfully described those problems in a
wider context of (OVVI). This (OVVI) is suitable for the general trend
in the study of (VI) and (VVI) for abstract spaces, that is, to extend and
unify earlier results by using a more general scheme. So the fruitfulness
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of (OVVI) can be served as a good motivation for further developments.
Actually, motivated by the work of Domokos and Kolumbén [2], in a
former paper [4], we proposed generalized vector variational inequality
with operator solutions (in short, GOVVI) which extends (OVVI) into
a multi-valued case.

In this paper, we add another development for (GOVVI) to the previ-
ous work [4]. In [4], only the standard pseudomonotonicity of operator
was dealt with. However, it is necessary that a more general pseu-
domonotone operator should be treated. This direction to weaken the
monotonicity of given operators is natural and reasonable. In fact, we
present a result on the existence of solutions of (GVVI) under the weak
pseudomonotonicity introduced in Yu and Yao [8] within the framework
of (GOVVI). The notion of ‘weak pseudomonotonicity’ was also used in
Lee and Kum [5] as well as in Konnov and Yao [3] . For the simplicity of
argument, we restrict our concern to the basic case, where the domain X
is compact and the underlying space Y is a normed space. This compact
case can be a prototype for noncompact cases. To achieve our goal, we
exploit some techniques on (GOVVI) or (GVVI) appeared in [4].

2. Preliminaries

Let E, F be Hausdorff t.v.s., and let X be a nonempty convex subset
of E. Let C; : X = F be a multifunction such that for each = €
X, Ci(z) is a convex cone in F with int Cy(z) # @ and Ci(z) # F.
Let £(E, F) be the space of all continuous linear operators from E to F’
and Ty : X = L(E, F) a multifunction. From now on, unless otherwise
specified, we work under the following settings:

Let X’ be a nonempty convex subset of L(E,F)and T : X' 3 F
be a multifunction. Let C : X’ = F be a multifunction such that for
each f € X', C(f) is a convex cone in F with 0 ¢ C(f). Then the
generalized variational inequalities with operator solutions (GOVVI) is
defined as follows:

(GOVVI)
Find fy € X’ such that Vf € X', 3z € T(fo) with (f — fo,z) ¢ C(fo).

When T is single-valued, (GOVVI) reduces to (OVVI) due to Domokos
and Kolumbdn [2]. As pointed out in [2], the notation (GOVVI) is moti-
vated by the fact that the solutions are sought in the space of continuous
linear operators.

Consider the multifunction 77 : X = £L(E, F'). Then T} is said to be
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(1) weakly C1-pseudomonotone if for any x,y € X and for any s € T1(x),
we have

(s,y—z) ¢ —intCy(z) implies (t,y—z) ¢ —intCy(x) for some t € T1(y);

and
(2) Cy-pseudomonotone if for any z,y € X and for any s € Ti(z), we
have

(s,y—z) ¢ —intCy(z) implies (t,y—=z) ¢ —intC}(z) for all t € T1(y);

and
(3) generalized hemicontinuous if for any z,y € X, the multifunction

a— (Ti(z+aly—=z)),y—z), Yael0,1]
is upper semicontinuous at 0", where
(Ti(z+aly—2)),y—2) ={(s;y —z) | s € Ti(z + oy — x))}.

It is obvious that the weak C}-pseudomonoctonicity implies C;-pseudo-
monotonicity, but not vice versa. In regard to monotonicity and con-
tinuity of 7', two analogous definitions to those of 77 in the above are
necessary; T : X' =2 E is said to be

(1) weakly C-pseudomonotone if for any f, g € X’ and for any s € T(f),
we have

(g— f,s) ¢ C(f) implies (g — f,t) ¢ C(f) for some t € T(g); and

(2)" C-pseudomonotone if for any f,g € X' and for any s € T(f), we
have

(9—f,s) ¢ C(f) implies (g — f,t) ¢ C(f) for all t € T(g); and

(3)" generalized hemicontinuous if for any f, g € X', the multifunction

Q= <g_f7T(f+a(g_'f))>’ Va € [0,1]
is upper semicontinuous at 0%, where

(9—FT(f+alg=0)={g—f.s) | seT(f+alg— )}
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Let us recall two topologies on L(E, F) : The topology of pointwise
convergence and the topology of bounded convergence. The former is the
topology generated by the 0-neighborhood base {M(S, V)| S is a finite
subset of E, V € B}, where M(S,V) = {f € L(E,F)|f(S) C V}
and B is a 0-neighborhood base in F'. The latter is the one which has
{M(S,V)| S is a bounded subset of E, V € B} as a 0-neighborhood
base. The following Fan-Browder fixed point theorem [1, Theorem 1]
which is a particular case of Park [6, Theorem 5], is a basic machinery
of deriving main results of this paper.

LEMMA 2.1. Let X be a nonempty compact convex subset of a real
(not necessarily) Hausdorff topological vector space E. Let A, B: X =
X be two multifunctions. Suppose that

(i) for each z € X, Az C Bz;

(ii) for each x € X, Bz is convex;

(ili) for each x € X, Az is nonempty ;

(iv) for eachy € X, A~'y is open in X.

Then B has a fixed point zy; that is, g € Bxg.

3. Main result

We begin with the following lemma. For the sake of completeness, we
provide a detailed proof.

LEMMA 3.1. Let T : X’ =3 E be a weakly C-pseudomonotone and
generalized hemicontinuous multifunction with T(f) # 0 for all f €
X’'. Let W : X’ =2 F be defined by W(f) = F \ C(f) such that the
graph Gr(W) of W is closed in X' x F, where L(E, F) is endowed with
either the topology of pointwise convergence or the topology of bounded
convergence. Then the following two problems are equivalent:

(i) Find f € X' such that Vg € X', 3z € T(f) with (g — f,z) ¢
C(f)-

(ii) Find f € X' such thatVg € X', 3z € T(g) with {9 — f,z) ¢
c(f).

PROOF. (i) = (ii) This is immediate from the weak C-pseudomono-
tonicity of T'.

(ii) = (i) Let f € X’ be a solution of (ii). Suppose to the contrary
that f is not a solution of (i). Then there exists go € X’ such that

(3.1) vz € T(f), (90— f,z) € C(f).
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Since f is a solution of (ii), we have, for each ¢t € (0, 1),

(tgo+ (L —t)f — f, ) ¢ C(f) for some z € T(f +t(g0 — f)).

Hence

(3.2) (g0 — f,x:) ¢ C(f) for some z; € T(f +t(g0 — [))-

As T is generalized hemicontinuous, the multifunction H : [0,1] — 2¥
defined by H(t) = {(go — f,T(f + t(go — f))) is upper semicontinuous at
0%. It follows from (3.1) that

H(0) = (g0 — [, T(f)) € C()

Observe that the closedness of Gr(W) implies that of W(f) for every
f € X'. Thus C(f) is open in F for every f € X’. Hence there exists
t € (0,1) such that

H(t) = (g0 — f,T(f +t(go — f))) C C(f) for all t € (0,),

which contradicts (3.2). This completes the proof. O
In what follows, the sets X and X’ are always assumed to be compact.

THEOREM 3.1. Let X’ be a nonempty compact convex subset of
L(E,F) endowed with the topology of bounded convergence. Let T :
X' =2 E be a weakly C-pseudomonotone and generalized hemicontin-
uous multifunction such that T(f) is nonempty and compact for all
feX'. Let W: X' =3 F be defined by W(f) = F\ C(f) such that the
graph Gr(W) of W is closed in X’ x F'. Then (GOVVI) is solvable.

PrOOF. First note that L(E,F) equipped with the topology of
bounded convergence is a locally convex space. We define two multi-
functions A, B: X’ = X’ to be

A(f):={9e X' |Vz e T(g), (g— f,z) € C(f)},
B(f):={g9€ X" |Vz € T(f), (g~ f,z) € C(f)}.

The proof is organized in the following parts.
(i) Since T is weakly C-pseudomonotone, we have A(f) C B(f) for
all f e X'.
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(ii) For each f € X', B(f) is convex. Indeed, let g; and g be in
B(f). Fixt € [0,1] and z € T(f). Then we have

(tgr + (1= t)g2 — f,z) = t{g1 — f,z) + (1 — t){g2 — f, ) € C(f),

which implies that tg; + (1 — ¢)g; € B(f). Hence B(f) is convex.
(iii) Clearly B has no fixed point because 0 ¢ C(f) for all f € X'.
(iv) For each g € X', A™'(g) is open in X’. In fact, let {1} be a net
in (A~(g))° convergent to f € X’. Then g ¢ A(f») and hence for some
Zy € T(g)’
(9= fr,zx) & C(£r).

Thus (g— fr,zx) € W(fr). As T(g) is compact, we may assume without
loss of generality that ) — x for some z € T'(g). Since L(E,F) is
endowed with the topology of bounded convergence and T'(g) is compact,
(9 — fx,zx) — (g— f,x). By virtue of the closedness of Gr(W), we have
(f, (g — f,x)) € Gr(W), that is, (g — f,z) ¢ C(f) for the particular
z € T(g). Hence g ¢ A(f),so0 f € (A7'(g))°. This shows that (A71(g))¢
is closed, therefore A=1(g) is open in X".

(v) From (i)-(iv), we see, by Lemma 2.1, there must be an fy € K’
such that A(fy) = 0, namely,

Vg € X', 3z € T(g) such that (g — fo,z) ¢ C(fo).

It follows from Lemma 3.1 that f; is a solution of (GOVVI). This com-
pletes the proof. O

As an application of Theorem 3.1, we prove the following generalized
VVI in a normed space.

THEOREM 3.2. Let Y and Z be two normed spaces. Let X be a
nonempty compact convex subset of Y and Cy : X = Z be a multi-
function such that for each x € X, Ci(z) is a convex cone in Z with
intCy(z) # 0 and Cy(z) # Z. Let Ty : X =3 L(Y,Z) be a weakly
C-pseudomonotone and generalized hemicontinuous multifunction with
nonempty compact values, where L(Y,Z) is the normed space of the
continuous linear operators between Y and Z with the usual norm. Let
W1 : X =3 Z be defined by Wy (z) = Z \ —intC1(z) such that the graph
Gr(W1) of Wy is closed in X x Z. Then there exists zo € X such that

Ve e X, 3t € Ti(xo) with (t,z — x¢) ¢ —intC1(xp)-
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PRrRoOOF. We consider E = L(Y, Z) as the normed space of the con-
tinuous linear operators between Y and Z with the usual norm, and
F=(Z,) -])- Define a mapping ¢ : Y — L(E, F) by ¢(z) = fz, where
fe()={,x) foralll € E.

Claim 1: ¢ is well-defined, linear and injective.

Indeed, assume that I; — [ in E. This implies that Vz € Y, (l;,z) —
(lLz) in F = Z. Thus f;(l;) — f:(I) in F, so f; € L(E,F). The
linearity of ¢ is obvious. To show the injectivity of ¢, it suffices to check
that for each nonzero x € Y, there exists an [ € E such that ([, z) # 0.
By the separation theorem, we can find a g € Y* with g(x) = 1. Define
a linear operator [ : Y — Z by

(I, y) = g(y)zo for some 29 # 0 in Z.

Clearly | € L(Y, Z) and (I,z) = g(x)20 = 20 # 0.
Claim 2. ¢ is an isometry from X onto ¢(X) = X'.

In fact, VI € L(Y, Z), [ f-(D| = [t z)[| < [t {l]l, hence || fz]] < |z].
For the converse inequality, it suffices to show that for a nonzero x € Y,
there is an I € L(Y, Z) such that ||f(0)l| = [, z)|| > ||{]|j=]|. By the
Hahn-Banach theorem (see Rudin [7, 5.20 Theorem]), we have an h € Y*
such that h(z) = ||z|| and ||h]| = 1. Fix a zg € Z with ||zo|| = 1. Define a
continuous linear mapping J : R — Z by J(a) = azy, Va € R. Clearly
||/l = 1. Consider the continuous linear operator [ = J o h. Then
le L(Y,Z) and ||I]] < [|J}|||h]l = 1. On the other hand, we have

I8, 2} = 1T (@) || = llz[ll|zolf = {]]]-

This implies |[I|| > 1, hence ||I|| = 1. Therefore || fz())]| = ||{l,z)|| =
|| > lellflzl, as desired.

Now we define 7: X' 3 E,C: X' =3 Fand W : X' =3 F as follows:
T(fz) = Ti(z), C(fz) = —intC1(z), W(fs) = Wi(x),

where intCy(z) is the interior of Cj(z) in the normed space Z. Then
0 ¢ C(f;) because intC;(z) is a proper convex cone of Z. The proof is
organized in the following parts.
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(i) The weak C1-pseudomonotonicity of T; implies the weak C-pseudo-
monotonicity of T. In fact, for any f, fy, € X’ and s € T(f;) = T1(z),

(fy = fz,8) € Cfa)
= (s,y —x) ¢ —intC1 (z)
= (t,y —z) ¢ —intC1(z) for some t € T1(y) = T(fy)
= (fy — fz,t) € C(fz) for some t € T(f,).

(ii) The generalized hemicontinuity of 7 amounts to that of T. Ac-
tually, for any fz, f, € X’ and a € [0, 1],

o — <fy - fwaT(fx +a(fy - fm)»
= (Ti(z +aly—z)),y — z)

is upper semicontinuous at 0.

(ili) By the hypothesis, T(f;) = T1(z) is nonempty and compact.

(iv) The graph Gr(W) of W is closed in X’ X F. Indeed, let {fz,} be
a sequence in X' convergent to f, € X’ with respect to the usual norm
on L(E, F). Let w; € W(f,,) = Wi(x;) such that w; — w in F. Since ¢
is a homeomorphism, ¢~ (f;,) = z; — £ = ¢~ 1(f;). Because the graph
Gr(W1) of Wi is closed in X x Z, we have w € Wi (z) = W(f,). This
implies that Gr(W) is closed in X’ x F'.

It follows directly from Theorem 3.1 that there exists f;, € X’ such
that for each f; € X', there is t € T(fz,) with (fz — fzort) & C(fzs)-
Therefore, there exists zg € X such that

Vee X, It e Tl(xo) with <t,l‘ - £B0> ¢ —intCy (.'130)

This completes the proof. O
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