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Abstract

In this paper we venture a new look at the linear isotropic indeterminate couple stress model in the
general framework of second gradient elasticity and we propose a new alternative formulation which obeys
Cauchy-Boltzmann’s axiom of the symmetry of the force stress tensor. For this model we prove the existence
of solutions for the equilibrium problem. Relations with other gradient elastic theories and the possibility
to switch from a 4th order (gradient elastic) problem to a 2nd order micromorphic model are also discussed
with a view of obtaining symmetric force-stress tensors. It is shown that the indeterminate couple stress
model can be written entirely with symmetric force-stress and symmetric couple-stress. The difference of
the alternative models rests in specifying traction boundary conditions of either rotational type or strain
type. If rotational type boundary conditions are used in the partial integration, the classical anti-symmetric
nonlocal force stress tensor formulation is obtained. Otherwise, the difference in both formulations is only a
divergence–free second order stress field such that the field equations are the same, but the traction bound-
ary conditions are different. For these results we employ a novel integrability condition, connecting the
infinitesimal continuum rotation and the infinitesimal continuum strain. Moreover, we provide the com-
plete, consistent traction boundary conditions for both models.
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1 Introduction

1.1 General viewpoint

The Cosserat model is an extended continuum model which features independent degrees of rotation in addition
to the standard translational degrees of particles, see [28, 83, 81, 66, 64] for a detailed exposition. The prize,
which has to be paid for this extension are non-symmetric force stress tensors together with so-called couple
stress tensors which then represent the response of the model due to spatially differing Cosserat rotations. The
couple stress model is the Cosserat model [48] with restricted rotations, i.e. in which the Cosserat rotations
coincide with the continuum rotations. As such it belongs also to a certain subclass of gradient elasticity
models1, where the higher derivatives only act on the continuum rotations. This constitutes a big conceptual
advantage since the interpretation of the Cosserat rotations as new physical degrees of freedom is in general a
difficult task. Such a model is also called a model with “latent microstructure” [11, 12].

Let F = RU be the polar decomposition of the deformation gradient F = ∇ϕ into rotation R ∈ SO(3)

and positive definite symmetric right stretch tensor U =
√
FTF , where ϕ : Ω ⊂ R3 → R3 characterizes the

deformation of the material filling the domain Ω ⊆ R
3. We write R = polar(F ). In a variational context, the

energy density W to be minimized in the geometrically nonlinear constrained Cosserat model is given by

W = W (U − 1︸ ︷︷ ︸
strain

, polar(F )T∇xpolar(F )︸ ︷︷ ︸
curvature

) , (1.1)

which reduced form follows from left-invariance of the LagrangianW under superposed rotations. In this paper,
our objectives are much more modest. We will only be concerned with the linearized variant of (1.1), which
can be written as

W = W (sym∇u︸ ︷︷ ︸
infinitesimal

strain

, ∇[axl(skew∇u)]︸ ︷︷ ︸
infinitesimal
curvature

) = Wlin(sym∇u) +Wcurv(∇[axl(skew∇u)]), (1.2)

where u : Ω ⊂ R3 → R3 is the displacement and

∇ axl(skew∇u) = 2 curlu. (1.3)

The energy density (1.2) is the classical Lagrangian for the indeterminate couple stress formulation. As will be
seen later, this formulation leads naturally to totally skew symmetric nonlocal force stress contributions.

Toupin already remarked on an alternative representation of the energy (1.1) [102, Section 6] which leads,
in its linearized variant given by Mindlin [72, eq. (2.4)] to a dependence on

W = W (sym∇u,Curl (sym∇u)) = Wlin(sym∇u) +Wcurv(Curl (sym∇u)) , (1.4)

due to the equivalence

∇(axl skew∇u) =
1

2
∇curlu = (Curl (sym∇u))T

instead of (1.2). The representation 1
2∇curlu is directly derived from the original Cosserat model [15, 98]. Both

authors, Toupin and Mindlin, noted that now, comparing (1.2) and (1.4) the force stress tensors and the couple
stress tensors are changed while the balance of linear momentum equation remains unchanged such that these
concepts are not uniquely defined (see also Truesdell and Toupin’s remark on null-tensors [105, p. 547]. However,
they apparently did not realize that it is possible to use this ambiguity to obtain completely symmetric force
stress tensors also in the couple stress model which is otherwise the paragon for a model having non-symmetric
force stress tensors. We also need to remark that in a purely mechanical context, the observation of size-effects
does not necessitate to introduce skew-symmetric stress-tensors [5].

In this paper we do not discuss in detail the field of applications of such a special format of gradient elasticity
model. Suffice it to say that much attention is directed to nano-scaled material in which size-effects may become
important, which may make the present model applicable at strong stress gradients in the vicinity of cracks,
or more generally, in highly heterogeneous media. We must also warn the reader: the indeterminate couple
stress model is, in our view, a certain singular limit of the Cosserat model with independent displacements and
micro-rotation and therefore some degenerate behaviour is to be expected throughout.

1Le Roux [96] seems to give for the first time a second gradient theory in linear elasticity using a variational formulation [65, 67].
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1.2 The linear indeterminate couple stress model

As hinted at above, the indeterminate couple stress model is a specific gradient elastic model in which the
higher order interaction is restricted to the continuum rotation skew∇u (or equivalently, curlu). It is therefore
traditionally interpreted to include interactions of rotating particles and it is possible to prescribe boundary
conditions of rotational type. Superficially, this is the simplest possible generalization of linear elasticity in
order to include the gradient of the local continuum rotation as a source of stress and strain energy. In this
paper, we limit our analysis to linear isotropic materials and only to the second gradient2 of the displacement

D2u = uk,ij = εik,j − εjk,i − εij,k, where ε = sym∇u.

In general, the strain gradient models have the great advantage of simplicity and physical transparency since
there are no new independent degree of freedoms introduced which would require interpretation. Since in this
model there are no additional degrees of freedom (as compared to the Cosserat or micromorphic approach) the
higher derivatives introduce a “latent-microstructure” (constrained microstructure). However, this apparent
simplicity has to be payed with much more complicated traction boundary conditions, as will be seen later.

We will see in Section 4, surprisingly, that the mentioned rotational interaction can equivalently be viewed
as a strain type interaction in the indeterminate couple stress model. Therefore, the first interpretation of
rotational interaction (which is classical) is ambiguous as long as the problem is not specified together with
boundary conditions appearing as effect of the kind of partial integration which is performed. We may choose,
contrarily to our intuition, another representation of the curvature energy motivated by formal considerations
of invariance properties. In this regard we highlight the fact that force stresses for a material of higher order
are far from being uniquely defined: it is always possible to add a self-equilibrated (divergence-free tensor field)
force field changing the constitutive stress tensor but leaving unaltered the equilibrium equations [26, 73].

Often, such kind of models introduce too many additional parameters (or too many additional artificial
degrees of freedom) which are neither easily interpreted, nor easily to be determined from experiments. Our
discussion may also be interpreted with the background to only include those higher order terms that are
required to describe the pertinent physics. It is clear that higher order models should not be more complicated
than is warranted by experimental observation. A permanent nuisance in this respect is the question of how
to identify new material parameters which are connected to the possible non-symmetry of the total force-stress
tensor having the same dimensions as the classical shear modulus µ [N/mm2]. In the Cosserat model the
connecting parameter is the Cosserat-couple modulus µc [28, 82], which, for the indeterminate couple stress
model considered here, is formally µc → ∞.

The Cauchy-Boltzmann axiom, well known from classical elasticity, requires the symmetry of the force stress
tensor and may serve us also in the realm of this higher order theory to restrict the bewildering possibilities.
Already Cauchy wrote [13, p. 344-345]:

“... les composantes A,F , E ;F ,B,D; E ,D, C des pressions supportées au point P par trois plans
parallèles aux plans coordonnés des yz, des zx et des xy, pourront être généralement considérées
comme des fonctions linéaires des déplacements ξ, η, ζ et des leurs dérivées des divers ordres.”3.

Truesdell and Toupin [105, p. 390] write:

““Theories of elastic materials of grade 2 or higher had been proposed by several authors [Cauchy
[13], St. Venant [97], Jaramillo [47]], but under the assumption that the [total-force] stress tensor is
symmetric”.

Indeed, Jaramillo [47] considers a second gradient elastic material and obtains the dynamic equations by Hamil-
ton’s principle. He observes dispersion relations in wave propagation problems. For simplicity only he restricts
his discussion to those second gradient formulations, which give rise to a symmetric total force-stress tensor
and obtains a classification for isotropic materials [47, p. 51, Eq. (96)]. The subject was pushed forward in
the late 1950’s with works of Toupin [102, 103], Grioli [37, 38], Mindlin [69] and Koiter [51], among others,
see the references later in this paper. Yang et al. [106] give an erroneous motivation for a symmetric moment

2There is such a formula, which says that all second derivatives of u can be obtained from linear combinations of partial
derivatives of strain, i.e. D2u = Lin(∇ sym∇u), uk,ij = εik,j − εjk,i − εij,k, where ε = sym∇u.

3Our translation: The components [of the symmetric total force stress tensor] A,F , E;F ,B,D; E,D, C can be considered in
general as linear functions ξ, η, ζ of the displacement and their derivatives of arbitrary order.
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stress tensor, as will be shown in [74]. Neff et al. [85] considered the singular stiffening behaviour for arbitrary
small samples in the Cosserat and indeterminate couple stress model and concluded that in order to avoid these
singular effects one has to take a symmetric moment stress, thus providing the first rational argument in favour
of symmetric moment stresses. In [85] the same model4 has been derived based on a homogenization procedure
and a novel invariance requirement introduced by Neff et al. [48], called micro-randomness and it has been
shown that the model is well-posed.

1.3 Our perspective

Our contribution is intended to clarify and delineate under what boundary conditions we may expect or use
symmetric nonlocal force stresses in the indeterminate couple stress model. When trying to relax the 4.th order
problem (from gradient elasticity), it also seems expedient to retain the symmetry of the force stress tensor
and of the moment stress tensor. Respecting symmetry restricts the possibilities to choose among 2.nd order
micromorphic models. The importance of switching to a 2.nd order problem with new independent degrees of
freedom is clear from the implementational point of view with finite elements: a 2.nd order problem is much
easier and more efficient. However, given the antisymmetric classical and our new symmetric formulations we
may arrive at completely different 2.nd order formulations in case of mixed displacement-traction boundary
conditions.

In general, the hyperstress-tensor (couple stresses, sometimes called double-stress [65]) in second gradient
elasticity [102, 69, 51, 100, 16, 17] (see also the recent papers [20, 21, 19, 107, 95, 6, 18, 29, 59, 27, 94, 25]) may
be defined as m = (mijk) = DD2uW (D2u). Since D2u = (ui,jk) is a third order tensor, so is m. Moreover, since
ui,jk is symmetric in (jk) the same is usually assumed for mijk. This, however, is not mandatory, see [73].

In the framework considered in this paper, the hyperstress-tensor is defined as

m̃ := D∇(curlu)Wcurv(∇(curlu)) or m̂ := DCurl (sym∇u)Wcurv(Curl (sym∇u)),

respectively, and both expressions are 2.nd order tensors5 and are also called couple stress tensors, since they act
as dual objects to gradients of rotations. On the other hand, as we will see, we have two competing expressions
of the nonlocal force stress tensor: a symmetric tensor τ̂ versus an anti-symmetric tensor τ̃ :

τ̂ = µL2
c symCurl {2α1 dev symCurl (sym∇u) + 2α2 skewCurl (sym∇u)} = symCurl (m̂) ∈ Sym(3)

τ̃ =
µ

2
L2
c antiDiv{2α1 dev sym∇[axl(skew∇u)] + 2α2 skew∇[axl(skew∇u)]} =

1

2
antiDiv(m̃) ∈ so(3),

with Div(τ̂ − τ̃ ) = 0. Since [Curl (sym∇u)]T = ∇[axl(skew∇u)], it follows

τ̂ − τ̃ = µL2
c

{
2α1 (symCurl −1

2
antiDiv).[dev symCurl (sym∇u)]

+ 2α2 (symCurl +
1

2
antiDiv).[skewCurl (sym∇u)]

}
.

The independent constitutive variable k̃ := ∇(curlu) is the second gradient contribution considered by Grioli
[37], Toupin [102], Mindlin [72], Koiter [51] and Sokolowski [100]. In general, neither m̃ nor m̂ couple stress
tensors are symmetric.

The symmetry of the force stress tensor in continuum mechanics is regulary discussed in the literature, see
e.g. [52, 68, 76]. It has been suggested by McLennan [68] that a symmetric force stress tensor can always be
constructed by adding divergence-free couple stresses, since only its divergence occurs in the local conservation
law. However, all of the previously given expositions use anti-symmetric nonlocal force-stresses. Since there

4 It must be noted that the grandmaster Koiter [51, p. 17-19, 23, 41] came to reject the significant presence of couple stresses
because he based his investigations on the indeterminate couple stress theory with uniformly pointwise positive definite curvature
energy, which tends to maximize the influence of length scale effects in its rotational formulation. His arguments only show that this
special constrained gradient theory together with it’s boundary conditions cannot be based on experimental evidence. However,
the main thrust of his comments remains valid and our symmetric formulation may compare favorable. We should also have in
mind that Mindlin ceased to use these models because he could finally not see the physical relevance at this time. Truesdell and
Noll also wrote [104, p. 400]: “In favour of the Grioli-Toupin theory, in which the microrotation and macrorotation coincide, we
can find no experimental evidence or theoretical advantage.”

5See the Appendix for the relation between the second order tensor m̃ and the third order tensor m.
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is no conclusive evidence for the real need of a non-symmetric total force-stress tensor in the purely mechan-
ical context, we apply Ockham’s razor and discard these non-symmetric force stress formulations. Our new
alternative formulation will have symmetric couple stresses and symmetric force stresses. Thus it satisfies the
Cauchy-Boltzmann’s axiom. We also show that the new formulation is well-posed in statics. While conceptually
very pleasing, the real merits of such a “completely symmetric” formulation have yet to be discovered.

Similarly to the classical indeterminate couple stress model which can be obtained as a constrained Cosserat
model, our new Curl (sym∇u)-model can be obtained as a constrained “microstrain” model [34, 33, 78].

The question of boundary conditions in higher gradient elasticity models has been a subject of constant
attention. Bleustein has formulated the conclusive answer for general gradient elastic models involving the
surface divergence operator [10]. However, the traction boundary conditions obtained by Tiersten and Bleustein
in [101] with respect to the special case of the indeterminate couple stress model are incomplete. In a forthcoming
paper [61] we discuss and correct the form of the traction boundary conditions considered until now in the
classical indeterminate couple stress model [72, 102, 51, 85, 93, 4, 106, 92]. Here, we just provide the correct
answer obtained there in the form of a summarizing box.

The plan of the paper is now as follows: after a subsection fixing the notation, we outline some related models
in isotropic second gradient elasticity; we prove some auxiliary results and we discuss the invariance properties
of the considered energy; we recall the classical indeterminate couple stress model with skew-symmetric nonlocal
force-stress (i.e. with non symmetric total force-stress tensor); we formulate the equilibrium problem for the
new isotropic gradient elasticity model with symmetric nonlocal force stress (i.e. with symmetric total force-
stress tensor) and we give an existence result; we discuss the difference of the classical indeterminate couple
stress model with the introduced symmetric model; paying particular attention to the boundary virtual work
principle we show that these two possible formulations are applicable for different types of traction boundary
conditions; we discuss the possibility to switch from a 4.th-order problem to a 2.nd order micromorphic model.
All our existence results can be extended, mutatis mutandis, to first order anisotropic behaviour [59, 24, 60],
i.e. considering as total energy 〈C. sym∇u, sym∇u〉+Wcurv(D

2u) as long as C is a uniformly positive definite
tensor. We finish with some boxes summarizing our models and findings.

1.4 Notational agreements

In this paper, we denote by R3×3 the set of real 3 × 3 second order tensors, written with capital letters.
For a, b ∈ R3 we let 〈a, b〉R3 denote the scalar product on R3 with associated vector norm ‖a‖2

R3 = 〈a, a〉R3 .
The standard Euclidean scalar product on R3×3 is given by 〈X,Y 〉R3×3 = tr(XY T ), and thus the Frobenius
tensor norm is ‖X‖2 = 〈X,X〉R3×3 . In the following we omit the index R

3,R3×3. The identity tensor on
R3×3 will be denoted by 1, so that tr(X) = 〈X,1〉. We adopt the usual abbreviations of Lie-algebra theory,
i.e., so(3) := {X ∈ R3×3 |XT = −X} is the Lie-algebra of skew symmetric tensors and sl(3) := {X ∈
R3×3 | tr(X) = 0} is the Lie-algebra of traceless tensors. For all X ∈ R3×3 we set symX = 1

2 (X
T +X) ∈ Sym,

skewX = 1
2 (X−XT ) ∈ so(3) and the deviatoric part devX = X− 1

3 tr(X)1 ∈ sl(3) and we have the orthogonal
Cartan-decomposition of the Lie-algebra gl(3)

gl(3) = {sl(3) ∩ Sym(3)} ⊕ so(3)⊕ R·1, X = dev symX + skewX +
1

3
tr(X)1 . (1.5)

Throughout this paper (when we do not specify else) Latin subscripts take the values 1, 2, 3. Typical conventions
for differential operations are implied such as comma followed by a subscript to denote the partial derivative
with respect to the corresponding cartesian coordinate. We also use the Einstein notation of the sum over
repeated indices if not differently specified. Here, for

A =




0 −a3 a2
a3 0 −a1
−a2 a1 0


 ∈ so(3) (1.6)

we consider the operators axl : so(3) → R
3 and anti : R3 → so(3) through

axl(A) := (a1, a2, a3)
T , A. v = (axlA)× v, (anti(v))ij = −εijkvk, ∀ v ∈ R

3, (1.7)

(axlA)k = −1

2
ǫijkAij =

1

2
ǫkijAji , Aij = −ǫijk(axlA)k =: anti(axlA)ij ,

6



where ǫijk is the totally antisymmetric third order permutation tensor. We recall that for a third order tensor
E and X ∈ R3×3, v ∈ R3 we have the contraction operations E : X ∈ R3, E. v ∈ R3×3 and X. v ∈ R3, with the
components

(E : X)i = Eijk Xkj , (E. v)ij = Eijk vk , (X. v)i = Xij vj . (1.8)

For multiplication of two matrices we will not use other specific notations.
We consider a body which occupies a bounded open set Ω of the three-dimensional Euclidian space R3 and

assume that its boundary ∂Ω is a piecewise smooth surface. An elastic material fills the domain Ω ⊆ R
3 and we

refer the motion of the body to rectangular axes Oxi. By C∞
0 (Ω) we denote the set of infinitely differentiable

functions with compact support in Ω. In order to realize certain boundary conditions on an open subset Γ ⊆ ∂Ω
we make use of the space [9] of functions that vanish in a neighborhood of Γ, i.e.

C∞
0 (Ω,Γ) :=

{
u | ∃ v ∈ C∞

0 (Rn \ Γ) such that v
∣∣
Γ
= u

}
.

Here, ν− is a vector tangential to the surface ∂Ω \ Γ and which is orthogonal to its boundary ∂(∂Ω \ Γ) = ∂Γ,

∂Ω \ Γ Ω

Γ

∂Γ

❄ν−

✻
ν+

Figure 1: The domain Ω ⊆ R3 together with the part Γ ⊆ ∂Ω,
where (geometric) Dirichlet boundary conditions are prescribed.
We need to represent the boundary conditions on a disjoint union
of ∂Ω = (∂Ω \ Γ) ∪ Γ ∪ ∂Γ, where Γ is a open subset of ∂Ω.

τ− = n × ν− is the tangent to the curve ∂Γ with respect to the orientation on ∂Ω \ Γ. Similarly, ν := ν+

is a vector tangential to the surface Γ and which is orthogonal to its boundary ∂Γ, τ := τ+ = n × ν+ is the
tangent to the curve ∂Γ with respect to the orientation on Γ. The jump across the joining curve ∂Γ is defined
by [ · ]+ − [ · ]−, where

[ · ]− := lim
x ∈ ∂Ω \ Γ
x → ∂Γ

[ · ], [ · ]+ := lim
x ∈ Γ
x → ∂Γ

[ · ].

We assume that ∂Ω is a smooth surface. Hence, there are no singularities of the boundary and the jump
[ · ]+ − [ · ]− arises only as consequence of possible discontinuities of the corresponding quantities which follows
from the prescribed boundary conditions on Γ and ∂Ω \ Γ.

The usual Lebesgue spaces of square integrable functions, vector or tensor fields on Ω with values in R, R3

or R3×3, respectively will be denoted by L2(Ω). Moreover, we introduce the standard Sobolev spaces [1, 36, 57]

H1(Ω) = {u ∈ L2(Ω) | gradu ∈ L2(Ω)}, ‖u‖2H1(Ω) := ‖u‖2
L2(Ω) + ‖gradu‖2

L2(Ω) ,

H(curl; Ω) = {v ∈ L2(Ω) | curl v ∈ L2(Ω)}, ‖v‖2H(curl;Ω) := ‖v‖2L2(Ω) + ‖curl v‖2L2(Ω) ,

H(div; Ω) = {v ∈ L2(Ω) | div v ∈ L2(Ω)}, ‖v‖2H(div;Ω) := ‖v‖2
L2(Ω) + ‖div v‖2

L2(Ω) ,

(1.9)

of functions u or vector fields v, respectively. Furthermore, we introduce their closed subspaces H1
0 (Ω),

H0(curl; Ω) as completion under the respective graph norms of the scalar valued space C∞
0 (Ω). We also consider

the spaces
H1

0 (Ω; Γ), H1
0 (div; Ω; Γ), H1

0 (curl ; Ω; Γ)

as completion under the respective graph norms of the scalar-valued space of the scalar-values space C∞(Ω,Γ).
Therefore, these spaces generalize the homogeneous Dirichlet boundary conditions:

u
∣∣
Γ
= 0, and 〈u, n〉|Γ = 0 and u× n|Γ = 0,

7



respectively. For vector fields v with components in H1(Ω), i.e. v = (v1, v2, v3)
T
, vi ∈ H1(Ω), we define ∇ v =(

(∇ v1)
T , (∇ v2)

T , (∇ v3)
T
)T

, while for tensor fields P with rows in H(curl ; Ω), respectively H(div ; Ω), i.e. P =(
PT
1 , PT

2 , PT
3

)
, Pi ∈ H(curl ; Ω) respectively Pi ∈ H(div ; Ω) we define CurlP =

(
(curlP1)

T , (curlP2)
T , (curlP3)

T
)T

,

DivP = (divP1, divP2, divP3)
T
. The corresponding Sobolev-spaces will be denoted by

H1(Ω), H1(Div ; Ω), H1(Curl ; Ω), H1
0 (Ω; Γ), H1

0 (Div ; Ω; Γ), H1
0 (Curl ; Ω; Γ).

2 Preliminaries

2.1 Related models in isotropic second gradient elasticity

One aim of this paper is to propose a new representation of the curvature energy Wcurv(D
2u) and to prove that

the corresponding minimization problem

I(u) =

∫

Ω

[
µ ‖sym∇u‖2 + λ

2
[tr(sym∇u)]2 +Wcurv(D

2u)

]
dV 7→ min. w.r.t. u, (2.1)

admit unique minimizers under some appropriate boundary condition. Here λ, µ are the usual Lamé constitutive
coefficients of isotropic linear elasticity, which is fundamental to small deformation gradient elasticity. If the
curvature energy has the form Wcurv(D

2u) = Wcurv(D sym∇u), the model is called a strain gradient model.
We define the third order hyperstress as DD2uWcurv(D

2u).
In the following we outline some curvature energies already proposed in different isotropic second gradient

elasticity models:

• Mindlin [69, 70, 72] considered energies (gradient elastic) based on the tensors

ηijk = uk,ij , (i.e. η = ∇(∇u)),

η̃ijk =
1

2
(uk,ji + uj,ki) = εkj,i, (i.e. η̃ = ∇(sym∇u))),

k̃ij =
1

2
ǫjlkuk,li (i.e. k̃ =

1

2
∇(curlu)),

ηSijk =
1

3
(uk,ij + ui,jk + uj,ki).

The most general isotropic curvature energy defined in terms of D2u has 5 material constants, while the
anisotropic representation is much more involved and still subject of ongoing research [7, 23].

Mindlin and Eshel [71] have also proposed the following three alternative forms :

Wcurv(D
2u) = µL2

c [a
(1)
1 ηkiiηkjj + a

(1)
2 ηijkηijk + a

(1)
3 ηijkηjki + a

(1)
4 ηjjiηkki + a

(1)
5 ηiikηkjj ] (I)

= µL2
c [a

(2)
1 η̃iik η̃kjj + a

(2)
2 η̃ijj η̃ikk + a

(2)
3 η̃iik η̃jjk + a

(2)
4 η̃ijk η̃ijk + a

(2)
5 η̃ijk η̃kji] (II)

= µL2
c [ã

(3)
1 k̃ij k̃ij + ã

(3)
2 k̃ij k̃ji + ã

(3)
3 ηSiijη

S
kkj + ã

(3)
4 ηSijkη

S
ijk + ã

(3)
5 ǫijk k̃ijη

S
kll] , (III)

which are frequently cited in the literature, where Lc is the smallest characteristic length in the body and

a
(j)
i , ã

(j)
i are dimensionless weighting parameters.

• a simple curvature energy is considered by Lam [53, 88]

Wcurv(D
2u) = µL2

c[ a0 ‖∇div u‖2 + a1 η̂ijk η̂ijk + a2 ‖ sym∇(curlu)‖2] (2.2)

= µL2
c[ a0 ‖∇ tr(sym∇u)‖2 + a1 η̂ijk η̂ijk + 4 a2 ‖ symCurl (sym∇u)‖2] ,

where η̂ijk is called the deviatoric stretch gradient and which is defined (see e.g. [85]) by

η̂ijk = ηSijk − η
(0)
ijk , η

(0)
ijk =

1

5
(δij η

S
mmk + δjk η

S
mmi + δki η

S
mmj).
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• another simplified strain gradient elasticity model is proposed in [3, 55, 56] based on the curvature energy

Wcurv(D
2u) = µL2

c [a0 ‖∇tr(sym∇u)‖2 + a1 ‖∇ (sym∇u)‖2] (2.3)

= µL2
c [a0 ‖∇ div u‖2 + a1 ‖∇ (sym∇u)‖2],

which already leads to symmetric nonlocal force-stresses, see Section 3.

• in the same line, using also the second order curvature tensor k̃ = 1
2∇ curlu, in [108, 50] the following

energy is considered

Wcurv(D
2u) = µL2

c [a0 ‖∇div u‖2 + a1 ‖∇curl u‖2] = µL2
c [a0 ‖∇tr(sym∇u)‖2 + a1 ‖∇[axl(skew∇u)]‖2]

= µL2
c [a0 ‖∇tr(sym∇u)‖2 + a1 ‖∇ (skew∇u)‖2]. (2.4)

Let us remark that tr(k̃) = tr(∇ axl skew∇u) = div(curl u) = 0.

• the indeterminate couple stress model (Grioli-Koiter-Mindlin-Toupin model) [37, 2, 51, 72, 103,
100, 39] in which the higher derivatives (apparently) appear only through derivatives of the infinitesimal
continuum rotation curlu. Hence, the curvature energy has the equivalent forms

Wcurv(D
2u) = µL2

c

[α1

4
‖ sym∇(curl u)‖2 + α2

4
‖ skew∇(curl u)‖2

]

= µL2
c [α1 ‖ sym∇[axl(skew∇u)]‖2 + α2 ‖ skew∇[axl(skew∇u)]‖2]

= µL2
c

[α1

4
‖ dev sym∇(curl u)‖2 + α2

4
‖ skew∇(curl u)‖2

]
(2.5)

= µL2
c [α1 ‖ symCurl (sym∇u)‖2 + α2 ‖ skewCurl (sym∇u)‖2]

= µL2
c [α1 ‖ dev symCurl (sym∇u)‖2 + α2 ‖ skewCurl (sym∇u)‖2].

Note carefully that tr[symCurl (sym∇u)] = tr[sym∇[axl(skew∇u)]] = 0. Therefore, we are entitled
to use the deviatoric-representation, which is useful when regarding the model in the larger context of
micromorphic models. Here, we have used the master identity to be established in Corollary 2.2

∇[axl(skew∇u)]︸ ︷︷ ︸
rotation gradient

= [Curl (sym ∇u)]T︸ ︷︷ ︸
strain gradient

,

which allows us easily to switch from considerations on the level of strain gradients to the level of rotational
gradients and vice versa.

We also used the identities

2 axl(skew∇u) = curlu, sym∇(curlu) = 2 symCurl (sym∇u),

skew∇(curlu) = −2 skewCurl (sym∇u), tr[Curl (sym∇u)] = 0.

Although this energy admits the equivalent forms (2.5)1 and (2.5)6, the equations and the boundary value
problem of the indeterminate couple stress model is usually formulated only using the form (2.5)1 of
the energy. Hence, we may reformulate the main aim of the present paper: to formulate the boundary
value problem for the indeterminate couple stress model using the alternative form (2.5)6 of
the energy of the Grioli-Koiter-Mindlin-Toupin model. We also remark that the spherical part of the
couple stress tensor remains indeterminate since tr(∇(curlu)) = div(curlu) = 0. In order to prove
the pointwise uniform positive definiteness it is assumed, following [51], that α1 > 0, α2 > 0. Note that
pointwise uniform positivity is often assumed when deriving analytical solutions for simple boundary value
problems because it allows to invert the couple stress-curvature relation. We will see subsequently, that
pointwise positive definiteness is not necessary for well-posedness.
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• In this setting, Grioli [37, 39] (see also Fleck [30, 31, 32]) initially considered only the choice α1 = α2. In
fact, the energy originally proposed by Grioli [37] is

Wcurv(D
2u) = µL2

c

[
α1

4
‖∇(curl u)‖2 + η′

4
tr[(∇(curl u))2]

]

= µL2
c [α1 ‖ dev sym∇[axl(skew∇u)]‖2 + α1 ‖ skew∇[axl(skew∇u)]‖2

+ η′ 〈∇[axl(skew∇u)], (∇[axl(skew∇u)])T 〉] (2.6)

= µL2
c

[
α1

4
‖ dev sym∇(curl u)‖2 + α1

4
‖ skew∇(curl u)‖2 + η′

4
〈∇(curl u), (∇(curl u))T 〉

]

= µL2
c

[
α1 + η′

4
‖ dev sym∇(curl u)‖2 + α1 − η′

4
‖ skew∇(curl u)‖2

]
.

Mindlin [72, p. 425] explained the relations between Toupin’s constitutive equations [102] and Grioli’s [37]
constitutive equations and concluded that the obtained equations in the linearized theory are identical,
since the extra constitutive parameter η′ of Grioli’s model does not explicitly appear in the equations
of motion but enters only the boundary conditions. The same extra constitutive coefficient appears in
Mindlin and Eshel’s (III) and Grioli’s version (2.6).

• the modified - symmetric couple stress model - the conformal model. On the other hand, in the
conformal case [85, 84] one may consider that α2 = 0, which makes the second order couple stress tensor
m̃ symmetric and trace free [17]. This conformal curvature case has been considered by Neff in [85], the
curvature energy having the form

Wcurv(D
2u) = µL2

c

α1

4
‖ sym∇(curl u)‖2 = µL2

c α1 ‖ dev symCurl (sym∇u)‖2. (2.7)

Indeed, there are two major reasons uncovered in [85] for using the modified couple stress model. First, in
order to avoid singular stiffening behaviour for smaller and smaller samples in bending [83] one has to take
α2 = 0. Second, based on a homogenization procedure invoking an intuitively appealing natural “micro-
randomness” assumption (a strong statement of microstructural isotropy) requires conformal invariance,
which is again equivalent to α2 = 0. Such a model is still well-posed [48], leading to existence and
uniqueness results with only one additional material length scale parameter, while it is not pointwise
uniformly positive definite.

• the skew-symmetric couple stress model. Hadjesfandiari and Dargush strongly advocate [42, 43, 44]
the opposite extreme case, α1 = 0 and α2 > 0, i.e. they propose the curvature energy

Wcurv(D
2u) = µL2

c

α2

4
‖ skew∇(curlu)‖2 = µL2

c

α2

2
‖ axl skew∇(curlu)‖2 (2.8)

= µL2
c

α2

8
‖curl (curlu)‖2 = µL2

c α2 ‖ skewCurl (sym∇u)‖2.

In that model the nonlocal force stresses and the couple stresses are both assumed to be skew-symmetric.
Their reasoning, based in fact on an incomplete understanding of boundary conditions (see [61]) is critically
discussed and generally refuted in [87], while mathematically it is also well-posed.

2.2 Auxiliary results

Further on, we consider a simply connected domain Ω ⊆ R
3×3. The starting point is given by the well-known

Nye’s formula [90, 86]

−Curl A = (∇ axlA)T − tr[(∇ axl A)T ]1,

κ := ∇(axlA) = −(Curl A)T +
1

2
tr[(Curl A)T ]1 = αT − 1

2
tr[α]1 “Nye’s curvature tensor”, (2.9)

for all skew-symmetric matrices A ∈ so(3), where α := −Curl A is the micro-dislocation density tensor.
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Proposition 2.1. Let p : Ω ⊆ R3 → R3×3 be given. The formula

∇[axl skew p] = [Curl (sym p)]T (2.10)

holds true if and only if there is u ∈ C2(Ω) such that p = ∇u.

Proof. Let us first prove that

∇[axl(skew∇u)] = [Curl (sym ∇u)]T , for all u ∈ C2(Ω). (2.11)

On the one hand, using Nye’s formula for A = skew∇u, we obtain

−Curl (skew∇u) = (∇[axl(skew∇u)])T − tr[(∇[axl(skew∇u)])T ]1, (2.12)

which implies

−Curl (skew∇u) = (∇[axl(skew∇u)])T − 1

2
tr[(∇(curl u))T ]1 (2.13)

= (∇[axl(skew∇u)])T − 1

2
div(curlu)1 = (∇[axl(skew∇u)])T .

On the other hand, Curl (∇u) = 0, ∇u = sym∇u+ skew∇u. Thus, we deduce

Curl (sym∇u) = Curl (∇u− skew∇u) = Curl (∇u)− Curl (skew∇u) (2.14)

(2.13)
= Curl (∇u) + (∇[axl(skew∇u)])T − 1

2
div(curlu)1 = (∇[axl(skew∇u)])T .

This establishes the first part of the claim.
Now, we prove that ∇[axl skew p] = [Curl (sym p)]T implies that there is a function u ∈ C2(Ω) such that

p = ∇u. Using again Nye’s formula, we obtain

(∇ axl skew p)T
(Nye)
= −(Curl (skew p)) + tr[∇[axl skew p]]1. (2.15)

Hence, our new hypothesis is Curl (sym p)=(∇[axl skew p])T , which implies Curl (sym p)= − (Curl skew p) +
tr[∇[axl skew p]]1. Hence, we obtain

Curl (sym p+ skew p) = tr[∇[axl skew p]]1 ⇔ Curl (p) = tr[∇[axl skew p]]1, (2.16)

or, in the equivalent form

Curl (p) = div(axl skew p)1. (2.17)

We have obtained the formula

tr[Curl p] = 3 div(axl skew p). (2.18)

Let us also remark that considering a matrix B ∈ R3×3, we have

tr[Curl (skewB)
]
= 2(b1,1 + b2,2 + b3,3) = 2 div b , b = axl(skewB). (2.19)

Therefore, from (2.19) we also have obtained

tr[Curl (skew p)
]
= 2div [axl(skew p)] . (2.20)

Moreover, for a matrix B ∈ R
3×3, we have that

tr(Curl B) = (B13,2 −B31,2) + (B21,3 −B12,3) + (B32,1 −B23,1).

We deduce tr(Curl S) = 0 for all S ∈ Sym(3). Hence,

tr[Curl (sym p)
]
= 0 ∀ p ∈ R

3×3. (2.21)

The relations (2.20) and (2.21) lead to tr[Curl p
]
= 2div [axl(skew p)] , and together with (2.18) to

div [axl(skew p)] = 0. (2.22)

Using (2.17), we obtain Curl p = 0. Since Ω is an open domain in R
3, it follows that there is an vector u, such

that p = ∇u and the proof is complete.
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Corollary 2.2. For u ∈ C2(Ω) the following formula holds true

∇[axl(skew∇u)] = [Curl (sym ∇u)]T . (2.23)

Corollary 2.3. For u ∈ C2(Ω) the following formula holds true

[∇curlu]T = Curl [(∇u)T ]. (2.24)

Therefore, (∇u)T ∈ H(Curl ; Ω) is equivalent to curlu ∈ H1(Ω).

As consequence of the above remark, it follows that if curlu ∈ H1(Ω), then (∇u)T .τ ∈ L2(∂Ω) for any
tengential direction τ at the boundary and, since 〈(∇u)T .τ, n〉 = 〈τ, (∇u).n〉, it results that (1−n⊗n) (∇u).n ∈
L2(∂Ω), in the sense of trace.

Let us also recall the Saint-Venant compatibility condition

Proposition 2.4. (see e.g. [14]) Let a symmetric tensor field ε̂ : Ω ⊆ R3 → Sym(3) be given. Then,

inc(ε) := Curl [(Curl ε̂)T ] = 0 ⇔ there is u ∈ C2(Ω) such that ε̂ = sym(∇u). (2.25)

We note that

inc(p) := Curl [(Curl sym p)T ] ∈ Sym(3) (2.26)

while Curl [(Curl skewp)T ] ∈ so(3) ∀ p ∈ R
3×3.

We also remark that a direct consequence of Proposition 2.1 is the following first order compatibility condition

Proposition 2.5. Let p : Ω ⊆ R3 → R3×3 be given. Then,

INC(p) := [Curl (sym p)]T −∇[axl skew p] ⇔ there is u ∈ C2(Ω) such that p = ∇u. (2.27)

We observe that
INC(p) ∈ R

3×3 ∀ p ∈ R
3×3.

We recall the well known first order compatibility condition

Proposition 2.6. Let p : Ω ⊆ R3 → R3×3 be given. Then,

Curl p = 0 ([Curl (sym p)]T = −[Curl (skew p)]T ) ⇔ there is u ∈ C2(Ω) such that p = ∇u. (2.28)

Hence, we have the following equivalence

Corollary 2.7. Let p : Ω ⊆ R3 → R3×3 be given. Then,

Curl p = 0 ⇔ INC(p) = 0. (2.29)

We finally remark that

Curl (INC(p)) = Curl [(Curl sym p)T ] = inc(sym p). (2.30)

2.3 Discussion of invariance properties

The difference between the ∇[axl(skew∇u)] formulation and the Curl (sym∇u) formulation can be seen when
considering the results under superposed incompatible tensor fields:

Remark 2.8. The quantity [Curl (sym∇u)]T is invariant under locally adding a skew-symmetric non-constant
tensor field W (x) ∈ so(3), i.e.

[Curl (sym(∇u+W (x)))]T = [Curl (sym∇u)]T . (2.31)

However, since ∇[axl skew p] 6= [Curl (sym p)]T for general incompatible p ∈ R3×3, p 6= ∇u, the quantity
∇[axl(skew∇u)] is not invariant under locally adding W (x) ∈ so(3), i.e.

∇[axl(skew(∇u +W (x))] 6= ∇[axl(skew∇u)]. (2.32)
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Remark 2.9. The term ∇[axl(skew∇u)] is invariant under locally adding a symmetric, non-constant tensor
field S(x) ∈ Sym(3), i.e.

∇[axl (skew(∇u + S(x))] = ∇[axl(skew∇u)]. (2.33)

Let us recall the Lie-group decomposition GL+(3) and the corresponding Lie-algebra decomposition:

GL+(3) = {SL(3)/SO(3)} · SO(3) · (R+ ·1) Lie-group decomposition,

T
1

GL+(3) = R
3×3 = gl(3) = {sl(3) ∩ Sym(3)} ⊕ so(3)⊕ R·1 Lie-algebra decomposition. (2.34)

The space Sym(3) is not a Lie-algebra, it is only a vector space and it does not have a group structure: the set
GL(3)/SO(3) = PSym(3) is not a group, neither is the set gl(3) ∩ Sym(3) a Lie-algebra. Hence, the invariance
requirement in (2.31), i.e., locally adding W (x) ∈ so(3) is much more plausible than assuming (2.33) since it
yields so(3)-Lie invariance.

2.4 Conformal invariance of the curvature energy and group theoretic arguments
in favour of the modified couple stress theory

An infinitesimal conformal mapping [82, 85] preserves (to first order) angles and shapes of infinitesimal figures.
The included inhomogeneity is therefore only a global feature of the mapping (see Figure 2). There is locally
no shear-type deformation. Therefore it seems natural to require that the second gradient model should not
ascribe energy to such deformation modes.

A map φc : R3 → R
3 is infinitesimal conformal if and only if its Jacobian satisfies pointwise ∇φc(x) ∈

R ·1+ so(3), where R ·1+ so(3) is the conformal Lie-algebra. This implies [82, 85, 83] the representation (see
Figure 2)

φc(x) =
1

2

(
2〈axlW,x〉x − axlW‖x‖2

)
+ [p̂1+ Â] · x+ b̂ , (2.35)

where W, Â ∈ so(3), b̂ ∈ R3, p̂ ∈ R are arbitrary given constants. For the infinitesimal conformal mapping φc

we note

∇φc(x) = [〈axlW,x〉 + p̂]1+ anti(W.x) + Â, div φc(x) = tr[∇φc(x)] = 3 [〈axlW,x〉+ p̂],

skew∇φc(x) = anti(W.x) + Â, sym∇φc(x) = [〈axlW,x〉+ p̂]1,

dev sym∇φc(x) = 0, ∇curlφc(x) = 2W ∈ so(3),

sym∇curlφc(x) = 0, skew∇curlφc(x) = 2W.

(2.36)

These relations are easily established. By conformal invariance of the curvature energy term we mean that
the curvature energy vanishes on infinitesimal conformal mappings. This is equivalent to

Wcurv(D
2φc) = 0 for all conformal maps φc, (2.37)

or in terms of the second order couple stress tensor m̃ := D∇curluWcurv(∇curlu),

m̃(D2φc) = 0 for all conformal maps φc. (2.38)

The classical linear elastic energy still ascribes energy to such a deformation mode, but only related to the bulk
modulus, i.e.,

Wlin(∇φc) = µ ‖ dev sym∇φc‖2︸ ︷︷ ︸
=0

+
2µ+ 3λ

2
[tr(∇φc)]

2 =
2µ+ 3λ

2
[tr(∇φc)]

2. (2.39)

In case of a classical infinitesimal perfect plasticity formulation with von Mises deviatoric flow rule, conformal
mappings are precisely those inhomogeneous mappings, that do not lead to plastic flow [77], since the deviatoric
stresses remain zero: dev sym∇φc = 0.
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Figure 2: Infinitesimal conformal mappings [83] preserve locally angles and shapes. The corresponding couple stress tensor m̃ is
zero for these deformation modes.

In that perspective

conformal mappings are ideally elastic transformations and should not lead to moment stresses.

Using the formulas (2.36), it can be easily remarked that ‖∇[dev sym∇u]‖2, ‖ dev sym∇u‖2,
‖ dev sym∇(curlu)‖2, ‖ symCurl (sym∇u)‖2 = 1

4 ‖ sym∇(curlu)‖2 are conformally invariant. Let us note
that, using Lemma 2.1, we have

‖ symCurl (sym∇u)‖2 = ‖ sym∇[axl(skew∇u)]‖2 =
1

4
‖ sym∇(curlu)‖2, (2.40)

‖ skew[Curl (sym∇u)]‖2 = ‖ skew∇[axl(skew∇u)]‖2 =
1

4
‖ skew∇(curlu)‖2. (2.41)

Hence ‖ symCurl (sym∇u)‖2 = 1
4 ‖ sym∇(curlu)‖2 is also conformally invariant (use (2.36)6), while

‖ skew[Curl (sym∇φc)]‖2 =
1

4
‖ skew∇(curlφc)‖2 = ‖W‖2, (2.42)

and therefore ‖Curl (sym∇u)‖2 is not conformally invariant, nor is ‖∇(axl(skew∇u))‖2 conformally invariant.
Nor is ‖∇ tr(sym∇u)‖2 = ‖∇divu‖2 conformally invariant.

The underlying additional invariance property of the modified couple stress theory is precisely conformal
invariance. In the modified couple stress model, these deformations are free of size-effects, while e.g. the
Hadjesfandiari and Dargush choice would describe size-effects. In other words, the generated couple stress
tensor m̃ in the modified couple stress model is zero for this inhomogeneous deformation mode, while in the
Hadjesfandiari and Dargush choice m̃ is constant and skew-symmetric6.

2.5 The classical indeterminate couple stress model based on
‖∇[axl(skew∇u)]‖2 with skew-symmetric nonlocal force-stress

We are now re-deriving the classical equations based on the ∇[axl(skew∇u)]-formulation of the indeterminate
couple stress model. This part does not contain new results, see, e.g., [61] for further details, but is included
for setting the stage of our new modelling approach.

Taking free variations δu ∈ C∞(Ω) in the energy W (e, k̃) = Wlin(e) + Wcurv(k̃), but using the following

equivalent curvature energy based on k̃ = ∇[axl(skew∇u)] = 1
2∇(curlu) :

Wcurv(k̃) =µL2
c [α1 ‖ dev sym∇[axl(skew∇u)]‖2 + α2 ‖ skew∇[axl(skew∇u)]‖2] (2.43)

=µL2
c [α1 ‖ dev symCurl (sym∇u)]‖2 + α2 ‖ skewCurl (sym∇u)]‖2] ,

6This observation is a further development in understanding why the Hadjesfandiari and Dargush [41, 42, 45] choice is rather
meaningless, while mathematically not forbidden [87].
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we obtain the virtual work principle taking free variations δu ∈ C∞(Ω) in the energy (2.43)

d

dt

∫

Ω

W (∇u+ t∇δu)dv
∣∣∣
t=0

=

∫

Ω

[
2µ 〈sym∇u, sym∇δu〉+ λ tr(∇u) tr(∇δu)

+ µL2
c [2α1 〈dev sym∇[axl(skew∇u)], dev sym∇[axl(skew∇δu)]〉 (2.44)

+ 2α2 〈skew∇[axl(skew∇u)], skew∇[axl(skew∇δu)]〉] + 〈f, δu〉
]
dv = 0.

The classical divergence theorem leads to

∫

Ω

〈Div (σ − τ̃ ) + f, δu〉 dv −
∫

∂Ω

〈(σ − τ̃ ). n, δu〉 dv −
∫

∂Ω

〈m̃. n, axl(skew∇δu)〉da = 0, (2.45)

for all virtual displacements δu ∈ C∞(Ω), where n is the unit outward normal vector at the surface ∂Ω, σ is
the symmetric local force-stress tensor

σ = 2µ sym∇u+ λ tr(∇u)1∈ Sym(3) (2.46)

and τ̃ represents the nonlocal force-stress tensor (which here is automatically skew-symmetric)

τ̃ = µL2
c [α1 antiDiv(dev sym∇[axl(skew∇u)]) + α2 antiDiv(skew∇[axl(skew∇u)]) (2.47)

= µL2
c [
α1

2
antiDiv(dev sym∇(curlu)) +

α2

2
antiDiv(skew∇(curlu))]

= µL2
c antiDiv

[α1

2
dev sym∇(curlu) +

α2

2
skew∇(curlu)

]
=

1

2
antiDiv[m̃] ∈ so(3),

where

m̃ = µL2
c [α1 sym∇(curlu) + α2 skew∇(curlu)]

= µL2
c [α1 dev sym∇(curlu) + α2 skew∇(curlu)] (2.48)

= µL2
c [2α1 dev sym∇[axl(skew∇u)] + 2α2 skew∇[axl(skew∇u)]],

is the hyperstress tensor (couple stress tensor) which may or may not be symmetric, depending on the material
parameters.

The non-symmetry of force stress is a constitutive assumption. Thus, if the test function δu ∈ C∞(Ω) also
satisfies axl(skew∇δu) = 0 on Γ (equivalently curl δu = 0), then we obtain the equilibrium equation

Div

{
2µ sym∇u+ λ tr(∇u)1︸ ︷︷ ︸

symmetric local force stress σ∈Sym(3)

− µL2
c [anti{Div(α1 dev sym∇[axl(skew∇u)] + α2 skew∇[axl(skew∇u)]︸ ︷︷ ︸

hyperstress 1
2 m̃∈gl(3)

)}]
}

︸ ︷︷ ︸
completely skew-symmetric nonlocal force stress τ̃∈so(3)

+f = 0, (2.49)

or equivalently

Div σ̃total + f = 0, (2.50)

where

σ̃total = σ − τ̃ 6∈ Sym(3). (2.51)

The complete consistent boundary conditions for this formulation is presented for the first time in [61, 80] and
recapitulated in Figure 4 and Figure 7.
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3 The new isotropic gradient elasticity model with symmetric non-

local force stress and symmetric hyperstresses

As independent constitutive variables for our novel gradient elastic model we choose now

ε = sym∇u, k̂ = Curl (sym∇u) = Curl ε. (3.1)

We use again the orthogonal Lie-algebra decomposition of R3×3

Curl (sym∇u) = dev sym(Curl (sym∇u)) + skewCurl (sym∇u) . (3.2)

The term 1
3 tr(Curl (sym∇u))1 is missing since tr(Curl (sym∇u)) = 0 anyway (already tr(Curl S) = 0 for

S ∈ Sym(3)). The model is derived from the free energy W (e, k̂) = Wlin(e) +Wcurv(k̂), with

Wlin(ε) = µ ‖ sym∇u‖2 + λ

2
[tr(sym∇u)]2 = µ ‖ dev sym∇u‖2 + κ

2
[tr(sym∇u)]2, (3.3)

Wcurv(k̂) = µL2
c

[
α1 ‖ dev symCurl (sym∇u)‖2︸ ︷︷ ︸

conformally invariant

+α2 ‖ skewCurl (sym∇u)‖2︸ ︷︷ ︸
not conformally invariant

]
,

where α1, α2 are non-negative constitutive curvature coefficients and κ = 2µ+3λ
3 is the infinitesimal bulk

modulus, while µ is the classical shear modulus.
The hyperstress-tensor (moment stress tensor, couple stress tensor)

m̂ := D
k̂
Wcurv(k̂) = µL2

c [2α1 dev symCurl (sym∇u) + 2α2 skewCurl (sym∇u)]

is symmetric in the conformal case α2 = 0, while the nonlocal force stress tensor is always symmetric, see eq.
(3.13).

Due to isotropy, the curvature energy Wcurv(k) involves in principle only 2 additional constitutive constants.
Taking free variations δu ∈ C∞(Ω) in the energy (3.3), we obtain the virtual work principle

d

dt

∫

Ω

W (∇u+ t∇δu)dv
∣∣∣
t=0

=

∫

Ω

[
2µ 〈sym∇u, sym∇δu〉+ λ tr(∇u) tr(∇δu)

+ µL2
c [2α1 〈dev symCurl (sym∇u), dev symCurl (sym∇δu)〉 (3.4)

+ 2α2 〈skewCurl (sym∇u), skewCurl (sym∇δu)〉] + 〈f, δu〉
]
dv = 0,

where f is the body force per unit volume. We have the formulas

div(ϕi Qi) = 〈Qi,∇ϕi〉+ ϕi divQi not summed, (3.5)

div (Ri × Si) = 〈Si, curl Ri〉 − 〈Ri, curl Si〉 not summed,

for all C1-functions ϕi : Ω → R and Qi, Pi, Si : Ω → R3, where ϕi are the components of the vector ϕ and
Qi, Pi, Si are the rows of the matrix Q, P and S, respectively, where × denotes the vector product. If we take
in (3.5) Ri = [dev symCurl (sym∇u)]i, Si = (sym∇δu)i , we get

3∑

i=1

div ([dev symCurl (sym∇u)]i × (sym∇δu)i) =

3∑

i=1

〈(sym∇δu)i, curl [dev symCurl (sym∇u)]i〉 (3.6)

−
3∑

i=1

〈[dev symCurl (sym∇u)]i, curl (sym∇δu)i〉 .

Hence, we obtain

3∑

i=1

div ([dev symCurl (sym∇u)]i × (sym∇δu)i) =〈(sym∇δu),Curl [dev symCurl (sym∇u)]〉 (3.7)

− 〈[dev symCurl (sym∇u)],Curl (sym∇δu)〉 .
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Doing a similar calculus, but choosing Ri = [skewCurl (sym∇u)]i, Si = (sym∇δu)i, we obtain

3∑

i=1

div ([skewCurl (sym∇u)]i × (sym∇δu)i) =〈(sym∇δu),Curl [skewCurl (sym∇u)]〉 (3.8)

− 〈[skewCurl (sym∇u)],Curl (sym∇δu)〉 .
The above formulas lead, for all variations δu ∈ C∞(Ω), to
∫

Ω

[
α1 〈dev symCurl (sym∇u),Curl (sym∇δu)〉+ α2 〈skewCurl (sym∇u),Curl (sym∇δu)〉

]
dv

=

∫

Ω

[
α1 〈symCurl [dev symCurl (sym∇u)],∇δu, 〉+ α2 〈symCurl [skewCurl (sym∇u)],∇δu, 〉 (3.9)

−
3∑

i=1

div

[
α1 ([dev symCurl (sym∇u)]i × (sym∇δu)i) + α2([skewCurl (sym∇u)]i × (sym∇δu)i)

]
dv

=

∫

Ω

[
α1 〈symCurl [dev symCurl (sym∇u)],∇δu〉+ α2 〈symCurl [skewCurl (sym∇u)],∇δu〉

−
3∑

i=1

div

[
α1 ([dev symCurl (sym∇u)]i × (sym∇δu)i) + α2([skewCurl (sym∇u)]i × (sym∇δu)i)

]
dv .

Therefore, using the divergence theorem and a special format of the partial integration which is suggested by
the matrix Curl -operator, it follows that7

∫

Ω

[
α1 〈dev symCurl (sym∇u),Curl (sym∇δu)〉+ α2 〈skewCurl (sym∇u),Curl (sym∇δu)〉

]
dv (3.10)

=

∫

Ω

[
α1 〈symCurl [dev symCurl (sym∇u)],∇δu〉+ α2 〈symCurl [skewCurl (sym∇u)],∇δu〉

]
dv

−
∫

∂Ω

[ 3∑

i=1

〈α1 ([dev symCurl (sym∇u)]i × (sym∇δu)i) + α2([skewCurl (sym∇u)]i × (sym∇δu)i), n〉da

= −
∫

Ω

[
α1 〈Div {symCurl [dev symCurl (sym∇u)] + α2 〈symCurl [skewCurl (sym∇u)]}, δu〉

]
dv

+

∫

∂Ω

〈
[
α1 symCurl [dev symCurl (sym∇u)] + α2 symCurl [skewCurl (sym∇u)

]
. n, δu〉da

−
∫

∂Ω

[ 3∑

i=1

〈α1 [dev symCurl (sym∇u)]i + α2[skewCurl (sym∇u)]i, (sym∇δu)i × n〉da,

where n is the unit outward normal vector at the surface ∂Ω. Hence, the relation (3.4) leads to
∫

Ω

Div

{
2µ sym∇u+ λ tr(∇u)1 (3.11)

+ µL2
c [2α1 symCurl [dev symCurl (sym∇u)] + 2α2 symCurl [skewCurl (sym∇u)]]

}
+ f, δu〉 dv

−
∫

∂Ω

[
〈
[
2µ 〈sym∇u+ λ tr(∇u)1

]
. n, δu〉da

−
∫

∂Ω

〈2µL2
c

[
α1 symCurl [dev symCurl (sym∇u)] + α2 symCurl [skewCurl (sym∇u)]

]
. n, δu〉da

+

∫

∂Ω

[ 3∑

i=1

2µL2
c 〈α1 [dev symCurl (sym∇u)]i + α2[skewCurl (sym∇u)]i, (sym∇δu)i × n〉da = 0,

7This is an extra constitutive assumption since it is finally the form of the partial integration that determines, on the one hand,
which force-stress tensor is generated and, on the other hand, which boundary condition is obtained. It is only the Curl -operator
that seems to suggest this choice-but it remains a choice!
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for all variations δu ∈ C∞(Ω).
We can write the above variational formulation, for all variations δu ∈ C∞(Ω), in the following form8

∫

Ω

〈Div (σ + τ̂) + f, δu〉 dv −
∫

∂Ω

〈(σ + τ̂). n, δu〉da−
∫

∂Ω

3∑

i=1

〈m̂i × n, (sym∇δu)i〉da = 0, (3.12)

where

σ = 2µ sym∇u+ λ tr(∇u)1 ∈ Sym(3), (local force-stress)

τ̂ = µL2
c sym{2α1Curl [dev symCurl (sym∇u)] + 2α2 Curl [skewCurl (sym∇u)]} (3.13)

= symCurl (m̂) ∈ Sym(3), (non-local force stress)

m̂ = µL2
c {2α1 dev sym[Curl (sym∇u)] + 2α2 skew[Curl (sym∇u)]} ∈ gl(3) (∈ Sym(3) for α2 = 0).

We call σ the local force stress tensor, τ̂ the non-local force stress tensor and m̂ = D
k̂
Wcurv(k̂) the hyperstress

tensor (couple stress tensor).
Thus, if the test function δu ∈ C∞(Ω) also satisfies (sym∇δu)i × n = 0 (or equivalently (sym∇δu).τ = 0

for all tangential vectors τ at Γ), then we obtain the equilibrium equation

Div { 2µ sym∇u+ λ tr(∇u)1︸ ︷︷ ︸
symmetric local force stress σ ∈ Sym(3)

+ µL2
c symCurl [2α1 dev symCurl (sym∇u) + 2α2 skewCurl (sym∇u)︸ ︷︷ ︸

hyperstress m̂∈gl(3)

]

︸ ︷︷ ︸
symmetric nonlocal force stress τ̂ ∈ Sym(3)

}+ f = 0. (3.14)

The first impulse is to prescribe on Γ ⊆ ∂Ω the following geometric boundary conditions

u = û0 on Γ, (3.15)

(1− n⊗ n) (sym∇u)i × n = (1− n⊗ n) (sym∇û0)i × n, i = 1, 2, 3 on Γ,

where û0 : R3 → R3 is a prescribed function (i.e. 3+2+2+2=9 boundary conditions), with9 û0 ∈ H2,2(Ω), and
the following traction boundary conditions on ∂Ω \ Γ

(σ + τ̂).n = ĝ, on ∂Ω \ Γ, (3.16)

(1− n⊗ n) m̂i × n = (1− n⊗ n) ĝi, i = 1, 2, 3 on ∂Ω \ Γ,

where ĝ, ĝi : R
3 → R3 are prescribed functions (i.e. 3+2+2+2=9 boundary conditions).

However, we need to separate normal and tangential derivatives of the test function δu in (3.12) which is
standard in general strain gradient elasticity, since tangential derivatives of δu are not independent of δu. Let
us define the matrix

M̂ :=




m̂1 × n
m̂2 × n
m̂3 × n


 , where m̂ :=




m̂1

m̂2

m̂3


 . (3.17)

With the help of this matrix M̂ , we may write

3∑

i=1

〈m̂i × n, (sym∇δu)i〉 = 〈M̂, sym∇δu〉 = 〈sym M̂,∇δu〉. (3.18)

8〈a × b, c〉 = −〈a, c× b〉.
9It is always possible to construct a function u0 taking on the desired boundary values and having the needed regularity by

solving ∫
Ω

(
‖ sym∇u‖2 + ‖D2u‖2

)
da → min . u,

u
∣∣
Γ

= u0,

curlu
∣∣
Γ

= curlu0

∣∣
Γ



 ⇒ u ∈ H2,2(Ω).
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At this point, it must be considered that the tangential trace of the gradient of virtual displacement can be
integrated by parts once again and that the surface divergence theorem can be applied to this tangential part of
∇δu. Before doing so, one needs to introduce (see also [24, 99, 22] for details) two second order tensors T and Q
which are the two projectors on the tangent plane and on the normal to the considered surface, respectively. As
it is well known from differential geometry, such projectors actually allow to split a given vector or tensor field
in one part projected on the plane tangent to the considered surface and one projected on the normal to such
surface (see e.g. [24]). Let

{
τ1, τ2

}
be an orthonormal local basis of the tangent plane to the considered surface

at point p and let n be the unit normal vector at the same point. We can introduce the quoted projectors as

T = τ1 ⊗ τ1 + τ2 ⊗ τ2 = 1− n⊗ n (Tij = δij − ninj), Q = n⊗ n (Qij = ninj). (3.19)

In our abbreviations, the surface divergence theorem means [40, p. 58, ex. 7]

∫

∂S

〈T. v, ν〉da =

∫

∂S

〈v, T. ν〉da =

∫

∂S

〈v, ν〉ds , (3.20)

for any field v ∈ R3 and ν = τ × n. Regarding the boundary conditions, similar as in [71], we obtain

3∑

i=1

〈m̂i × n, (sym∇δu)i〉 = 〈sym M̂,∇δu1〉 = 〈sym M̂,∇δu (T +Q)〉
= 〈(sym M̂), (∇δu)T 〉+ 〈(sym M̂), (∇δu)Q〉 = 〈(sym M̂)T,∇δu〉+ 〈(sym M̂), (∇δu)Q〉
= 〈(sym M̂)T T,∇δu〉+ 〈(sym M̂), (∇δu)Q〉 = 〈T, T (sym M̂)∇δu〉+ 〈(sym M̂), (∇δu)Q〉
= 〈T, T (symM̂)∇δu〉+ 〈(sym M̂), (∇δu)n⊗ n〉.

The last term on the right hand side may be rewritten in the form

〈(sym M̂), (∇δu)Q〉 =
1

2
〈M̂, (∇δu)Q+Q(∇δu)T 〉 = 1

2
〈M̂ Q,∇δu〉+ 1

2
〈M̂,Q(∇δu)T 〉

=
1

2
〈M̂ n⊗ n,∇δu〉+ 1

2
〈M̂, n⊗ n(∇δu)T 〉.

(3.21)

Thus, we deduce

3∑

i=1

〈m̂i × n, (sym∇δu)i〉 = 〈T, T (symM̂)∇δu〉+ 〈(sym M̂), (∇δu)Q〉
= 〈T, T (symM̂)∇δu〉+ 〈(sym M̂), (∇δu)n⊗ n〉 = 〈T, T (symM̂)∇δu〉+ 〈{n⊗ [(∇δu).n]}(sym M̂),1〉
= 〈T, T (symM̂)∇δu〉+ 〈n⊗ {(sym M̂)(∇δu).n},1〉 = 〈T, T (symM̂)∇δu〉+ 〈n, (sym M̂)(∇δu).n〉
= 〈T, T (symM̂)∇δu〉+ 〈(sym M̂).n, (∇δu).n〉 = 〈T, T (symM̂)∇δu〉+ 〈(sym M̂).n,

∂δu

∂n
〉 .

We can therefore recognize in the last term of this formula that the normal derivative

∂

∂n
δu = (∇δu).n = (δui,hnh)i (3.22)

of the test function field δu (the virtual displacement) appears. As for the other term, it can be manipulated
suitably integrating by parts and then using the surface divergence theorem (3.20), so that we can finally write
the last summand from (3.12) in the form

∫

∂Ω

3∑

i=1

〈m̂i × n, (sym∇δu)i〉da =

∫

Γ

3∑

i=1

〈m̂i × n, (sym∇δu)i〉da+

∫

∂Ω\Γ

3∑

i=1

〈m̂i × n, (sym∇δu)i〉da. (3.23)

We deduce by gathering the results in (3.21)-(3.23) that the last integral on the right hand side is given by

∫

∂Ω\Γ

3∑

i=1

〈m̂i × n, (sym∇δu)i〉da =

∫

∂Ω\Γ

〈T, T (symM̂)∇δu〉da+

∫

∂Ω\Γ

〈(sym M̂).n, (∇δu).n〉da. (3.24)
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Since

{∇[T (sym M̂)δu︸ ︷︷ ︸
∈R3

]}ik = {T (symM̂)).δu}i,k = {
(
T (sym M̂)

)
ij
(δu)j},k

=
(
T (sym M̂)

)
ij,k

(δu)j +
(
T (symM̂)

)
ij
(δu)j,k (3.25)

=
(
T (sym M̂)

)
ij,k

(δu)j +
(
T (symM̂)

)
ij
(∇δu)jk

=
(
T (sym M̂)

)
ij,k

(δu)j + {T (sym M̂)∇δu}ik,

we obtain

∫

∂Ω\Γ

3∑

i=1

〈m̂i × n, (sym∇δu)i〉da =

∫

∂Ω\Γ

〈T,∇[T (sym M̂). δu]︸ ︷︷ ︸
surface divergence is to be used

〉da−
∫

∂Ω\Γ

Tik

(
T (sym M̂)

)
ij,k

(δu)jda (3.26)

+

∫

∂Ω\Γ

〈(sym M̂).n, (∇δu).n〉da.

In order to write in a compact form the above relation, let us remark that

(
T (sym M̂)

)
ij
= Til(sym M̂)lj = Til(sym M̂)jl = Tli(sym M̂)jl = (sym M̂)jlTli = {(sym M̂)T }ji,

and further that

(
T (sym M̂)

)
ij,k

Tik = {(sym M̂)T }ji,k Tik =
(
∇[(sym M̂)T ] : T

)
j
. (3.27)

We obtain

Tik

(
T (sym M̂)

)
ij,k

(δu)j =
(
∇[(sym M̂)T ] : T

)
j
(δu)j = 〈∇[(sym M̂)T ] : T, δu〉. (3.28)

We deduce by gathering the results in (3.21)-(3.23) that the last integral on the right hand side is given by

∫

∂Ω\Γ

3∑

i=1

〈m̂i × n, (sym∇δu)i〉da

=

∫

∂Ω\Γ

〈T,∇[T (sym M̂). δu]︸ ︷︷ ︸
surface divergence is to be used

〉da−
∫

∂Ω\Γ

〈∇[(sym M̂)T ] : T, δu〉da+
∫

∂Ω\Γ

〈(sym M̂).n, (∇δu).n〉da

= −
∫

∂Ω\Γ

〈∇[(sym M̂)T ] : T, δu〉da+
∫

∂Ω\Γ

〈(sym M̂).n, (∇δu).n〉da+

∫

∂(∂Ω\Γ)

〈[(sym M̂)]−.ν−, δu〉ds.

In the above computation ∇[(sym M̂)T ] is not a matrix, rather a third order tensor and ∇[(sym M̂)T ] : T ∈ R3

is a contraction operation, i.e.

{∇[(sym M̂)T ] : T }i = {(anti[(sym M̂)T }ij,k.Tjk.

Similar, we handle the corresponding integral on ∂Γ from (3.23)

∫

Γ

3∑

i=1

〈m̂i × n, (sym∇δu)i〉da (3.29)

= −
∫

Γ

〈∇[(sym M̂)T ] : T, δu〉da+
∫

Γ

〈(sym M̂).n, (∇δu).n〉da+

∫

∂Γ

〈[(sym M̂)]+.ν+, δu〉ds.
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Therefore, the variational formulation (3.12) can be rewritten as
∫

Ω

〈Div (σ + τ̂ ) + f, δu〉 dv −
∫

∂Ω

〈 (σ + τ̂ ). n−∇[(sym M̂)T ] : T︸ ︷︷ ︸
δu− surface contact forces depending

on the curvature of the boundary

, δu〉

︸ ︷︷ ︸
δu−independent first order variation

da (3.30)

−
∫

∂Ω

〈(sym M̂).n︸ ︷︷ ︸
double force

, (∇δu).n〉

︸ ︷︷ ︸
δu− independent second order

normal variation of the gradient

da−
∫

∂Γ

〈([sym M̂ ]+ − [sym M̂ ]−). ν, δu〉︸ ︷︷ ︸
“edge line force”

ds = 0,

for all variations δu ∈ C∞(Ω), where we have used that for the regular surface ∂Ω it holds ν+ = −ν− = ν.
Moreover, we also obtain

M̂.n =






m̂1 × n
m̂2 × n
m̂3 × n


 .n


 =






〈m̂1 × n, n〉
〈m̂2 × n, n〉
〈m̂3 × n, n〉


 .n


 = 0. (3.31)

Hence

(sym M̂).n =
1

2
M̂T .n. (3.32)

On the other hand, we deduce

M̂T .n = T M̂T .n+QM̂T .n = (1− n⊗ n) M̂T .n+ n⊗ n M̂T .n

= (1− n⊗ n) M̂T .n+ [n⊗ n M̂T ].n = (1− n⊗ n) M̂T .n+ n⊗ [M̂. n].n

= (1− n⊗ n) M̂T .n+ n⊗






m̂1 × n
m̂2 × n
m̂3 × n


 .n


 .n = (1− n⊗ n) M̂T .n+ n⊗






〈m̂1 × n, n〉
〈m̂2 × n, n〉
〈m̂3 × n, n〉




 .n

= (1− n⊗ n) M̂T .n+ [n⊗ 0].n = (1− n⊗ n) M̂T .n .

In view of (3.32), we see

(sym M̂).n = (1− n⊗ n) (sym M̂).n . (3.33)

Therefore, finally we get from (3.12)
∫

Ω

〈Div (σ+τ̂ ) + f, δu〉 dv −
∫

∂Ω

〈(σ + τ̂ ). n−∇[(sym M̂)T ] : T, δu〉︸ ︷︷ ︸
δu−independent first order variation

da (3.34)

−
∫

∂Ω

〈(1− n⊗ n)(sym M̂).n, (1− n⊗ n)(∇δu).n〉︸ ︷︷ ︸
δu− independent second order

normal variation of gradient

da−
∫

∂Γ

〈([sym M̂ ]+ − [sym M̂ ]−). ν, δu〉︸ ︷︷ ︸
“edge line forces”

ds = 0,

for all variations δu ∈ C∞(Ω). An equivalent form, replacing simply τ̂ = symCurl (m̂), is
∫

Ω

〈Div (σ+symCurl (m̂)) + f, δu〉 dv −
∫

∂Ω

〈(σ + symCurl (m̂)). n−∇[(sym M̂)T ] : T, δu〉︸ ︷︷ ︸
δu−independent first order variation

da (3.35)

−
∫

∂Ω

〈(1− n⊗ n)(sym M̂).n, (1− n⊗ n)(∇δu).n〉︸ ︷︷ ︸
δu− independent second order

normal variation of the gradient

da−
∫

∂Γ

〈([sym M̂ ]+ − [sym M̂ ]−). ν, δu〉︸ ︷︷ ︸
“edge line forces”

ds = 0.
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3.1 Formulation of the complete boundary value problem

3.1.1 Equilibrium equation

In terms of the symmetric force-stress tensor σ and of the nonlocal force-stress tensor τ̂ which is also here
symmetric, while the hyperstress m̂ ∈ gl(3) is symmetric only for α2 = 0, the equilibrium equations may now
be written in the format10

Div σ̂total + f = 0, (3.36)

where the symmetric total force stress11 is given by σ̂total = σ + τ̂ ∈ Sym(3).

3.1.2 Geometric (essential) boundary conditions

To the above equilibrium equation, we adjoin on Γ ⊆ ∂Ω the following boundary conditions

u(x) = û0(x) on Γ, (3 bc) (3.37)

[(1− n⊗ n)(∇u).n] (x) = [(1− n⊗ n)(∇û0).n](x) on Γ, (2 bc)

where û0 : R3 → R
3 is a prescribed function (i.e. 3+2=5 boundary conditions). We assume that û0 ∈ H2,2(Ω)

for simplicity and transparency. If ∇û0 ∈ H1(Ω), then all tangential and normal traces of ∇û0 at Γ exist.
Therefore, we may evaluate ∇û0 at Γ.

3.1.3 Traction boundary conditions

Corresponding to the geometric boundary conditions, we have to prescribe the following traction boundary
conditions

{(σ + τ̂ ).n−∇[(sym M̂) (1− n⊗ n)] : (1− n⊗ n)} (x) = t̂(x),

[(1− n⊗ n)(sym M̂).n] (x) = [(1− n⊗ n) ĝ] (x),

}
x ∈ ∂Ω \ Γ

(3 bc)

(2 bc)

(3.38)

{([sym M̂ ]+ − [sym M̂ ]−). ν} (x) = π̂(x), x ∈ ∂Γ (3 bc)

where t, g : R3 → R3 are prescribed functions on ∂Ω \ Γ (i.e. 3+2=5 boundary conditions), while π : R3 → R3

is prescribed on ∂Γ = ∂(∂Ω \ Γ) and leads to 3 boundary conditions on ∂Γ.

Remark 3.1. If Γ = ∂Ω then the solution in the Curl (sym∇u)-formulation and in the ∇[axl(skew∇u)]-
formulation are the same, since the Euler-Lagrange equations are the same and the geometric boundary con-
ditions are the same. Differences appear only if Γ 6= ∂Ω due to different specifications of traction boundary
conditions.

3.2 Existence and uniqueness of the solution in the Curl (sym∇u)-formulation

In the linear couple stress theory with constrained rotations, Hlaváček and Hlaváček [46, Remark 2, p. 426]
recognized the couple stress model already in the form (1.4) but did not give an existence result. There are
many existence and uniqueness results for the indeterminate couple stress model in its classical anti-symmetric
formulation. Recently, optimal results have been obtained in [48, 49]. In this section we establish an existence
theorem for the solution of the boundary value problem (P) defined by (3.36), (3.37) and (3.38), where t̂ = 0,

ĝ = 0, ĥ = 0, û0 = 0 and (1− n⊗ n)(∇û0).n = 0 for simplicity only.

Lemma 3.2. Let u ∈ H1
0(Ω; Γ) be such that symCurl (sym∇u) ∈ L2(Ω). Then, Curl (sym∇u) ∈ L2(Ω) and

there is a positive constant c+ such that
∫

Ω

[
‖ sym∇u‖2 + ‖ symCurl (sym∇u)‖2

]
dv ≥ c+

∫

Ω

[
‖ sym∇u‖2 + ‖Curl (sym∇u)‖2

]
dv. (3.39)

10Here, infinitesimal frame-indifference amounts to W (∇u) = W (∇u+W ), ∀W ∈ so(3), which is obviously satisfied.
11Vidoli et al. call this tensor the “effective stress tensor” [23].
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Proof. For u ∈ H1
0(Ω; Γ), the first Korn’s inequality implies that there is a positive constant c+ such that

∫

Ω

‖ sym∇u‖2dv =

∫

Ω

(
1

2
‖ sym∇u‖2 + 1

2
‖ sym∇u‖2

)
dv ≥ 1

2

∫

Ω

‖ sym∇u‖2dv + c+

2

∫

Ω

‖∇u‖2dv. (3.40)

On the other hand the orthogonality of sym and skew implies

∫

Ω

‖∇u‖2dv ≥
∫

Ω

‖skew∇u‖2dv. (3.41)

Therefore, there is another positive constant c+ such that

∫

Ω

[
‖ sym∇u‖2 + ‖ symCurl (sym∇u)‖2

]
dv =

∫

Ω

[1
2
‖ sym∇u‖2 + 1

2
‖ sym∇u‖2 + ‖ sym∇[axl(skew∇u)]‖2

]
dv

≥ c+
∫

Ω

[
‖ sym∇u‖2 + ‖skew∇u‖2 + ‖ sym∇[axl(skew∇u)]‖2

]
dv (3.42)

≥ c+
∫

Ω

[
‖ sym∇u‖2 + ‖ axl skew∇u‖2 + ‖ sym∇[axl(skew∇u)]‖2

]
dv.

Moreover, since axl skew∇u ∈ L2(Ω), the second Korn’s inequality12 (without boundary conditions and applied
to axl(skew∇u)) implies the existence of a positive constant c+ such that

∫

Ω

[
‖ axl skew∇u‖2 + ‖ sym∇[axl(skew∇u)]‖2

]
dv ≥ c+

∫

Ω

[
‖ axl skew∇u‖2 + ‖∇[axl(skew∇u)]‖2

]
dv. (3.43)

Thus, there are positive constants c+, c+1 such that

∫

Ω

[
‖ sym∇u‖2 + ‖ symCurl (sym∇u)‖2

]
dv ≥ c+1

∫

Ω

[
‖ sym∇u‖2 + ‖ axl skew∇u‖2 + ‖∇[axl(skew∇u)]‖2

]
dv

= c+1

∫

Ω

[
‖ sym∇u‖2 + ‖ axl skew∇u‖2 + ‖Curl (sym∇u)‖2

]
dv

≥ c+
∫

Ω

[
‖ sym∇u‖2 + ‖Curl (sym∇u)‖2

]
dv. (3.44)

The proof is complete.

Let us consider that we have considered null boundary conditions for simplicity. Hence, in the following we
study the existence of the solution in the space

X0 =
{
u∈H1

0 (Ω; Γ) | sym∇u ∈ H(Curl ; Ω)
}
. (3.45)

On X0 we define the norm

‖u‖X0 =
(
‖∇u‖2L2(Ω) + ‖Curl (sym∇u)‖2L2(Ω)

) 1
2

, (3.46)

and the bilinear form

(u, v) =

∫

Ω

[
2µ 〈sym∇u, sym∇v〉+ λ tr(∇u) tr(∇v)

+ µL2
c [2α1 〈dev symCurl (sym∇u), dev symCurl (sym∇v)〉 (3.47)

+ 2α2 〈skewCurl (sym∇u), skewCurl (sym∇v)〉]
]
dv,

12Since curl u is divergence free we also have the following Maxwell type inequality [8, 9]:

‖∇[curlu]‖2
L2(Ω)

≤ cM (‖curl (curl u)‖2
L2(Ω)

, for u ∈ {u ∈ H1
0 (Ω) | curlu ∈ H(curl ; Ω)}.
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where u, v ∈ X0. Let us define the linear operator l : X0 → R, describing the influence of external loads,
l(v) =

∫
Ω〈f, v〉dv for all w̃ ∈ X0. We say that w is a weak solution of the problem (P) if and only if

(u, v) = l(v) for all v ∈ X0. (3.48)

A classical solution u ∈ X0 of the problem (P) is also a weak solution.

Theorem 3.3. Assume that

i) the constitutive coefficients satisfy µ > 0, 3λ+ 2µ > 0, α1 > 0, α2 ≥ 0;

ii) the loads satisfy the regularity condition f ∈ L2(Ω).

Then there exists one and only one solution of the problem (3.48).

Proof. Let us first consider the case α2 > 0. The Cauchy-Schwarz inequality, the inequalities (a ± b)2 ≤
2(a2 + b2) and the assumption upon the constitutive coefficients lead to

(u, v) ≤ C

[ ∫

Ω

(
‖ sym∇u‖2 + ‖Curl (sym∇u)‖2

)
dv

] 1
2
[∫

Ω

(
‖ sym∇v‖2 + ‖Curl (sym∇v)‖2

)
dv

] 1
2

(3.49)

≤ C ‖w‖X0 ‖w̃‖X0 ,

which means that (·, ·) is bounded. On the other hand, we have

(u, u) =

∫

Ω

[
2µ ‖ sym∇u‖2 + λ [tr(∇u)]2

+ µL2
c [2α1 ‖ dev symCurl (sym∇u)‖2 + 2α2 ‖ skewCurl (sym∇u)‖2]

]
dv,

for all u ∈ X0. Moreover, as a consequence of the properties i) of the constitutive coefficients we have that there
exists the positive constant c

(u, u) ≥ c

∫

Ω

(
‖ sym∇u‖2 + ‖Curl (sym∇u)‖2

)
dv. (3.50)

From linearized elasticity we have the first Korn’s inequality [75], that is

‖∇u‖L2(Ω) ≤ C‖ sym∇u‖L2(Ω) , (3.51)

for all functions u ∈ H1
0 (Ω; Γ) with some constant C > 0, for bounding the deformation of an elastic medium

in terms of the symmetric strains. Hence, using the Korn’s inequality (3.51), it results that there is a positive
constant C such that

(u, u) ≥ c

∫

Ω

(
‖∇u‖2 + ‖Curl (sym∇u)‖2

)
dv = c ‖u‖2X0

. (3.52)

Therefore our bilinear form (·, ·) is coercive. The Cauchy-Schwarz inequality and the Poincaré-inequality imply
that the linear operator l(·) is bounded. By the Lax-Milgram theorem it follows that (3.48) has one and only
one solution. The proof is complete in the case α2 > 0.

Now, we consider the case α2 = 0. Using Lemma 3.2 it follows that the bilinear form (·, ·) is also coercive
for α2 = 0. Using similar estimates as above the existence follows also in this case and the proof is complete.

Remark 3.4. The Lax-Milgram theorem used in the proof of the previous theorem also offers a continuous
dependence result on the load f . Moreover, the weak solution u minimizes on X0 the energy functional

I(u) =

∫

Ω

[
2µ ‖ sym∇u‖2 + λ[tr(∇u)]2

+ µL2
c [2α1 ‖ dev symCurl (sym∇u)‖2 + 2α2 ‖ skewCurl (sym∇u)‖2]− 〈f, u〉

]
dv.
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Let us consider v ∈ C∞
0 (Ω; Γ) and u a solution of problem (3.36)–(3.38). Then we obtain

(u, v) =

∫

Ω

〈f, v〉dv +

∫

∂Ω

〈(σ + symCurl (m̂)). n−∇[(sym M̂)T ] : T, v〉da (3.53)

+

∫

∂Ω

〈(1− n⊗ n)(sym M̂).n, (1− n⊗ n)(∇v).n〉da +

∫

∂Γ

〈([sym M̂ ]+ − [sym M̂ ]−). ν, v〉ds

=

∫

Ω

〈f, v〉dv +

∫

∂Ω

〈(σ + symCurl (m̂)). n, v〉da −
∫

∂Ω

3∑

i=1

〈m̂i × n, (sym∇v)i〉da.

Therefore, the corresponding existence results assures that there exists the weak solution u minimizing on
C∞

0 (Ω; Γ) the energy functional

I(u) =

∫

Ω

[
2µ ‖ sym∇u‖2 + λ[tr(∇u)]2

+ µL2
c [2α1 ‖ dev symCurl (sym∇u)‖2 + 2α2 ‖ skewCurl (sym∇u)‖2]

]
dv −

∫

Ω

〈f, u〉dv

−
∫

∂Ω

〈(σ + symCurl (m̂)). n−∇[(sym M̂)T ] : T, u〉da (3.54)

−
∫

∂Ω

〈(1− n⊗ n)(sym M̂).n, (1− n⊗ n)(∇u).n〉da−
∫

∂Γ

〈([sym M̂ ]+ − [sym M̂ ]−). ν, u〉ds

=

∫

Ω

[
2µ ‖ sym∇u‖2 + λ[tr(∇u)]2

+ µL2
c [2α1 ‖ dev symCurl (sym∇u)‖2 + 2α2 ‖ skewCurl (sym∇u)‖2]

]
dv −

∫

Ω

〈f, u〉dv

−
∫

∂Ω

〈(σ + symCurl (m̂)). n, u〉da+

∫

∂Ω

3∑

i=1

〈m̂i × n, (sym∇v)i〉da.

3.3 Traction boundary condition in the Curl (sym∇u)-formulation
versus the ∇[axl(skew∇u)]-formulation

In this section we compare the possible traction boundary conditions in the ∇[axl(skew∇u)]-formulation and
the Curl (sym∇u)-formulation. The conclusion is summarized in Figure 7 and Figure 3. Prescribing δu and
(1−n⊗n).curlu on the boundary means that we have prescribed independent geometrical boundary conditions,
this is also the argumentation of Mindlin and Tiersten [72], Koiter [51], Sokolowski [100], etc. However, the
prescribed traction conditions remain not independent, in the sense that g̃ leads to a further energetic conjugate,
besides t̃, of u. From this reason we claim that, in order to prescribe independent geometric boundary conditions
and their corresponding completely independent energetic conjugate (traction boundary conditions), we have
to prescribe u and (1− n⊗ n)∇u.n. In other words, we prescribe

∫

∂Ω

〈t̃, u〉 da+
∫

∂Ω

〈ĝ, (1− n⊗ n)∇u.n〉da, (3.55)

in which now u and (1−n⊗n)∇u.n are independent and ĝ does not produce work against u, see [61] for further
detailed explanations. This type of independent boundary conditions are also correctly considered already by
Bleustein [10], but for the full strain gradient elasticity case only. In order to have a complete overview on the
subject, in Table 1 we also summarize the equivalent form of the equilibrium equations.
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✬

✫

✩

✪





δu and ∇δu× n cannot independently be prescribed

δu and ∇δu. τ cannot independently be prescribed

δu and (1− n⊗ n)∇δu cannot independently be prescribed

δu and ∇δu. n can be independently prescribed (3 bc)

δu and (1− n⊗ n)∇δu. n can be independently prescribed (2 bc)

δu and 〈curl δu, n〉 cannot independently be prescribed
{

δu and 〈curl δu, τ〉 can be independently prescribed (2 bc)

δu and (1− n⊗ n).curl δu can be independently prescribed (2 bc)

Figure 3: The possible independent geometrically boundary conditions. The joining bracket means that the
conditions are equivalent.

Table 1. Euler-Lagrange equations in various formulations

Euler-Lagrange equations Euler-Lagrange equations
in direct tensor format in indices

Euler-Lagrange equations for Curl (sym∇u)

Div(σ + τ̂) + f = 0

σ = Dsym∇uWlin(sym∇u) ∈ Sym(3)

τ̂ = sym(Curl m̂) ∈ Sym(3)

m̂ = DCurl (sym∇u)Wcurv(Curl (sym∇u)), second order

Euler-Lagrange equations for Curl (sym∇u)

(σij + τ̂ij ),j + fi = 0

σij = D 1
2
(ui,j+uj,i)

Wlin(
1
2
(ui,j + uj,i)) ∈ Sym(3)

τ̂ij = 1
2

(
ǫilkm̂jk,l + ǫjlkm̂ik,l

)
∈ Sym(3)

m̂ = D 1
2
ǫilk(uj,kl+uk,jl)

Wcurv
(
1
2
ǫilk

(
uj,kl + uk,jl

))

Euler-Lagrange equations for ∇[axl skew∇u]

Div(σ − τ̃) + f = 0

σ = Dsym∇uWlin(sym∇u) ∈ Sym(3)

τ̃ = 1
2
anti(Div m̃) ∈ so(3)

m̃ = D∇[axl(skew ∇u)]Wcurv(∇[axl(skew∇u)]), second order

Euler-Lagrange equations for ∇[axl skew∇u]

(σij − τ̃ij),j + fi = 0

σij = D 1
2
(ui,j+uj,i)

Wlin(
1
2
(ui,j + uj,i)) ∈ Sym(3)

τ̃ij = 1
2
ǫjikm̃kl,l ∈ so(3)

m̃ = D(ǫijkuk,j),m
W̃curv

((
ǫijkuk,j

)
,m

)

Euler-Lagrange equations for ∇[axl skew∇u] (3rd order)

Div(σ − τ̃) + f = 0

σ = Dsym∇uWlin(sym∇u) ∈ Sym(3)

τ̃ = Div m̃ = 1
2
anti(Div m̃) ∈ so(3)

m̃ = D∇∇u[Wcurv(∇[axl(skew∇u)])], third order

Euler-Lagrange equations for ∇[axl skew∇u] (3rd order)

(σij − m̃ijk,k),j + fi = 0

σij = D 1
2
(ui,j+uj,i)

Wlin(
1
2
(ui,j + uj,i)) ∈ Sym(3)

τ̃ij = m̃ijk,k = 1
2
ǫjikm̃kl,l ∈ so(3)

m̃ijk = Du,ijk
W̃curv

((
ǫijkuk,j

)
,m

)

We outline that there exists a relation between the allowed traction boundary conditions in the Curl (sym∇u)-
formulation and those from the ∇[axl(skew∇u)]-formulation which we take from [61]
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−
∫

∂Ω

〈(σ − τ̃ ). n, δu〉 da−
∫

∂Ω

〈m̃. n, axl(skew∇δu)〉 da
︸ ︷︷ ︸

axl-formulation

(3.56)

= −
∫

∂Ω

〈(σ + τ̂ ). n, δu〉da−
∫

∂Ω

3∑

i=1

〈m̂i × n, (sym∇δu)i〉 da
︸ ︷︷ ︸

Curl-formulation

.

or after splitting up with use of the surface divergence theorem on both sides

−
∫

∂Ω

〈(σ + symCurl (m̂)). n−∇[(sym M̂) (1− n⊗ n)] : (1− n⊗ n)︸ ︷︷ ︸
(1)

, δu〉da

︸ ︷︷ ︸
(a)

(3.57)

−
∫

∂Ω

〈(1− n⊗ n)(sym M̂).n︸ ︷︷ ︸
(2)

,∇δu.n〉da

︸ ︷︷ ︸
(b)

−
∫

∂Γ

〈([sym M̂ ]+ − [sym M̂ ]−). ν︸ ︷︷ ︸
(3)

, δu〉ds

︸ ︷︷ ︸
(c)

=−
∫

∂Ω

〈(σ − 1

2
antiDiv[m̃]). n− 1

2
∇[(anti(m̃. n)) (1− n⊗ n)] : (1− n⊗ n)

︸ ︷︷ ︸
(1′)

, δu〉 da

︸ ︷︷ ︸
(a′)

−
∫

∂Ω

〈1
2
(1− n⊗ n) anti(m̃. n).n

︸ ︷︷ ︸
(2′)

,∇δu.n〉da

︸ ︷︷ ︸
(b′)

−
∫

∂Γ

〈1
2
([anti(m̃. n)]+ − [anti(m̃. n)]−). ν

︸ ︷︷ ︸
(3′)

, δu〉ds

︸ ︷︷ ︸
(c′)

,

for all variations δu ∈ C∞(Ω). Naively, we might expect that the quantities involved have to be equal term
by term, i.e. (1) = (1′), (2) = (2′), (3) = (3′) or (a) = (a′), (b) = (b′), (c) = (c′). However, this is not true, see
Appendix A.

3.4 Principle of virtual work in the indeterminate couple stress model

3.4.1 Principle of virtual work in Cosserat theory

Let us first recall that in the Cosserat theory with independent fields of displacement and microrotations the
internal energy has the form W (∇u,A,∇A) in which u : Ω → R

3 is the displacement and A : Ω → so(3) is the
infinitesimal microrotation. The virtual work principle of the Cosserat theory is given by

P int = Pext, (3.58)

where

P int =
d

dt

∫

Ω

W ((∇u + t∇δu), A+ tδA,∇(A+ tδA))
∣∣∣
t=0

,

Pext =

∫

Ω

〈 f︸︷︷︸
body force

, u〉 dv +
∫

Ω

〈 axl(M)︸ ︷︷ ︸
body couple

, axl(A)〉 dv

+

∫

∂Ω\Γ

〈 t︸︷︷︸
surface tractions

, u〉 da+

∫

∂Ω\Γ

〈 axl(G)︸ ︷︷ ︸
surface couple

, axl(A)〉 da, (3.59)
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with f : ∂Ω \Γ ⊆ R3 → R3, t : ∂Ω \Γ ⊆ R3 → R3, M : Ω ⊆ R3 → so(3), G : Ω ⊆ R3 → so(3). From this virtual
work principle, one obtains the equilibrium equations

Div σ + f = 0, (3.60)

Divm+ axl(skewσ) + axl(M) = 0,

where σ = Dsym∇uW (sym∇u,A) and m = D∇AW (∇u,A,∇A), and the boundary conditions

σ. n = t, m. n = axl(G). (3.61)

In order to obtain these equilibrium equations and the form of the boundary conditions, we have used the fact
that u and A are independent constitutive variables.

3.4.2 Virtual work principle in the Curl (sym(∇u))-formulation of the indeterminate couple stress
model

Using again the fact that u and 2 curlu = axl(skew∇u) ∼ A are not independent constitutive variables, and the
identity

∇[axl(skew∇u)] = [Curl (sym∇u)]T

we consider the energy W (sym(∇u),Curl (sym(∇u))) and the following new form of the virtual work principle

P int = Pext, (3.62)

where

P int =
d

dt

∫

Ω

W (sym(∇u + t∇δu),Curl (sym(∇u + t∇δu)))
∣∣∣
t=0

,

Pext =

∫

Ω

〈 f︸︷︷︸
body forces

, u〉dv +
∫

Ω

〈 M︸︷︷︸
body couple

, sym∇u〉dv (3.63)

+

∫

∂Ω\Γ

〈 t︸︷︷︸
surface traction

, u〉da+
∫

∂Ω\Γ

〈 g︸︷︷︸
surface double tractions

, (1− n⊗ n)∇u.n〉da+
∮

∂Γ

〈 π︸︷︷︸
edge line force

, ν〉ds,

with f : Ω ⊆ R3 → R3, t : ∂Ω \ Γ ⊆ R3 → R3, M : Ω ⊆ R3 → so(3), g : ∂Ω \ Γ ⊆ R3 → R3 and
π : ∂Γ ⊆ R3 → R3.

From this virtual work principle, we obtain the equilibrium equations

Div (σ + τ̂ +M) + Div M+ f︸ ︷︷ ︸
the total body force

= 0, (3.64)

where

σ = Dsym∇uW (sym∇u,Curl (sym∇u)),

τ̂ = sym[Curl m̂] ∈ Sym(3), (3.65)

m̂ = DCurl (sym∇u)W (sym∇u,Curl (sym∇u))

and the following traction boundary conditions

[(σ + τ̂).n−∇[(sym M̂) (1− n⊗ n)] : (1− n⊗ n)] (x) = t(x) −M.n,︸ ︷︷ ︸
the total traction condition

[(1− n⊗ n)(sym M̂).n] (x) = [(1− n⊗ n) g] (x),





x ∈ ∂Ω \ Γ
(3 bc)

(2 bc)

(3.66)

{([sym M̂ ]+ − [sym M̂ ]−). ν} (x) = π, x ∈ ∂Γ (3 bc)

where Γ is an arbitrary open subset of ∂Ω.
In Subsection 3.3 and Appendix A we show that the traction boundary conditions in the Curl (sym(∇u))-

formulation do not coincide pointwise with those arising from∇[axl(skew∇u)]-formulation, even if the boundary
virtual power works are identical.
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✬

✫

✩

✪

Incomplete-standard boundary conditions in the ∇[axl(skew∇u)]–formulation [72]

Geometric (essential) boundary conditions (3+2) [correct]

u
∣∣
Γ
= ũ0 ∈ R3, (1− n⊗ n).curlu

∣∣
Γ
= (1− n⊗ n).curl ũ0 ∈ R3, or (1− n⊗ n)∇u.n

∣∣
Γ
= (1− n⊗ n)∇ũ0.n ∈ R3

Mechanical (traction) boundary conditions (3+2) [erroneous]
(
(σ − τ̃). n− 1

2
n×∇[〈n, (sym m̃).n〉]

) ∣∣
∂Ω\Γ

= t̃, τ̃ = Div m̃ = 1
2
anti(Div m̃) ∈ so(3)

(1− n⊗ n) m̃. n
∣∣
∂Ω\Γ

= (1− n⊗ n) h̃

3 bc

2 bc

Boundary virtual work

−
∫
∂Ω

〈(σ − τ̃). n, δu〉 da −
∫
∂Ω

〈m̃. n, axl(skew∇δu)〉 da = 0 ⇔

−
∫
∂Ω〈

{
(σ − τ̃). n− 1

2
n×∇[〈n, (sym m̃).n〉]︸ ︷︷ ︸

normal curvature

}
, δu〉 da −

∫
∂Ω〈m̃.n,

{
(1− n⊗ n) [axl(skew∇δu)]

}
〉 da = 0

m✬

✫

✩

✪

Incomplete-standard boundary conditions in the ∇[axl(skew∇u)]–formulation, written in indices [58]

Geometric (essential) boundary conditions (3+2) [correct]

ui

∣∣
Γ
= ũ0

,i ∈ R3,
(
ǫiklul,k − ǫjklul,knjni

) ∣∣
Γ
= ǫiklũ

0
l,k

− ǫjklũ
0
l,k

njni

or
(
ui,knk − uj,knknjni

) ∣∣
Γ
= ũ0

i,k
nk − ũ0

j,k
nknjni

Mechanical (traction) boundary conditions (3+2) [erroneous]
(
(σij − τ̃ij)nj − 1

2
ǫiklnk(m̃ijninj),l

) ∣∣
∂Ω\Γ

= t̃i, τ̃ij = 1
2
ǫjikm̃kl,l ∈ so(3)

(
m̃iknk − m̃jknknjni

) ∣∣
∂Ω\Γ

= h̃i − h̃jnjni

3 bc

2 bc

Boundary virtual work

−
∫
∂Ω ((σij − τ̃ij)nj) δui da−

∫
∂Ω〈m̃. n, axl(skew∇δu)〉 da = 0 ⇔

−
∫
∂Ω

(
(σij − τ̃ij)nj − 1

2
ǫiklnk(m̃ijninj),l

)
δui da− 1

2

∫
∂Ω

(
m̃iknk − m̃jknknjni

) (
ǫiklδul,k − ǫjklδul,knjni

)
da = 0

Figure 4: The incompletely boundary conditions in the ∇[axl(skew∇u)]–formulation which have been employed
hitherto by all authors to our knowledge. The virtual displacement is denoted by δu ∈ C∞(Ω,R3). The
number of traction boundary conditions is correct, but the split into independent variations at the boundary is
incomplete, as shown in [61].
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✬

✫

✩

✪

Boundary conditions in the ∇[axl(skew∇u)]–formulation in terms of gradient elasticity

and third order moment tensors, see [61]

Geometric (essential) boundary conditions (3+2)

u
∣∣
Γ
= ũ0 ∈ R3, (1− n⊗ n)∇u.n

∣∣
Γ
= (1− n⊗ n)∇ũ0.n ∈ R3, or (1− n⊗ n).curlu

∣∣
Γ
= (1− n⊗ n).curl ũ0 ∈ R3

Mechanical (traction) boundary conditions (3+2)

((σ −Div m̃). n−∇[(m̃. n) (1− n⊗ n)] : (1− n⊗ n))
∣∣
∂Ω\Γ

= t̃, m̃ = D∇∇u[W̃curv(∇[axl(skew∇u)])]

(1− n⊗ n)[m̃. n].n
∣∣
∂Ω\Γ

= (1− n⊗ n) h̃

([m̃. n]+ − [m̃. n]−). ν
∣∣
∂Γ

= π̃ “edge line force” on ∂Γ

3 bc

2 bc

3 bc

Boundary virtual work

−
∫
∂Ω

〈(σ −Div m̃). n, δu〉 da−
∫
∂Ω

〈m̃. n,∇δu〉 da = 0 ⇔

−
∫
∂Ω

〈(σ −Div m̃). n−∇[(m̃. n) (1− n⊗ n)] : (1− n⊗ n), δu〉 da −
∫
∂Ω

〈(1− n⊗ n)[m̃. n].n,∇δu.n〉da

−
∫
∂Γ〈([m̃. n]+ − [m̃. n]−). ν, δu〉ds = 0

m equivalent✬

✫

✩

✪

Boundary conditions (3+2) in the ∇[axl(skew∇u)]–formulation in terms of gradient elasticity, third order

moment tensors, and written in indices, see [61]

Geometric (essential) boundary conditions (3+2)

ui

∣∣
Γ
= ũ0

i , (ui,knk − uj,knjnkni)
∣∣
Γ
= ũ0

i,k
nk − ũ0

j,k
ninjnk,

or (ǫiklul,k − ǫjklul,knjni)
∣∣
Γ
= (ǫiklũ

0
l,k

− ǫjklũ
0
l,k

njni),

Mechanical (traction) boundary conditions (3+2)[(
σij − m̃ijk,k

)
nj −

(
m̃ipk nk − m̃ijk nknjnp

)
,h

(
δph − npnh

)] ∣∣
∂Ω\Γ

= t̃i, m̃ijk = Du,ijk
W̃curv

((
ǫijkuk,j

)
,m

)

(
m̃ijp nj − m̃pjk nknjni

)
np

∣∣
∂Ω\Γ

= h̃i − h̃pnpni

([m̃pjk nk]
+ − [m̃pjk nk]

−). νj
∣∣
∂Γ

= π̃p “edge line force” on ∂Γ

3 bc

2 bc

3 bc

Figure 5: The complete-standard boundary conditions in the ∇[axl(skew∇u)]–formulation in terms of a third
order couple stress tensor coming from full gradient elasticity. The virtual displacement is denoted by δu ∈
C∞(Ω,R3). The summation convention was used in index notations.
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4 Relation to the Cosserat-micropolar and micromorphic model

We have seen that it is irrelevant whether we take∇[axl(skew∇u)] or Curl (sym∇u) as basic curvature measures
for the indeterminate couple stress model as long as consistent requirements on Γ = ∂Ω are considered and the
following Dirichlet conditions are used both together

u
∣∣
Γ
= u0, (1− n⊗ n)∇u.n

∣∣
Γ
= (1− n⊗ n)∇u0.n ⇔ u

∣∣
Γ
= u0, (1− n⊗ n).curlu

∣∣
Γ
= (1− n⊗ n).curlu0.

The difference of the formulation appears only when considering mixed Dirichlet-Neumann boundary conditions.
However, when we want to switch from a 4th-order (gradient elastic) problem to a 2nd-order micromorphic model
or Cosserat model [15, 81, 28], we need to introduce new independent variables and decide about the useful
coupling conditions in terms of adding a penalty term. It is also clear that adding more variables it depends on
the number of the added fields whether the new formulation is weaker softer in the language of a finite element
context. In general, more degrees of freedom mean weaker response, at the prize of needing to specify more
boundary conditions.

We discuss the following cases:

i) [Cosserat] skew∇u 7→ A ∈ so(3). In the case∇[axl(skew∇u)] we are led to introduce a skew-symmetric
variable A ∈ so(3) instead of skew∇u, thus using the curvature tensor ∇ axl(A) together with the coupling

µc ‖ skew(∇u)−A‖2 = µc

2
‖curlu− 2 axl(A)‖2,

leading to the classical Cosserat model, with a new penalty parameter µc > 0 known as the Cosserat
couple modulus. To be more precise, the corresponding minimization problem becomes

I(u,A) =

∫

Ω

[
µ ‖sym∇u‖2 + λ

2
[tr(sym∇u)]2 + µc‖ skew(∇u)−A‖2

+ µL2
c

(
α1‖ dev sym∇ axl(A)‖2 + α2 tr[∇ axl(A)]2 + α2‖skew∇ axl(A)‖2

)]
dV → min.

w.r.t u ∈ H1
0 (Ω), A ∈ H1

0 (Ω). In this case, the force-stress tensor is clearly non-symmetric

σ = 2µ sym∇u+ 2µc (skew∇u −A) + λ tr(∇u)1 6∈ Sym(3), (4.1)

and the couple stress tensor (hyperstress tensor) is given by

m̃ = 2µL2
c

(
α1 dev sym∇ axl(A) + α2 tr[∇ axl(A)]1+ α2 skew∇ axl(A)

)
, (4.2)

which is also in general non-symmetric. Note that m̃ has now 3 independent length scale parameters.

ii) [microstrain] sym∇u 7→ ε̂ ∈ Sym(3). In the case of starting with the representation Curl (sym∇u)
we are led to introduce a symmetric tensor variable ε̂ ∈ Sym(3) instead of sym∇u, thus using the curvature
measure Curl ε̂ together with the coupling

κ
+‖ sym∇u− ε̂‖2,

leading to a “microstrain” theory [33, 78], the minimization problem is now

I(u, ε̂) =

∫

Ω

[
µ ‖sym∇u‖2 + λ

2
[tr(sym∇u)]2 + κ

+‖ sym∇u− ε̂‖2

+ µL2
c

(
β1‖ dev symCurl ε̂‖2 + β3‖skewCurl ε̂‖2

)]
dV → min.

w.r.t u ∈ H1
0 (Ω), ε̂ ∈ H1

0 (Curl ; Ω), and, in this case, the force-stress tensor is symmetric

σ = 2µ sym∇u + 2κ+ (sym∇u − ε̂) + λ tr(∇u)1 ∈ Sym(3), (4.3)

31



✬

✫

✩

✪

Correct boundary conditions in the ∇[axl(skew∇u)]-formulation (∇(curl u)-formulation), see [61]

Geometric (essential) boundary conditions (3+2)

u
∣∣
Γ
= ũ0 ∈ R3, (1− n⊗ n)∇u.n

∣∣
Γ
= (1− n⊗ n)∇ũ0.n ∈ R3, or (1− n⊗ n).curlu

∣∣
Γ
= (1− n⊗ n).curl ũ0 ∈ R3

Mechanical (traction) boundary conditions (3+2)
(
(σ − τ̃). n− 1

2
n×∇[〈n, (sym m̃).n〉]− 1

2
∇[(anti[(1− n⊗ n)m̃. n])(1− n⊗ n)] : (1− n⊗ n)

) ∣∣
∂Ω\Γ

= t̃,

(1− n⊗ n) anti[(1− n⊗ n)m̃. n].n
∣∣
∂Ω\Γ

= (1− n⊗ n) h̃

“edge line force” on ∂Γ: 〈([anti[m̃. n]]+ − [anti[m̃. n]]−). ν
∣∣
∂Γ

= π̃

3 bc

2 bc

3 bc

Boundary virtual work

−
∫
∂Ω

〈(σ − τ̃). n, δu〉 da −
∫
∂Ω

〈m̃. n, axl(skew∇δu)〉 da = 0 ⇔

−
∫
∂Ω

〈
{
(σ − τ̃). n− 1

2
n×∇[〈n, (sym m̃).n〉]︸ ︷︷ ︸

normal curvature

}
, δu〉 da +

∫
∂Ω

〈m̃.n,
{
(1− n⊗ n) [axl(skew∇δu)]

}
〉 da = 0

−
∫
∂Ω〈(σ − τ̃). n− 1

2
n×∇[〈n, (sym m̃).n〉]− 1

2
∇[(anti[(1− n⊗ n)m̃. n]) (1− n⊗ n)] : (1− n⊗ n), δu〉 da

− 1
2

∫
∂Ω〈(1− n⊗ n) anti[(1− n⊗ n)m̃. n].n,∇δu.n〉da − 1

2

∫
∂Γ〈([anti[m̃. n]]+ − [anti[m̃. n]]−). ν, δu〉ds = 0

m equivalent✬

✫

✩

✪

Alternative equivalent correct boundary conditions in the ∇[axl(skew∇u)]-formulation, see [61]

Geometric (essential) boundary conditions (3+2)

u
∣∣
Γ
= ũ0 ∈ R3, (1− n⊗ n)∇u.n

∣∣
Γ
= (1− n⊗ n)∇ũ0.n ∈ R3, or (1− n⊗ n).curlu

∣∣
Γ
= (1− n⊗ n).curl ũ0 ∈ R3

Mechanical (traction) boundary conditions (3+2)
(
(σ − τ̃). n− 1

2
∇[(anti(m̃. n)) (1− n⊗ n)] : (1− n⊗ n)

) ∣∣
∂Ω\Γ

= t̃,

(1− n⊗ n) anti[m̃. n].n
∣∣
∂Ω\Γ

= (1− n⊗ n) h̃

([anti[m̃. n]]+ − [anti[m̃. n]]−). ν
∣∣
∂Γ

= π̃ “edge line force” on ∂Γ

3 bc

2 bc

3 bc

Boundary virtual work

−
∫
∂Ω〈(σ − τ̃). n, δu〉 da −

∫
∂Ω〈m̃. n, axl(skew∇δu)〉 da = 0 ⇔

−
∫
∂Ω

〈(σ − τ̃). n− 1
2
∇[(anti(m̃. n)) (1− n⊗ n)] : (1− n⊗ n), δu〉 da

− 1
2

∫
∂Ω

〈(1− n⊗ n) anti(m̃. n).n,∇δu.n〉da − 1
2

∫
∂Γ

〈([anti[m̃. n]]+ − [anti[m̃. n]]−). ν, δu〉ds = 0

m equivalent✬

✫

✩

✪

Alternative equivalent correct boundary conditions in the ∇[axl(skew∇u)]-formulation, written in indices

Geometric (essential) boundary conditions (3+2)

ui

∣∣
Γ
= ũ0

,i ∈ R3,
(
ǫiklul,k − ǫjklul,knjni

) ∣∣
Γ
= ǫiklũ

0
l,k

− ǫjklũ
0
l,k

njni

or
(
ui,knk − uj,knknjni

) ∣∣
Γ
= ũ0

i,k
nk − ũ0

j,k
nknjni

Mechanical (traction) boundary conditions (3+2)
(
(σij − τ̃ij)nj + 1

2
(ǫihkm̃ksns − ǫijkm̃ksnsnjnh),p(δhp − nhnp)

) ∣∣
∂Ω\Γ

= t̃i,

(ǫipkm̃ksns − ǫjpkm̃ksnsnjni)np

∣∣
∂Ω\Γ

= h̃i − h̃pnpni,

([ǫipkm̃ksns]+ − [ǫipkm̃ksns]−) νp
∣∣
∂Γ

= π̃i “edge line force” on ∂Γ

3 bc

2 bc

3 bc

Figure 6: The possible boundary conditions in the ∇[axl(skew∇u)] and Curl (sym∇u)–formulation. The equiv-
alence of the geometric boundary condition is clear. The virtual displacement is denoted by δu ∈ C∞(Ω,R3).

32



✬

✫

✩

✪

Correct boundary conditions in the Curl (sym∇u)–formulation

Geometric (essential) boundary conditions (3+2)

u
∣∣
Γ
= û0 ∈ R3, (1− n⊗ n)∇u.n

∣∣
Γ
= (1− n⊗ n)∇û0.n ∈ R3, or (1− n⊗ n).curlu

∣∣
Γ
= (1− n⊗ n) curl û0 ∈ R3

Mechanical (traction) boundary conditions (3+2)

(σ + τ̂). n−∇[(sym M̂) (1− n⊗ n)] : (1− n⊗ n)
∣∣
∂Ω\Γ

= t̂,

(1− n⊗ n)(sym M̂).n
∣∣
∂Ω\Γ

= (1− n⊗ n) ĥ,

([sym M̂ ]+ − [sym M̂ ]−). ν
∣∣
∂Γ

= π̂ “edge line force” on ∂Γ

3 bcM̂ =




m̂1 × n

m̂2 × n

m̂3 × n


 , m̂ =




m̂1

m̂2

m̂3




2 bc

3 bc

Boundary virtual work

−
∫
∂Ω〈(σ + τ̂). n, δu〉da −

∫
∂Ω

3∑
i=1

〈m̂i × n, (sym∇δu)i〉 da = 0 ⇔

−
∫
∂Ω

〈(σ + τ̂). n−∇[(sym M̂) (1− n⊗ n)] : (1− n⊗ n), δu〉da −
∫
∂Ω

〈(1 − n⊗ n)(sym M̂).n, (∇δu).n〉da

−
∫
∂Γ

〈([sym M̂ ]+ − [sym M̂ ]−). ν, δu〉ds = 0

m equivalent✬

✫

✩

✪

Correct boundary conditions in the Curl (sym∇u)–formulation, written in indices

Geometric (essential) boundary conditions (3+2)

ui

∣∣
Γ
= û0

,i ∈ R3,
(
ǫiklul,k − ǫjklul,knjni

) ∣∣
Γ
= ǫiklû

0
l,k

− ǫjklû
0
l,k

njni

or
(
ui,knk − uj,knknjni

) ∣∣
Γ
= û0

i,k
nk − û0

j,k
nknjni

Mechanical (traction) boundary conditions (3+2)

(σij + τ̂ij)nj − 1
2
(ǫiklm̂hknl + ǫhklm̂iknl − ǫjklm̂iknlnjnh − ǫiklm̂jknlnjnh),p(δhp − nhnp)

∣∣
∂Ω\Γ

= t̂i,

1
2
(ǫiklm̂pknl + ǫpklm̂iknl − ǫjklm̂pknlnjni − ǫpklm̂jknlnjni)np

∣∣
∂Ω\Γ

= ĥi − ĥpnpni,

1
2
([ǫpklm̂iknl + ǫiklm̂pknl]

+ − [ǫpklm̂iknl + ǫiklm̂pknl]
−) νp

∣∣
∂Γ

= π̂i

3 bc

2 bc

3 bc

Figure 7: The possible boundary conditions in the ∇[axl(skew∇u)] and Curl (sym∇u)–formulation. The equiv-
alence of the geometric boundary condition is clear. The virtual displacement is denoted by δu ∈ C∞(Ω,R3).

33



and the hyperstress-tensor is given by

m̂ = 2µL2
c

(
β1 dev symCurl ε̂+ β3 skewCurl ε̂

)
, (4.4)

which is non-symmetric in general, depending on the material parameters. Note again that tr(Curl ε̂) = 0,
thus the spherical part of the hyperstress tensor vanishes and m̂ features only 2 independent length scale
parameters.

iii) [micromorphic] ∇u 7→ p. In this case we may introduce a tensor p ∈ R3×3 instead of ∇u, and use the
coupling

κ
+‖∇u− p‖2

leading to a micromorphic theory [28, 81], the minimization problem being

I(u, p) =

∫

Ω

[
µ ‖sym∇u‖2 + λ

2
[tr(sym∇u)]2 + κ

+‖∇u− p‖2

+ µL2
c

(
γ1‖ dev symCurl (sym p)‖2 + γ3‖skewCurl (sym p)‖2

)]
dV → min.

w.r.t u ∈ H1
0 (Ω), p ∈ H1

0 (Curl ; Ω). We also point out that the force-stress tensor in this formulation will
be non-symmetric

σ = 2µ sym∇u+ 2κ+ (∇u− P ) + λ tr(∇u)1 (4.5)

= 2µ sym∇u+ 2κ+ skew(∇u − P ) + 2κ+ sym(∇u− P ) + λ tr(∇u)1 6∈ Sym(3)

and the hyperstress tensor (non-symmetric) is given by

m̂ = 2µL2
c

(
γ1 dev symCurl (sym p) + γ3 skewCurl (sym p)

)
. (4.6)

In this formulation tr(Curl sym p) does not appear since tr(Curl sym p) = 0, ∀p ∈ R3×3. Thus the spherical
part of the hyperstress tensor vanishes, and m̂ features only 2 independent length scale parameters.

iv) [relaxed micromorphic] for comparison with other extended continuum models we present the relaxed
micromorphic model [81, 35, 63, 62, 79]. In the relaxed micromorphic model, the minimization problem
is of the type

I(u, p) =

∫

Ω

[
µ ‖sym∇u‖2 + λ

2
[tr(sym∇u)]2 + κ

+ ‖ sym(∇u − p)‖2

+ L2
c

(
α1 ‖ dev symCurl p‖2 + α2 ‖skewCurl p‖2 + α3 [tr(Curl p)]

2
)]
dV

w.r.t u ∈ H1
0 (Ω), p ∈ H1

0 (Curl ; Ω), and the corresponding force-stress tensor is symmetric

σ = 2µ sym∇u + 2κ+ sym(∇u − p) + λ tr(∇u)1 ∈ Sym(3) (4.7)

and the hyperstress tensor is given by

m̂ = 2µL2
c

(
α1 dev symCurl p+ α2 skewCurl p+ α3 tr[Curl p]1

)
, (4.8)

with a non-vanishing spherical part of the hyperstress tensor. Note that m̂ has 3 independent material
parameters.

v) we have also proposed a further relaxed micromorphic model [81, 35, 63, 62, 79], in which case the
minimization problem is of the type

I(u, p) =

∫

Ω

[
µ ‖sym∇u‖2 + λ

2
[tr(sym∇u)]2 + κ

+ ‖ sym(∇u − p)‖2

+ µL2
c

(
α1 ‖ dev symCurl p‖2 + α2 ‖skewCurl p‖2

)]
dV
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w.r.t u ∈ H1
0 (Ω), p ∈ H1

0 (Curl ; Ω), the corresponding force-stress tensor is symmetric

σ = 2µ sym∇u+ 2κ+ sym(∇u− p) + λ tr(∇u)1 ∈ Sym(3), (4.9)

and the hyperstress m̂ is trace free

m̂ = 2µL2
c

(
α1 devCurl p+ α2 skewCurl p

)
. (4.10)

The further relaxed micromorphic model remains well-posed [35]. A still weaker variant is v) with α2 = 0.
Whether this choice is mathematically well-posed is yet unclear.

5 Conclusion

Our new symmetric-conformal Curl (sym∇u)-reformulation has the following crucial properties setting it apart
from existing formulations of couple-stress models:

• the local and the nonlocal force stress tensors (σ, τ̂ ) are both symmetric, while the couple stress tensor
m̂ is symmetric in the conformally-invariant model.

• the curvature energy is conformally invariant and the couple stress tensor m̂ vanishes for conformal
displacement.

• the model has only one additional length scale parameter, similar to the modified couple stress model.

• the model is derived with consistent boundary conditions: either 5 geometrical conditions or 5 mechanical
(traction) conditions. The mechanical conditions are separated into force stress tractions and couple stress
tractions and correspond to completely independent boundary conditions.

• for mixed Dirichlet-Neumann boundary conditions the model does not reduce to the modified indetermi-
nate couple stress model.

The energies in both possible formulations (in terms of ∇[axl(skew∇u)] or Curl (sym∇u)) are the same,
differences appear only once traction boundary conditions are specified. The need for prescribing this or that
boundary conditions determines which model should be used.

In a polar gradient elasticity model we could influence directly continuum rotations without prescribing u
∣∣
Γ
=

0. But this should only be possible in a theory which extends beyond mechanics: for example to magnetic or
electric effects, i.e. needed for particular loading and boundary conditions which excite particular micro-rotations
(“polarization”). In contrast, in a non-polar elasticity model it is not possible to influence directly continuum
rotations but a non-polar model is applicable and much more appropriate in a purely mechanical context (see
Figure 11). The case iv) in Fig. 10 needs mathematical discussion. The extension of the well-posedness to the
finite strain case in which the corresponding Lagrangian may be written as W = W (U) + Wcurv(U,Curl U),
where F = RU is the polar decomposition is yet missing. Some steps in this direction are presented in [54].

6 Epilogue: Much ado about nothing

We have seen how much effort it took us to derive the consistent boundary conditions in the indeterminate couple
stress model. The conceptual advantage of not having to discuss the physical meaning of independent degrees
of freedom is, now, more than outweighed by the burdensome interpretation of traction boundary conditions.
Nevertheless, all presented formulations are shown to be mathematically well-posed. In the last part of the
paper we have had a look at 2nd-order (micromorphic) approximations of the given gradient elastic models.
In these micromorphic models, the boundary conditions are completely transparent. However, it seems that in
this larger class of models there is yet another variant (the relaxed micromorphic model with integral boundary
coupling) which combines conceptual simplicity, symmetry of force stress tensor and symmetry of moment stress
tensor, simplicity of traction boundary conditions and well-posedness to make it superior to all other presented
formulations. With hindsight, we understand why the indeterminate couple stress model had been abandoned
in the late ’60ies. For us it is a mystery how it was possible at all to identify material parameters in a theory
in which boundary conditions had not been conclusively settled?
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✬

✫

✩

✪

skew∇u 7→ A ∈ so(3), degenerate Cosserat model

σ ∼ 2µ sym∇u+ 2µc skew(∇u−A) 6∈ Sym(3)

m = 2µL2
c skew∇ axl(A) ∈ so(3)

E ∼ µ ‖sym∇u‖2 + µc‖ skew∇u− A‖2 + µL2
c ‖skew∇ axl(A)‖2

invariant under: u 7→ u+W.x+ b, b ∈ R3

A 7→ A+W, W ∈ so(3)

well-posed: u ∈ H1(Ω), axl(A) ∈ H(curl; Ω),

degenerate curvature energy,

3 + 2 = 5 geometric bc: u
∣∣
Γ
, 〈axl(A), τα〉

∣∣
Γ

3 + 2 = 5 traction bc: σ.n
∣∣
∂Ω\Γ

, 〈m.n, τα〉
∣∣
∂Ω\Γ

❍❍❍❍❍❍❥

∇u = A

constrain

µc → ∞

✬

✫

✩

✪

i) skew∇u 7→ A ∈ so(3), Cosserat model

σ ∼ 2µ sym∇u+ 2µc skew(∇u−A) 6∈ Sym(3)

m̃ = 2µL2
c ∇ axl(A) ∈ gl(3)

E ∼ µ ‖sym∇u‖2 + µc‖ skew∇u− A‖2+ µL2
c ‖∇ axl(A)‖2

invariant under: u 7→ u+W.x+ b, b ∈ R3

A 7→ A+W, W ∈ so(3)

well-posed: u ∈ H1(Ω), axl(A) ∈ H1(Ω)

3 + 3 = 6 geometric bc: u
∣∣
Γ
, axl(A)

∣∣
Γ

3 + 3 = 6 traction bc: σ.n
∣∣
∂Ω\Γ

, m̃.n
∣∣
∂Ω\Γ✬

✫

✩

✪

ii) sym∇u 7→ ε̂ ∈ Sym(3), microstrain model

σ ∼ 2µ sym∇u+ 2κ+ sym(∇u− ε̂) ∈ Sym(3)

m̂ = 2µL2
c Curl ε̂ ∈ gl(3)

E ∼ µ ‖sym∇u‖2 + κ+‖ sym∇u− ε̂‖2 + µL2
c ‖Curl ε̂‖2

invariant under: u 7→ u+W.x+ b, b ∈ R3

ε̂ 7→ ε̂, W ∈ so(3)

well-posed: u ∈ H1(Ω), ε̂ ∈ H(Curl ; Ω)

3 + 3 · 2 = 9 geometric bc: u
∣∣
Γ
, ε̂. τα

∣∣
Γ

3 + 3 · 2 = 9 traction bc: σ.n
∣∣
∂Ω\Γ

, m̂. τα
∣∣
∂Ω\Γ✬

✫

✩

✪

iii) ∇u 7→ p 6∈ Sym(3), micromorphic

σ ∼ 2µ sym∇u+ 2κ+(∇u− p) 6∈ Sym(3)

m = 2µL2
c Curl sym p ∈ gl(3)

E ∼ µ ‖sym∇u‖2 + κ+‖∇u− p‖2 + µL2
c ‖Curl sym p‖2

invariant under: u 7→ u+W.x+ b, b ∈ R3

p 7→ p +W, W ∈ so(3)

well-posed: u ∈ H1(Ω), p ∈ L2(Ω), sym p ∈ H(Curl ; Ω)

3 + 3 · 2 = 9 geometric bc: u
∣∣
Γ
, [sym p]. τα

∣∣
Γ

3 + 3 · 2 = 9 traction bc: σ.n
∣∣
∂Ω\Γ

, m. τα
∣∣
∂Ω\Γ

✬

✫

✩

✪

Hadjesfandiari-Dargush model

σ ∼ 2µ sym∇u ∈ Sym(3)

m̃ = 2µL2
c skew∇[axl(skew∇u)] ∈ so(3)

τ̃ = 2µL2
c anti[Div (skew∇[axl(skew∇u)])] ∈ so(3)

E ∼ µ ‖sym∇u‖2 + µL2
c ‖skew∇[axl(skew∇u)]‖2

invariant under: u 7→ u+W.x+ b, b ∈ R3

∇u 7→ ∇u+W,W ∈ so(3)

well-posed: u ∈ H1(Ω), curlu ∈ H(curl ; Ω)

5 geometric bc: u
∣∣
Γ
, 〈curl u, τα〉

∣∣
Γ

5 traction bc

✬

✫

✩

✪

limit model-∇ axl skew(∇u) formulation

σ ∼ 2µ sym∇u ∈ Sym(3)

m̃ = 2µL2
c ∇[axl(skew∇u)] = µL2

c ∇(curl u) ∈ gl(3)

τ̃ = 2µL2
c anti[Div (∇[axl(skew∇u)])] ∈ so(3)

E ∼ µ ‖sym∇u‖2 + µL2
c ‖∇[axl(skew∇u)]‖2

invariant under: u 7→ u+W.x+ b, b ∈ R3

∇u 7→ ∇u+W,W ∈ so(3)

well-posed: u ∈ H1(Ω), curlu ∈ H1(Ω)

5 geometric bc: u
∣∣
Γ
, (1− n⊗ n)∇u.n

∣∣
Γ

5 traction bc

✬

✫

✩

✪

limit model-Curl (sym∇u) formulation

σ ∼ 2µ sym∇u ∈ Sym(3)

m̂ = 2µL2
c Curl (sym∇u) ∈ gl(3)

τ̂ = 2µL2
c symCurl (Curl (sym∇u)) ∈ Sym(3)

E ∼ µ ‖sym∇u‖2 + µL2
c ‖Curl (sym∇u)‖2

invariant under: u 7→ u+W.x+ b, b ∈ R3

∇u 7→ ∇u+W, W ∈ so(3)

well-posed: u ∈ H1(Ω), sym∇u ∈ H(Curl ; Ω)

5 geometric bc: u
∣∣
Γ
, (1− n⊗ n)∇u.n

∣∣
Γ

5 traction bc

✲µc → ∞

constrain

∇u = A

constrain

sym∇u = ε̂

κ+ → ∞ ✲

m Γ = ∂Ω. For Dirichlet+Neumann

mixed boundary conditions: different models.

constrain

∇u = p

κ+ → ∞✑
✑
✑
✑
✑
✑✑✸

Figure 8: Different possibilities of lifting the variants of the 4th.-order indeterminate couple stress model to
a 2nd.-order micromorphic or Cosserat-type formulation formulation. In the penalty case, all the considered
alternatives lead to the same limit model provided only geometric boundary conditions are imposed. It is not
surprising that the limit model has some peculiarities since the limit procedure is itself singular. Note that
different micromorphic or Cosserat type formulations generate different sets of boundary conditions. Here τα,
α = 1, 2 denote two independent tangential vectors on the boundary.

✬
✫

✩
✪

∇[axl(skew∇u)] = [Curl (sym∇u)]T but

∇ axl(skew p) 6= [Curl sym p]T for p 6= ∇u

Figure 9: Integrability conditions.
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✬

✫

✩

✪

iv) the relaxed micromorphic model

σ ∼ 2µ sym∇u+ 2κ+ sym(∇u− p) ∈ Sym(3)

m = 2 µL2
c Curl p ∈ gl(3)

E ∼ µ ‖sym∇u‖2 + κ+ ‖ sym(∇u− p)‖2 + µL2
c ‖Curl p‖2

invariant under: u 7→ u+W.x+ b, b ∈ R3

p 7→ p+W, W 6= W, W,W ∈ so(3)

well-posed: u ∈ H1(Ω), p ∈ H(Curl ; Ω)

3 + 3 · 2 = 9 geometric bc: u
∣∣
Γ
, p. τα

∣∣
Γ

3 + 3 · 2 = 9 traction bc: σ.n
∣∣
∂Ω\Γ

, m. τα
∣∣
∂Ω\Γ

✬

✫

✩

✪

v) the further relaxed micromorphic model

σ ∼ 2µ sym∇u+ 2κ+ sym(∇u− p) ∈ Sym(3)

m = 2µL2
c devCurl p ∈ sl(3)

E ∼ µ ‖sym∇u‖2 + κ+ ‖ sym(∇u− p)‖2 + µL2
c ‖dev Curl p‖2

invariant under: u 7→ u+W.x+ b, b ∈ R3

p 7→ p+W, W 6= W, W,W ∈ so(3)

well-posed: u ∈ H1(Ω), p ∈ H(Curl ; Ω)

3 + 3 · 2 = 9 geometric bc: u
∣∣
Γ
, p. τα

∣∣
Γ

3 + 3 · 2 = 9 traction bc: σ.n
∣∣
∂Ω\Γ

, m. τα
∣∣
∂Ω\Γ

✬

✫

✩

✪

limit model: incompatible linear elasticity

σ ∼ 2µ sym p ∈ Sym(3)

m = 2µL2
c Curl p ∈ gl(3)

E ∼ µ ‖sym p‖2 + µL2
c ‖Curl p‖2

invariant under: p 7→ p+W, W ∈ so(3)

well-posed: p ∈ H(Curl ; Ω)

3 · 2 = 6 geometric bc: p. τα
∣∣
Γ

3 · 2 = 6 traction bc: Curl p. τα
∣∣
∂Ω\Γ

✬

✫

✩

✪

classical linear elasticity

σ ∼ 2µ sym∇u ∈ Sym(3)

E ∼ µ ‖sym∇u‖2

invariant under: u 7→ u+W.x+ b

∇u 7→ ∇u+W,W ∈ so(3)

well-posed: u ∈ H1(Ω), ∇u ∈ H(Curl ; Ω)

3 geometric bc: u
∣∣
Γ

3 traction bc: σ.n
∣∣
∂Ω\Γ

constrain

sym∇u = sym p

κ+ → ∞
✲

Lc → ∞

❄

✬

✫

✩

✪

limit model: incompatible linear elasticity

σ ∼ 2µ sym p ∈ Sym(3)

m = 2µL2
c symCurl p ∈ gl(3)

E ∼ µ ‖sym p‖2 + µL2
c ‖ symCurl p‖2

invariant under: p 7→ p+W, W ∈ so(3)

well-posed: p ∈ H(Curl ; Ω)

3 · 2 = 6 geometric bc: p. τα
∣∣
Γ

3 · 2 = 6 traction bc: m. τα
∣∣
∂Ω\Γ

✻
Lc → ∞constrain❆

❆
❆
❆
❆
❆
❆
❆
❆❯

sym∇u = sym p

κ+ → ∞

✬

✫

✩

✪

vi) another relaxed micromorphic model

σ ∼ 2µ sym∇u+ 2κ+ sym(∇u− p) ∈ Sym(3)

m = 2µL2
c symCurl p ∈ Sym(3), symmetric

E ∼ µ ‖sym∇u‖2 + κ+ ‖ sym(∇u− p)‖2 + µL2
c ‖ symCurl p‖2

invariant under: u 7→ u+W.x+ b, b ∈ R3

p 7→ p+W, W 6= W, W,W ∈ so(3)

well-posedness not clear : u ∈ H1(Ω), p ∈ H(Curl ; Ω)

3 + 3 · 2 = 9 geometric bc: u
∣∣
Γ
, p. τα

∣∣
Γ

3 + 3 · 2 = 9 traction bc: σ.n
∣∣
∂Ω\Γ

, m. τα
∣∣
∂Ω\Γ

✬

✫

✩

✪

vii) relaxed micromorphic model with integral boundary coupling

σ ∼ 2µ sym∇u+ 2κ+ sym(∇u− p) ∈ Sym(3)

m = 2µL2
c Curl p ∈ gl(3)

E ∼ µ ‖sym∇u‖2 + κ+ ‖ sym(∇u− p)‖2 + µL2
c ‖Curl p‖2

+
∫
Γ ‖(∇u− p)× n‖2da

invariant under: u 7→ u+W.x+ b, b ∈ R3

p 7→ p+W, W 6= W, W,W ∈ so(3)

well-posed: u ∈ H1(Ω), p ∈ H(Curl ; Ω)

3 geometric bc: u
∣∣
Γ

3 + 3 · 2 = 9 traction bc: σ.n
∣∣
∂Ω\Γ

, m. τα
∣∣
∂Ω\Γ

Figure 10: For comparison, the same situation as in Fig. 8 for the relaxed micromorphic model and the further
relaxed micromorphic model [81]. The first two micromorphic formulations are well-posed. In our view these
models are advantageous as compared to the models in Fig. 8. Note also that the boundary conditions for
the new microdistortion field p has 6 degrees of freedom, the only physical and mathematical possible choice is
p×n

∣∣
Γ
= 0 on Γ, where Dirichlet-boundary conditions u

∣∣
Γ
= 0 are prescribed. In the case of non-homogeneous

(non-zero) boundary prescription u on Γ, we would need to modify the total energy by adding as a boundary
term

∫
Γ ‖(∇u − p) × n‖2ds. This will introduce a certain coupling at the boundary. The model in this format

is still well-posed and awaits to be further investigated. A nonlinear modification of this model is investigated
in [54].
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✛
✚

✘
✙Size effects

”Smaller is stiffer”

✲

❄

✬

✫

✩

✪
Not only rotational interaction D2u

gradient elasticity: Wcurv(D2u)

m = DD2uWcurv(D2u), third order

✛

✬
✫

✩
✪

Strain gradient elasticity

Wcurv(∇ (sym∇u))

m = D∇ (sym∇u)Wcurv(∇ (sym∇u)), third order

Only rotational interaction through continuum rotation Wcurv(∇(curl u)) = Wcurv(Curl (sym∇u))

k̃ = ∇[axl(skew∇u)] = 1
2
∇curlu

✗
✖

✔
✕Cauchy-Boltzmann axiom

σtotal = σ
T

total

purely mechanical interaction

❄

❄

✗
✖

✔
✕k̃ = k̂T

integrability condition

k̂ = Curl (sym∇u)
�

�
�✠

❳❳❳❳❳❳❳❳❳❳❳❳❳❳③★
✧

✥
✦

polar gradient elasticity

indeterminate couple stress

m̃ = D
k̃
Wcurv(k̃), second order

❄

❳❳❳❳❳③
✘✘✘✘✘✾

✛
✚

✘
✙✲ non-polar gradient elasticity

m̂ = D
k̂
Wcurv(k̂), second order

difference of formulation

is a Null-Lagrangian in
the balance of linear momentum

and sym m̃ = sym m̂

❄
Grioli-Toupin-Koiter-Mindlin

µ ‖ sym∇u‖2

+µL2
c ‖∇ axl(skew∇u)‖2

2 curvature parameters

couple stress tensor m̃ ∈ gl(3)

nonlocal force-stress τ̃ ∈ so(3)

unique solution

extendable to a

Cosserat formulation

axl(A) ∈ H1(Ω)

✎✍ ☞✌Modified couple stress model

conformally invariant

µ ‖ sym∇u‖2

+µL2
c‖dev sym∇[axl(skew∇u)]‖2

1 curvature parameter

couple stress tensor m̃ ∈ Sym(3)

nonlocal force-stress τ̃ ∈ so(3)

unique solution

extendable to a

Cosserat formulation

axl(A) ∈ H1(Ω)

Hadjesfandiari-Dargush

µ ‖ sym∇u‖2

+µL2
c ‖ skew∇[axl(skew∇u)]‖2

1 curvature parameter

couple stress tensor m̃ ∈ so(3)

nonlocal force-stress τ̃ ∈ so(3)

unique solution

extendable to a

Cosserat formulation

axl(A) ∈ H(curl ; Ω)

Curl -formulation

µ ‖ sym∇u‖2

+µL2
c ‖Curl (sym∇u)‖2

2 curvature parameters

couple stress tensor m̂ ∈ gl(3)

nonlocal force-stress τ̂ ∈ Sym(3)

unique solution

extendable to a

microstrain formulation

ε̂ ∈ H(Curl ; Ω)

❄

✲✛
m̃ = m̂ for α2 = 0

m̃ = −m̂ for α1 = 0

m̃ = µ L2
c {α1 dev sym ∇[axl(skew∇u)]

+α2 skew∇[axl(skew ∇u)]}

m̂ = µ L2
c {2α1 dev symCurl (sym∇u)

+2α2 skewCurl (sym∇u)}

✲✛ /
τ̃ 6= τ̂

τ̃ := anti Div m̃ ∈ so(3)

τ̂ := symCurl m̂ ∈ Sym(3)

☛✡ ✟✠new conformally-invariant model

µ ‖ sym∇u‖2

+µL2
c ‖dev symCurl (sym∇u)‖2

1 curvature parameter

couple stress tensor m̂ ∈ Sym(3)

nonlocal force-stress τ̂ ∈ Sym(3)

unique solution, well posed

extendable to a

microstrain formulation

ε̂ ∈ H(Curl ; Ω)

Figure 11: Some models involving size effects and their interrelation. The given energy expressions are only
meant to represent the main features of the models: µ ‖ sym∇u‖2 represents the linear elastic energy which
may be anisotropic 〈C. sym∇u, sym∇u〉, while µL2

c‖∇[axl(skew∇u)]‖2 represents the curvature energy, which
could also be anisotropic.

✬

✫

✩

✪

τ̂ = µL2
c sym︸︷︷︸Curl︸ ︷︷ ︸ {2α1 dev symCurl︸ ︷︷ ︸(sym︸︷︷︸∇u) + 2α2 skewCurl (sym∇u)} = symCurl (m̂) ∈ Sym(3)

✻ ✻

τ̃ = µL2
c anti︸︷︷︸ Div︸︷︷︸{α1 dev sym ∇︸︷︷︸ axl(skew︸ ︷︷ ︸∇u) + α2 skew∇[axl(skew∇u)]} = antiDiv(m̃) ∈ so(3)

✻ ✻

Div(τ̂ − τ̃ ) = 0

Figure 12: The two possibilities of defining a nonlocal force stress tensor: either τ̂ is symmetric in the
Curl (sym∇u) formulation or τ̃ is antisymmetric in the ∇[axl(skew∇u)] formulation. The difference between
both stresses is a divergence-free stress field (a self-equilibrated force field).
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[61] A. Madeo, I.D. Ghiba, P. Neff, and I. Münch. Incomplete traction boundary conditions in Grioli-Koiter-Mindlin-Toupin’s
indeterminate couple stress model. in preparation, 2015.

[62] A. Madeo, P. Neff, I.D. Ghiba, L. Placidi, and G. Rosi. Band gaps in the relaxed linear micromorphic continuum. Z. Angew.
Math. Mech., doi 10.1002 / zamm.201400036, 2014.

[63] A. Madeo, P. Neff, I.D. Ghiba, L. Placidi, and G. Rosi. Wave propagation in relaxed linear micromorphic continua: modelling
metamaterials with frequency band-gaps. Cont. Mech. Therm., doi 10.1007/s00161-013-0329-2, 2014.

[64] G.A. Maugin. The method of virtual power in continuum mechanics: application to coupled fields. Acta Mech., 35(1-2):1–70,
1980.

[65] G.A. Maugin. Generalized continuum mechanics: What do we mean by that? In G.A. Maugin and V.A. Metrikine, editors,
Mechanics of Generalized Continua, volume 21 of Advances in Mechanics and Mathematics, pages 3–13. Springer, 2010.

[66] G.A. Maugin. The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool.
In memory of Paul Germain (1920-2009). Cont. Mech. Thermodyn., 25:127–146, 2013.

[67] G.A. Maugin. Continuum Mechanics Through the Eighteenth and Nineteenth Centuries: Historical Perspectives from John
Bernoulli (1727) to Ernst Hellinger (1914), volume 214. Springer, 2014.

[68] J.A. McLennan. Symmetry of the stress tensor. Physica, 32(4):689–692, 1966.

[69] R.D. Mindlin. Micro-structure in linear elasticity. Arch. Rat. Mech. Anal., 16:51–77, 1964.

[70] R.D. Mindlin. Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct., 1:417–438, 1965.

[71] R.D. Mindlin and N.N. Eshel. On first strain-gradient theories in linear elasticity. Int. J. Solids Struct., 4:109–124, 1968.

[72] R.D. Mindlin and H.F. Tiersten. Effects of couple stresses in linear elasticity. Arch. Rat. Mech. Anal., 11:415–447, 1962.

[73] A. Morro and M. Vianello. Interstitial energy flux and stress-power for second-gradient elasticity. Math. Mech. Solids, doi:
10.1177/1081286514522475, 2014.

[74] I. Münch, P. Neff, A. Madeo, and I.D. Ghiba. The modified indeterminate couple stress model: Why Yang’s et al. arguments
motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric
nevertheless. in preparation, 2015.

[75] P. Neff. On Korn’s first inequality with nonconstant coefficients. Proc. Roy. Soc. Edinb. A, 132:221–243, 2002.

[76] P. Neff. The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z.
Angew. Math. Mech., 86:892–912, 2006.

[77] P. Neff. A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci., 44:574–594,
2006.

[78] P. Neff and S. Forest. A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure.
Modelling, existence of minimizers, identification of moduli and computational results. J. Elasticity, 87:239–276, 2007.

[79] P. Neff, I.D. Ghiba, M. Lazar, and A. Madeo. The relaxed linear micromorphic continuum: well-posedness of the static
problem and relations to the gauge theory of dislocations. Q. J. Mech. Appl. Math., 68:53–84, 2015.

[80] P. Neff, I.D. Ghiba, A. Madeo, and I. Münch. Correct traction boundary conditions in the indeterminate couple stress model.
submited, Preprint arXiv:1504.00448, 2015.

[81] P. Neff, I.D. Ghiba, A. Madeo, L. Placidi, and G. Rosi. A unifying perspective: the relaxed linear micromorphic continuum.
Cont. Mech. Therm., 26:639–681, 2014.

[82] P. Neff and J. Jeong. A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. Z.
Angew. Math. Mech., 89(2):107–122, 2009.

[83] P. Neff, J. Jeong, and A. Fischle. Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending
and torsion implies conformal invariance of curvature. Acta Mech., 211(3-4):237–249, 2010.

[84] P. Neff, J. Jeong, I. Münch, and H. Ramezani. Linear Cosserat Elasticity, Conformal Curvature and Bounded Stiffness.
In G.A. Maugin and V.A. Metrikine, editors, Mechanics of Generalized Continua. One hundred years after the Cosserats,
volume 21 of Advances in Mechanics and Mathematics, pages 55–63. Springer, Berlin, 2010.

[85] P. Neff, J. Jeong, and H. Ramezani. Subgrid interaction and micro-randomness - novel invariance requirements in infinitesimal
gradient elasticity. Int. J. Solids Struct., 46(25-26):4261–4276, 2009.

[86] P. Neff and I. Münch. Curl bounds Grad on SO(3). ESAIM: Control, Optimisation and Calculus of Variations, 14(1):148–159,
2008.

[87] P. Neff, I. Münch, I.D. Ghiba, and A. Madeo. On some fundamental misunderstandings in the indeterminate couple stress
model. A comment on the recent papers [A.R. Hadjesfandiari and G.F. Dargush, Couple stress theory for solids, Int. J. Solids
Struct. 48, 2496–2510, 2011; A.R. Hadjesfandiari and G.F. Dargush, Fundamental solutions for isotropic size-dependent
couple stress elasticity, Int. J. Solids Struct. 50, 1253–1265, 2013.]. in preparation, 2015.

[88] S. Nikolov, C.S. Han, and D. Raabe. On the origin of size effects in small-strain elasticity of solid polymers. Int. J. Sol.
Struct., 44(5):1582–1592, 2007.

[89] W. Nowacki. Theory of Asymmetric Elasticity. (polish original 1971). Pergamon Press, Oxford, 1986.

41

http://arxiv.org/abs/1504.00448


[90] J.F. Nye. Some geometrical relations in dislocated crystals. Acta Metall., 1:153–162, 1953.

[91] G. Paria. Constitutive equations in Cosserat elasticity. J. Eng. Math., 4(3):203–208, 1970.

[92] S.K. Park and X.L. Gao. Variational formulation of a simplified strain gradient elasticity theory and its application to a
pressurized thick-walled cylinder problem. Int. J. Solids Struct., 44:7486–7499, 2007.

[93] S.K. Park and X.L. Gao. Variational formulation of a modified couple stress theory and its application to a simple shear
problem. Z. Angew. Math. Mech., 59:904–917, 2008.

[94] A. Rinaldi and L. Placidi. A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous
lattices. Z. Angew. Math. Mech., 94(10):862–877, 2014.

[95] G. Rosi, I. Giorgio, and V. Eremeyev. Propagation of linear compression waves through plane interfacial layers and mass
adsorption in second gradient fluids. Z. Angew. Math. Mech., 93(12):914–927, 2013.
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III/3. Springer, Heidelberg, 1965.

[105] C. Truesdell and R. Toupin. The classical field theories. In S. Flügge, editor, Handbuch der Physik, volume III/1. Springer,
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A The traction boundary conditions in the Curl (sym∇u)-formulation

and in the ∇[axl(skew∇u)]-formulation are different

In this section we prove the claim from Subsection (3.3), i.e. we show that the possible traction boundary conditions in the
∇[axl(skew∇u)]-formulation and the Curl (sym∇u)-formulation are different.

We consider a point P at the boundary and we show that (2) 6= (2′) in this point. Without confining, we consider that the
system of coordinates is initially chosen such that the normal vector on the boundary at this point P is n = e1 := (1, 0, 0). Since
there are no derivatives in (2) and (2′), it is enough to prove that

(1− e1 ⊗ e1)(sym M̂).e1 6=
1

2
(1− e1 ⊗ e1) anti(m̃. e1).e1. (A.1)

On one hand, we have

sym M̂.e1 = sym




(m̂11e1 + m̂12e2 + m̂13e3)× e1
(m̂21e1 + m̂22e2 + m̂23e3)× e1
(m̂31e1 + m̂32e2 + m̂33e3)× e1


 . e1 = sym




−m̂12e3 + m̂13e2
−m̂22e3 + m̂23e2
−m̂32e3 + m̂33e2


 . e1 (A.2)

= sym




0 m̂13 −m̂12

0 m̂23 −m̂22

0 m̂33 −m̂32


 . e1 =

1

2




0 m̂13 −m̂12

m̂13 m̂23 −m̂22 + m̂33

−m̂12 −m̂22 + m̂33 −m̂32


 . e1 =

1

2




0
m̂13

−m̂12


 ,

and therefore

(1− e1 ⊗ e1)(sym M̂).e1 =




0 0 0
0 1 0
0 0 1


 1

2




0
m̂13

−m̂12


 =

1

2




0
m̂13

−m̂12


 . (A.3)
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On the other hand, we obtain

anti(m̃. e1).e1 = anti(m̃11, m̃21, m̃31).e1 =




0 m̃31 −m̃21

−m̃31 0 m̃11

m̃21 −m̃11 0


 .e1 =




0
−m̃31

m̃21


 . (A.4)

Hence, we deduce

(1− e1 ⊗ e1) anti(m̃. e1).e1 =




0 0 0
0 1 0
0 0 1







0
−m̃31

m̃21


 =




0
−m̃31

m̃21


 . (A.5)

We may conclude that (2) = (2′) implies

m̂13 = −m̃31, m̂23 = −m̃32. (A.6)

Let us now point out that m̂ and m̃ are not independent, see Figure 11. Considering the case α2 = 0 we have m̂ = m̃ ∈ Sym(3),
while considering α1 = 0 we have m̂ = −m̃ ∈ so(3). Therefore, in the conformal invariant case α2 = 0 and also in the case α1 = 0,
since the condition (A.6) does not hold true, it follows that (2) 6= (2′).

If the boundary conditions imply the continuity of m̃ and m̂, then (3) = (3′) = 0. However, if m̃ and m̂ are not continuous
across the curve ∂Γ, considering again a point P ∈ ∂Γ and considering, without confining, that the system of coordinates is initially
chosen such that the normal vector on the boundary at this point P is n = e1 := (1, 0, 0) and ν = e3 := (0, 0, 1), we prove that

sym M̂.e3 6= anti(m̃. e1).e3. (A.7)

Doing similar calculations as above, we deduce

sym M̂.e3 =
1

2




0 m̂13 −m̂12

m̂13 m̂23 −m̂22 + m̂33

−m̂12 −m̂22 + m̂33 −m̂32


 . e3 =

1

2




−m̂12

−m̂22 + m̂33

−m̂32


 (A.8)

and

anti(m̃. e1).e3 =




0 m̃31 −m̃21

−m̃31 0 m̃11

m̃21 −m̃11 0


 .e3 =




−m̃21

m̃11

0


 . (A.9)

We remark that in both particular cases, the conformal invariance model α2 = 0 and the case α1 = 0, we deduce that sym M̂.e3 6=

anti(m̃. e1).e3, in general. However, even if sym M̂.e3 6= anti(m̃. e1).e3, the jump (c) may coincide with the jump (c′).
Let us remark that in order to compare (1) and (1′) we may not proceed as above. However, we will prove that (1) 6= (1′) in a

specific situation. We assume that there is an open subset ω ⊂ ∂Ω such that on ω the normal vector n is constant. Let us consider
a point P ∈ ω. We may assume for simplicity that n = e1 at all points P ∈ ω. Upon this assumption on the domain Ω, at the
point P ∈ ω we obtain

(∇[(sym M̂) T ] : T = ∇[
1

2




0 m̂13 −m̂12

m̂13 m̂23 −m̂22 + m̂33

−m̂12 −m̂22 + m̂33 −m̂32







0 0 0
0 1 0
0 0 1


].




0 0 0
0 1 0
0 0 1




=
1

2
∇[




0 m̂13 −m̂12

0 m̂23 −m̂22 + m̂33

0 −m̂22 + m̂33 −m̂32


].




0 0 0
0 1 0
0 0 1


 (A.10)

=
1

2




m̂13,2 − m̂12,3

m̂23,2 − m̂22,3 + m̂33,3

−m̂22,2 + m̂33,2 − m̂32,3




and

symCurl (m̂). n = sym




m̂13,2 − m̂12,3 m̂11,3 − m̂13,1 m̂12,1 − m̂11,2

m̂23,2 − m̂22,3 m̂21,3 − m̂23,1 m̂22,1 − m̂21,2

m̂33,2 − m̂32,3 m̂31,3 − m̂33,1 m̂32,1 − m̂31,2


 .e1 (A.11)

=
1

2




m̂13,2 − m̂12,3 m̂11,3 − m̂13,1 + m̂23,2 − m̂22,3 m̂12,1 − m̂11,2 + m̂33,2 − m̂32,3

m̂11,3 − m̂13,1 + m̂23,2 − m̂22,3 m̂21,3 − m̂23,1 m̂22,1 − m̂21,2 + m̂31,3 − m̂33,1

m̂12,1 − m̂11,2 + m̂33,2 − m̂32,3 m̂22,1 − m̂21,2 + m̂31,3 − m̂33,1 m̂32,1 − m̂31,2


 .e1

=
1

2




m̂13,2 − m̂12,3

m̂11,3 − m̂13,1 + m̂23,2 − m̂22,3

m̂12,1 − m̂11,2 + m̂33,2 − m̂32,3


 .

Therefore, we deduce

symCurl (m̂). n− (∇[(sym M̂)T ] : T =
1

2




m̂13,2 − m̂12,3

m̂11,3 − m̂13,1 + m̂23,2 − m̂22,3

m̂12,1 − m̂11,2 + m̂33,2 − m̂32,3


−

1

2




m̂13,2 − m̂12,3

m̂23,2 − m̂22,3 + m̂33,3

−m̂22,2 + m̂33,2 − m̂32,3




=
1

2




m̂13,2 − m̂12,3 − m̂13,2 + m̂12,3

m̂11,3 − m̂13,1 + m̂23,2 − m̂22,3 − m̂23,2 + m̂22,3 − m̂33,3

m̂12,1 − m̂11,2 + m̂33,2 − m̂32,3 + m̂22,2 − m̂33,2 + m̂32,3


 (A.12)

=
1

2




m̂13,2 − m̂12,3 − m̂13,2 + m̂12,3

m̂11,3 − m̂13,1 − m̂33,3

m̂12,1 − m̂11,2 + m̂22,2


 .
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Moreover, we obtain

1

2
∇[(anti(m̃. n))T ] : T =

1

2
∇[(anti(m̃. e1))T ] : T =

1

2
∇[(anti(m̃11, m̃21, m̃31)) T ] : T (A.13)

=
1

2
∇[




0 m̃31 −m̃21

−m̃31 0 m̃11

m̃21 −m̃11 0







0 0 0
0 1 0
0 0 1


]. T

=
1

2
∇[




0 m̃31 −m̃21

0 0 m̃11

0 −m̃11 0


].




0 0 0
0 1 0
0 0 1


 =

1

2




m̃31,2 − m̃21,3

m̃11,3

−m̃11,2




and

1

2
anti Div[m̃]. n =

1

2
anti(m̃1j,j , m̃2j,j , m̃3j,j ).e1 =

1

2




0 m̃3j,j −m̃2j,j

−m̃3j,j 0 m̃1j,j

m̃2j,j −m̃1j,j 0


 .e1

=
1

2




0
−m̃3j,j

m̃2j,j


 (A.14)

Hence, it follows that

−
1

2
anti Div[m̃]. n−

1

2
∇[(anti(m̃. n)) T ] : T = −

1

2




0
−m̃3j,j

m̃2j,j


−

1

2




m̃31,2 − m̃21,3

m̃11,3

−m̃11,2




= −
1

2




m̃31,2 − m̃21,3

−m̃3j,j + m̃11,3

m̃2j,j − m̃11,2


 . (A.15)

Concluding, (1) = (1′) if and only if



m̂13,2 − m̂12,3

m̂11,3 − m̂13,1 + m̂23,2 − m̂22,3

m̂12,1 − m̂11,2 + m̂33,2 − m̂32,3


 =




−m̃31,2 + m̃21,3

m̃3j,j − m̃11,3

−m̃2j,j + m̃11,2


 , (A.16)

which holds not true, in general. In the conformal case, the above condition reads

m̂13,2 = m̂12,3, 2 m̂11,3 − 2 m̂13,1 = m̂22,3 + m̂33,3 2 m̂11,2 − 2 m̂12,1 = m̂33,2 + m̂22,2, (A.17)

while in the case α1 = 0 it becomes

m̂23,2 = 0, m̂32,3 = 0 ⇒ m̂23 = m̂23(x1), (A.18)

which is clearly not satisfied, in general.

B From second order couple stress tensors to third order moment

stress tensors and back
Let us consider the general anisotropic case and

Wcurv(D
2u) = 〈C.D2u,D2u〉

R3×3×3 , Ŵcurv(Curl (sym∇u)) = 〈L.Curl (sym∇u),Curl (sym∇u)〉
R3×3 ,

where

C = (Cijklmn) : R
3×3×3 → R

3×3×3 and L = (Lijkl) : R
3×3 → R

3×3.

Let us also consider the tensors

m := DD2uWcurv(D
2u) and m̂ := DCurl (sym∇u)Ŵcurv(Curl (sym∇u)),

which for our anisotropic case are

m := C.D2u and m̂ := L.Curl (sym∇u).

Since

D2u = Lin(∇ (sym∇u)) = A.(∇ (sym∇u)), uk,ij = εik,j − εjk,i − εij,k,

where ε = sym∇u, we obtain

m := CA.(∇ (sym∇u)) = B.(∇ (sym∇u)).

The next problem is to find particular form of the tensor C, for which we have

〈m, D2u〉
R3×3×3 = 〈m̃,Curl (sym∇u)〉

R3×3 ,
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or equivalently

〈CA.(∇ (sym∇u)),A.(∇ (sym∇u))〉
R3×3×3 = 〈L.Curl (sym∇u),Curl (sym∇u)〉

R3×3 .

This is equivalent to

〈AT
CA.(∇ (sym∇u)), (∇ (sym∇u))〉

R3×3×3 = 〈L.Curl (sym∇u),Curl (sym∇u)〉
R3×3 .

Let us denote in the following

B := A
T
CA.

We consider a specific form of the tensor B in terms of another tensor L : R3×3 → R3×3 such that

〈B.(∇ (sym∇u)), (∇ (sym∇u))〉
R3×3×3 = 〈L.Curl (sym∇u),Curl (sym∇u)〉

R3×3 .

Let us show how to obtain the tensor B if L is given, such that the last identity holds true. We first remark that a tensor
B : R3×3×3 → R3×3×3 is uniquely defined by the fourth order tensors

Bim = (Bijkmnp)im, Bim : R3×3 → R
3×3, (B.1)

and

〈B.∇(sym∇u),∇(sym∇u)〉
R3×3×3 := 〈Bim.∇(sym∇u)m,∇(sym∇u)i〉R3×3 ,

where Einstein’s summation rule is used. Let L : R3×3 → R3×3 be a given fourth order tensor. We may write this tensor in the
form

L = (L̂1, L̂2, L̂3), L̂
i : R3 → R

3. (B.2)

Let us define the tensor B by (B.1) where

Bim =

{
2 skew anti L̂i axl skew for i = m

0 for i 6= m.
(B.3)

For the particular form (B.3) of Bim, using the formula 2 axl skew∇(sym∇u)i = curl (sym∇u)i, we obtain

〈Bim.∇(sym∇u)m,∇(sym∇u)i〉R3×3 = 2 〈skew anti L̂i. axl skew∇(sym∇u)i,∇(sym∇u)i〉R3×3

= 2 〈anti L̂i. axl skew∇(sym∇u)i, skew∇(sym∇u)i〉R3×3

= 4 〈L̂i. axl skew∇(sym∇u)i, axl skew∇(sym∇u)i〉R3

= 〈L̂i.curl (sym∇u)i, curl (sym∇u)i〉R3 .

Now, we conclude that for a given fourth order tensor L : R3×3 → R3×3 the tensor L̃ defined by (B.1) and (B.3) is such that

〈B.∇(sym∇u),∇(sym∇u)〉
R3×3×3 = 〈Bim.∇(sym∇u)m,∇(sym∇u)i〉R3×3 (B.4)

= 〈L̂i.curl (sym∇u)i, curl (sym∇u)i〉R3 = 〈L.Curl (sym∇u),Curl (sym∇u)〉
R3×3 .

In conclusion, we have found a tensor C given by

C := ABA
T ,

where B is given by (B.1) and (B.3), such that

〈C.D2u,D2u〉
R3×3×3 = 〈L.Curl (sym∇u),Curl (sym∇u)〉

R3×3 ,

or equivalently

〈m, D2u〉
R3×3×3 = 〈m̂,Curl (sym∇u)〉

R3×3 ,

or equivalently

Wcurv(D
2u) = Ŵcurv(Curl (sym∇u)).

C The name of the indeterminate couple stress model
Regarding the name of the indeterminate couple stress model, Paria [91, p. 1] writes: “...it has led to the difficulties that the
anti-symmetric part of the stress dyadic as well as the isotropic part of the couple-stress dyadic remain indeterminate. These inde-
terminacies are perhaps due to the fact that the rotation vector, defined above, is not independent but depends on the displacement
vector”. The theory has a variety of names, such as “Cosserat theory with constrained rotations” (Toupin, 1964), “Couple stress
theory” (Koiter, 1964), “Indeterminate couple stress theory” (Eringen, 1968), “Cosserat pseudo-continuum” (Nowacki, 1968). Erin-
gen writes [28]: “At this time [in the 1960, our addition] also popular was a theory of indeterminate couple stress which is mostly
abandoned now [1998]. In this theory, the axisymmetric [skew-symmetric] part of the stress tensor is redundant and it remains
indeterminate”. Schäfer [98] called “indeterminate couple stress model” as pseudo-Cosserat-continuum of the triédre caches (see
also [89]).

If the microrotations A ∈ so(3) are constrained to be equal to the macrorotations skew∇u, the Cosserat model reduces to the
couple stress theory. This corresponds to the case µc → ∞, for which the antisymmetric part of the strain tensor skew(∇u − A)
and the spherical part of the curvature tensor tr(∇ axl(skewA)) tend to zero. Consequently, by energetic duality the antisymmetric
part of the Cauchy stress tensor skew(σ) in the Cosserat model, and the first invariant of the couple stress, namely tr(m̃) do not
appear in the formulation of the virtual work principle as well as in the constitutive equations. The first invariant of the couple
stress remains “indeterminate” and it is taken to be equal to zero [51]. Now, the skew-symmetric part of the total force stress
tensor now is not constitutively determined, but can be obtained from balance of momentum.
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