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ABSTRACT
An analytical formulation for computing kinematic sensitivity of the spatial four-bar

mechanism is presented.  The experimental code developed is used to compute an assembled
configuration for the mechanism due to a design variation.  The mechanism is modeled using
graph theory where a body is defined as a node and a kinematic joint is defined as an edge.  The
spherical joint is cut to convert the model into a tree structure by cutting an edge and introducing
constraints.  The effect of variation in mechanism design using concepts of virtual displacement
and rotation is introduced. The variation of the spherical constraint is computed while maintaining
joint-attachment vectors and orientation matrices as variables.  A system of equations that has
more design variables than equations is then solved using the modified Moore-Penrose pseudo
inverse.  A recursive formulation is introduced to obtain the state variation of a body in terms of
the state variation of a junction body and of the relative coordinates along the chain.  The
Jacobian matrix is then transformed from Cartesian coordinate space to joint coordinate space
using velocity transformation matrices.  Kinematic sensitivity analyses due to changing a joint-
attachment vector and an orientation are presented.
I.  INTRODUCTION

The planar and spatial four-bar mechanisms are some of the most used machine subsystems.
Because the concept of these mechanisms is old and widely used, they have been extensively
studied.  In recent years, the emphasis has been on the synthesis using numerical techniques.  For
example, the finite position synthesis of a spherical four-bar mechanism using a mapping approach
of the desired positions to points in an image space was presented by Bodduluri and McCarthy
[1].  A solution of the nine-point path synthesis of four-bar linkages was presented by Wampler,
et al. [2] where the problem is formulated and solved using a combination of classical elimination,
multihomogeneous variables, and numerical continuation methods.  Another method that uses the
continuation method in the analysis of four-bar linkages was reported by Subbian and Flugrad [3].
Graphical synthesis of four-bar linkages were reported by Norton, et al. [4] and Khanuja, et al.
[5].  Other synthesis methods are reported by Hwang and Chang [6].
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Computer-aided design techniques were also used to automate the infinite point coupler curve
synthesis using uniform periodic B-splines [7].  The geometry and dynamics of the configuration
space of the four-bar mechanism using singularity theory was studied by Yang and Krishnaprasad
[8].

Works that have dealt with the transmission angle of the four-bar mechanism in terms of the
mechanism’s mobility analysis were presented by Kazerounian and Solecki [9].  The mechanism’s
constant force transmission characteristics were studied by Soylemez [10].  The input-output
equation of the underlying mechanism was analytically studied for constant-branch motion by Liu
and Angeles [11] who also studied the least square optimization  of planar and spherical
mechanisms under mobility constraints [12].  A similar analysis was applied to the mechanism’s
path generators [13].

Sheth and Uicker [14] implemented graph theory to analyze the topology of multibody
systems in terms of relative coordinates.  Graph theory was also used by Wittenburg [15] to
handle closed loop systems by cutting joints to form a spanning tree. Wittenburg and Wolz [16]
also presented a cut-body method in a computer program for articulated multibody dynamics.
The recursive formulation used in this paper was adapted from the work of Bae and Haug [17,
18] who used Wittenburg’s approach to modeling of multibody systems. This type of formulation
was implemented using parallel computational techniques by Hwang, et al. [19] and Hwang and
Haug [20].

II.  CONCEPT OF VARIATION IN MECHANISM COMPONENT DESIGN USING
VIRTUAL DISPLACEMENTS AND ROTATIONS

A spatial four-bar mechanism shown in Fig. 1 is modeled as a four-body system connected by
a spherical, a universal, and two revolute joints.  The ground is chosen as the base body where its
body-fixed reference frame coincides with the global reference frame.
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Fig. 1    Spatial four-bar mechanism
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The spanning tree of the system is shown in Fig. 2 where the spherical joint has been cut.
Cutting the spherical joint reduces the maximum number of relative coordinates (three) and
introduces a minimum number of cut-joint constraints.  Two relative coordinates q1  (between the
ground and link 1) and q4  (between link 3 and the ground) are used for the two revolute joints.
Two coordinates q2  and q3  represent the universal joint connecting link 1 and link 2. A body-
fixed frame ′ ′ ′x y zi i i  is defined at the joint connected to the inboard body of the kinematic chain,
and the coordinate systems ′′ ′′ ′′x y zi i i  are defined at joints that are connected to the outboard bodies.
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Fig. 2 (a) Graphic representation of the spatial four-bar mechanism
In order to develop the formulation for the cut spherical joint, it is convenient to write the

spherical constraint as a requirement that necessitates a pair of points on two bodies to coincide.
A necessary and sufficient condition  for ′′Oij  and ′′Oji  to coincide [21] is that ijd = 0  such that

Φ sph
ij ji j ji i ijO O( , )′′ ′′ = + − − =r s r s 0 (1)

where Φ sph  denotes a vector of constraint functions for the spherical joint.  The three scalar
constraint equations of the spherical joint are defined as

Φ sph = + − − =r s r s 03 32 2 23 (2)
Since the spatial four-bar mechanism has four generalized coordinates and three constraint
equations, it has one degree-of-freedom.   In deriving the variational constraints, it is necessary to
keep the joint-attachment vectors and the orientation matrices as variables in order to later obtain
their kinematic sensitivity.

III.  VARIATION IN MECHANISM COMPONENT DESIGN USING VIRTUAL
DISPLACEMENT AND ROTATION

In this section, the concept of virtual displacement and rotation will be introduced.  In order to
account for the effect of design variation, it is necessary to develop a formulation for the
constraint variation while maintaining variable parameters.  The virtual displacement and rotation
vectors (joint-attachment vectors and orientation matrices) will be maintained as variables in order
to later obtain their sensitivity.  The study of the effect of design change on kinematic variables
and the study of design change required to preserve kinematic configurations will be addressed
and demonstrated via numerical examples.
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Since the spherical constraint of the four-bar mechanism is cut, consider its variation as
δ δ δ δ δΦ sph

j ji i ij= + − −r s r s (3)

where joint-attachment vectors can be resolved in the body reference frame as
s A sij i ij= ′ (4)

where A i  is a transformation matrix from the body coordinate system ′ ′ ′x y zi i i  to the global
coordinate system xyz .  Taking the variation of both sides of Eq. (4) yields

δ δ δs A s A sij i ij i ij= ′ + ′ (5)

Note that δ ′sij  and δ ′s ji  are variables.  The virtual rotation matrix δ~π  (a skew-symmetric matrix)

was defined by Tsai and Haug [22] as
δ δ~π = AAT (6)

where the tilde operator (i.e., the symbol ~) is used to denote a skew-symmetric matrix generated
by the associated vector.  Similar to the virtual rotation matrix δ~π  associated with the matrix A,

define a virtual rotation matrix δ~
′ξ  associated with the transformation matrix Cij  such that

δ δ~
′ =ξij ij ij

TC C (7)

where Cij  is the transformation matrix from joint reference frame ′′ ′′ ′′x y z  to body reference

frame ′ ′ ′x y z .  To simplify the computation of virtual rotations, Haug [21] suggested using the the

virtual Euler parameters  to represent  δξ ij  such that

δ δξ ij i j j= 2A E p (8)

where p ej

T T
e e e e e= =0 0 1 2 3  is the vector of Euler parameters ( ej ) and E j  is the

Euler semi-rotation matrix defined as

E j

e e e e

e e e e

e e e e

=
− −
− −
− −
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!
   

"

$
###

1 0 3 2

2 3 0 1

3 2 1 0

(9)

For example, p3  is the vector of Euler parameters associated with C43 .

Multiplying Eq. (6) from the left by A yields another property
δ δ~πA A= (10)

Using the relationships of virtual displacement and rotation, Eq. (5) can be written in terms of the
virtual vectors as

δ δ δs s A sij ij i i ij= − + ′~ π (11)

Substituting the expressions for δsij  into Eq. (3) yields the variation of the spherical constraint as

δ δ δ δ δ δ δΦ π πsph
j i ji j j ji ij i i ij= − − + ′ + − ′r r s A s s A s~ ~  (12)

The constraint equation written in general form is
Φ ir , iA , ijs ,Cij , jr , jA ,C ji , jis( )= 0 (13)

Noting that s and C are variables, the variation of Eq. (13) yields
δ δ δ δ δ δ δΦ Φ Φ π Φ Φ π Φ Φπ π= + + + + ′ + ′′ ′r r s sr r s s

i i j j ij jii i j j ij ji



5

                     +Φ ξ Φ ξξ ξij jiij jiδ δ+ = 0 (14)

Furthermore, the linearized constraint of Eq. (14) can be written as
δ δ δ δ δΦ = Φ Φ Φ ξ Φ

ξz z s
z z s 0

i j
ij iji j

ij ij+ + + = (15)

where the extended vector of the virtual joint-attachment vector is

δ
δ
δs

s

s
ij ij

ji

=
′
′

�
! 

"
$# (16)

and the virtual rotation is

δ
δ
δξ

ξ
ξ

ij ij

ji

=
�
! 

"
$# (17)

the coefficients of virtual displacement are

Φ Φ Φπz ri i i
= (18)

Φ Φ Φπz rj j j
= (19)

the coefficients of virtual joint-attachment and rotation are

Φ Φ Φ
s s sij

ij ji
= ′ ′ (20)

Φ Φ Φ
ξ ξ ξij

ij ji
= (21)

and the virtual displacement for bodies i and j are

δ
δ
δ

z
r

i
i

i

=
�
! 

"
$#π

    

δ
δ
δz

r
j

j

j

=
�
! 

"
$#π  (22)

Note that the variation of the constraint in Eq. (15) is an extended expression of the formulation
used by Tsai and Haug [22], where the last two terms of the right-hand side are used to account
for the variation in joint-attachment and orientation vectors.
IV.  RECURSIVE FORMULATION

In order to develop a formulation for obtaining the variation of the constraint function Φ  in
terms of the variation of the generalized joint coordinates including the effect of design variation,
Tsai and Haug [22] proposed writing the constraint variation in the form of

δ δΦ = Φq q (23)

where δq  is the vector of relative coordinate variations and Φq  is the Jacobian matrix in Joint

space.  In this work, the system of equations (Eq. 23) includes the virtual displacement and
rotation vectors as variables.  A formulation to recursively obtain the state variation of body i in
terms of the state variation of its junction body and of the relative coordinates along the chain
will be developed.  The system of equations (Eq. 23) may have more unknowns than constraints.
The Moore-Penrose pseudo inverse is then used to obtain an assembled configuration close to
the initial guess provided by a user.

The orthogonal transformation matrix jA  from the body j reference frame to the global
reference frame can be written as
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A A C Aj i ij ij= ′′ (24)

where ′′A ij  is the transformation matrix from the body j reference frame ′ ′ ′x y zj j j  to the joint

reference frame of body i ( ′′ ′′ ′′x y zij ij ij ).  Taking the variation of Eq. (24) yields

δ δ δ δA A C A A C A A C Aj i ij ij i ij ij i ij ij= ′′ + ′′ + ′′ (25)

Substituting Eqs. (6) and (10) into Eq. (25) and multiplying by the virtual rotation matrixδ~π j

yields

δ δ δ δ~ ~ ~ ~π π ξ πj j i i ij ij i ij ij ij i ij ij ijA A C A A C A A C A= ′′ + ′ ′′ + ′ ′′ (26)
where δ ijπ  can be obtained from the relative coordinate variation δq j , such that

δ δπ ij j i j j= H A q q,3 8 (27)

and H A qj i j,3 8  is a transformation matrix that depends on the orientation of body i and the

relative coordinates q j , which is defined for each type of joint.  It can also be shown that δπ ij  can

be written as
δ δ δ δπ π ξj i ij j j= + + H q (28)

Referring to Fig. 1, the origin of body j reference frame can be located by the position vector
given by

jr = ir + ijs + ijd (29)
The variation of Eq. (29) was derived by Zou, et al. [23] and shown to be

δ δ δ δ δ
∂
∂

δr r r r A d
d

q
qsj i i j i i ij ij ij

ij

j
j= + +− + ′ −~ ~( )π ξ  (30)

Adding a common term ( j˜ r jδπ ) to both sides of Eq. (30), and using Eq. (6), Eq. (28), and the

relationship ~ ~ab ba= −  yields

δ δ δ δ δ
∂
∂

δ δδr r r r A d
d

q
r q rsj j j i i i i ij ij ij

ij

j
j j j j ij+ = + + +

�
��

�
�� ++ ′ −~ ~ ~ ~ ~ ~π π ξ π ξ  (31)

Equation (31) and the virtual rotation of Eq. (28) can be combined in matrix form as

δ δ
δ

δ δ
δ

∂
∂ δ δδ

r r r r

0

d

q
r H

H
q

r

I

A
s dj j j

j

i i i

i

i
ij

ij

j
j j

j

j
j ij

ij

+�
! 

"
$#

=
+�

! 
"
$# +

�
! 

"
$#

+
�

!
   

"

$
###

+ −�
!  

"
$##

′ +
~ ~ ~ ~ ~π

π
π

π
ξ (32)

The tree graph of Fig. (2) represents a pair of links that are disconnected after cutting a joint.
First, we shall develop the general formulation for such a case where a joint that connects bodies
i  and j  is cut and that body p  is the junction node of the two chains that contain bodies i  and
j , respectively.  A schematic is depicted in Fig. 3.
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Fig. 3.  A pair of bodies is disconnected after cutting joints

In this case, the state variation of body j  cannot be represented in terms of the state variation
of body i since no relative coordinates exist between bodies i and j.  Therefore, the state
variations of bodies i  and j  must be written in terms of the state variation of their common  node
p  and Eq. (15) can be written as

δ δ δ δ δΦ = Φ Φ Φ ξ Φ
ξ$ $

$ $z z s
z z s 0

i j
ij iji j

ij ij+ + + = (33)

where the state vector can be written as
δ δ δ δ δ$ $ , ,z z B q M s Ni i i i i i i i i i= + + ′ +− − − −1 1 1 1ξ  (34)

where B i  is the velocity transformation matrix between bodies i and j, defined by

B
d

q
rH

H
i

i i

i
i i

i

= +
�

!
  

"

$
##

−∂
∂

( ), ~1

(35)

and the matrices Mi −1  and Ni  are expressed as

M
A

0i
i

−
−=

�
! 

"
$#1

1 (36)

and N
r d

Ii
i i i=
−�

! 
"
$#

−
~ ~

( ),1 (37)

Equation (34) can be recursively used to obtain the state variation of body i in terms of the state
variation of its common body p and of the relative coordinates along the chain as
δ δ δ δ δ δ δ δ$ $ , , , ,z z B q M s N B q M s Ni i i i i i i i i i i i i i i i i i= + + ′ + + + ′ +− − − − − − − − − − − − −2 1 1 2 2 1 1 2 1 1 2 1 1ξ ξ (38)

Simplifying and writing in terms of a series yields

δ δ δ δ δ$ $ , ,z z B q M s Ni p k k k k k k k k
k m

i

= + + ′ +− − −
=
∑ 1 1 1ξ2 7  (39)

Similarly, the state variation of body j can be written in terms of a series as
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δ δ δ δ δξ$ $ , ,z z B q M s Nj p k k k k k k k k
k n

j

= + + ′ +− − −
=

∑ 1 1 12 7  (40)

Rewriting the constraint function in terms of state vectors yields

δ δ δ δ δΦ = Φ ξ − ,$ ,$z z B q M s N
i p k k k k k k k k

k m

i

+ + ′ +
�
! 

"
$#− −

=
∑ 1 1 12 7

      +Φ ξ Φ Φ ξ− , ξ$ ,$z s
z B q M s N s

j
ij ijp k k k k k k k k

k n

j
ij ijδ δ δ δ δ δ+ + ′ +

�
! 

"
$# + +− −

=
∑ 1 1 12 7 (41)

Collecting similar terms and rearranging yields

δ δ δ δΦ = Φ ξ − ,$ ,z B q M s N
i k k k k k k k k

k m

i

+ ′ +− −
=
∑ 1 1 12 7

       + + ′ + + +− −
=

∑Φ ξ Φ Φ ξ− , ξ$ ,z s
B q M s N s

j
ij ijk k k k k k k k

k n

j
ij ijδ δ δ δ δ1 1 12 7 (42)

where Φ Φ
$ $z z 0

i j
+ =  was used to eliminate the δ$zp  term in Eq. (41).  Expanding Eq. (42) and

writing the system of equations in the form of a Jacobian Φq  yields

δ δΦ = Φq q (43)
where the Jacobian matrix in the joint space and the vector of relative coordinate variation δq  are
defined by

 Φ Φ Φ Φ Φ Φ Φ Φq z z z z z z zB B M M N N B= − −$ $ $ $ $ $ $

... | ... | ... | ...
i i i i i i jm i m i m i m1 1

Φ Φ Φ Φ Φ Φ Φ
ξ$ $ $ $ $

| ... | ... | |z z z z z s
B M M N N

j j j j j
ij ijj n j n j− −1 1  (44)

and
δ δ δ δ δ δ δ δ δq q q s s q q= ′ ′− − − −m i m m i i m m i i n j... | ... | ... | ... |, , , ,1 1 1 1ξ ξ

         δ δ δ δ δ δ′ ′ ′ ′− − − −s s sn n j j n n j j
ij ij T

1 1 1 1, , , ,... | ... | |ξ ξ ξ (45)

Note that the number of variables will, in general, be more than the number of constraints.  Since
the Jacobian of Φ( )q  is not square, the problem of obtaining an assembled configuration can be
solved using the Moore-Penrose pseudo inverse (Allgower and Georg 1990).  Starting with an
initial guess q1 , the new generalized coordinates are calculated by evaluating

∆q q= −Φ Φ*( ) (46)

where Φq
*  is the Moore-Penrose pseudo inverse of the Jacobian Φq = ∂ ∂Φ i jq , defined by

Φ Φ Φ Φq q q q
* =

−T T3 8 1
(47)

The new set of generalized coordinates is computed as q q qi i i+ = +1 ∆ .  This method converges

to an assembled configuration q∗  within a few iterations (Allgower and Georg 1990).

V.  EVALUATION OF KINEMATIC SENSITIVITY TERMS
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Initial position and orientation estimates are specified.  The initial value of each joint
attachment vector ′sij from joint reference frame ′′ ′′ ′′x y zij ij ij  to body-fixed frame ′ ′ ′x y zi i i  are presented

in Table 1.

TABLE 1   
Joint attachment vectors ′sij  in the body-fixed frame

Estimates of generalized coordinates are q = 0 180 227 6 208 3o o o o T
. . .  For a given

initial estimate that does not satisfy the constraint function Φ,  the Moore-Penrose iteration
method is used to obtain an initial assembly.  The iterative algorithm is continued until the

magnitudes of all errors and changes in approximate solutions satisfy Φ k
sph i

eq1 64 9 ≤ ε  and

q qj
i

j
i

s
1 6 1 6− ≤−1 ε , where ε e  and ε s are two small numbers, k is the number of constraint equations,

j is the number of generalized coordinates, and i is the iteration number.  The Jacobian matrix
Φq

sph  in joint coordinate space transformed from the Cartesian space is

Φ Φ Φ Φq z z zB B Bsph sph sph sph=
$ $ $2 2 31 2 3 (48)

The Jacobian matrix in the Cartesian space for the spherical joint, is given as
Φ

$

~ ~
z I r s

2 2 23
sph = − + (49)

and Φ Φ
$ $z z2 3

sph sph= − (50)

where B1 , B2 , and B3  are velocity transformation matrices for the revolute joint, universal joint,

and revolute joint, respectively, such that

B1 =
˜ r 

1
h

41

h
41

 

 
 

 

 
 

       

B2 =
˜ r 

2
h

12
˜ r 

2
g

12

h
12

g
12

 

 
 

 

 
 

        

B3 =
˜ r 

3
h

43

h
43

 

 
 

 

 
 

(51)
where h41  and h43  are unit vectors along the rotational joint axes in the global reference frame
which can be expressed by

h
41

= A4C41 0 0 1[ ]T

(52)

C41 =
0 0 1

0 −1 0

1 0 0

 

 

 
 
 

 

 

 
 
 

and h
43

= A 4C43 0 0 1[ ]T
(53)

sij
’

            x i
’

               y i
’

                 z i
’ sij

’

            x i
’

               y i
’

                  z i
’

s41
’

           0                 0                   0
s43

’

          -4               -8.5                0
s12

’

           2                 0                   0

s23
’

           0                -12.2               0
s32

’

           0                -7.4                 0
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C43 =
1 0 0

0 0 −1

0 1 0

 

 

 
 
 

 

 

 
 
 

where h12  and g12  are two unit vectors along the rotational axes ′′z12  and ′′y12  in the global
reference frame defined as

h
12

= A1C12 0 0 1[ ]T

(54)

C12 =
0.9293 0.3693 0

−0.2768 0.6967 0.6618

0.2444 −0.6150 0.7497

 

 

 
 
 

 

 

 
 
 

g A C A
12 1 12 121

T= ′′ ( )q2 0 1 0 (55)
and the rotation matrix ′′A121  is written as

′′ =
−�

!
   

"

$
###

A121 2q

q q

q q1 6
cos sin

sin cos
2 2

2 2

0

0

0 0 1 (56)

and the variational generalized coordinates are δ δ δ δ δq = q q q q
T

1 2 3 4 .  Using the Moore-

Penrose method to update the generalized coordinates q, only one iteration is required and the set

of new generalized coordinates are q = 0 0764 179 8572 227 6018 2081882. . . .o o o o T
.

After initial assembly, the joint-attachment vectors ′sij  and rotation vector ξ ij  (or the Euler

parameter vector p) are chosen as design parameters.

In the spatial four-bar mechanism, the design parameters of joint-attachment vectors in body-fixed
reference frame are ′s41 , ′s43 , ′s12 , ′s23  and ′s32 .  Once the configuration changes, the constraint
equations are violated, and there are three methods to be performed until constraint violations are
satisfied to assemble the mechanism.
(1) The generalized coordinates q are changed such that

Φ Φ Φ Φ
$ $ $z z zB B B

2 2 31
2

3
4

sph sph sph sphq
q

q
q1 2 3δ

δ
δ

δ+
�
! 

"
$# + = −

(57)
A designer, however, may choose to maintain the generalized coordinates as constants but elect
to allow for a change in the dimension of each body which gives rise to the following methods.
(2) The joint attachment vectors ′sij  are changed such that

Φ Φ Φ Φ Φ Φ
$ $ $z z z s sM s M s M s s s

2 2 3 23 324 41 1 12 4 43 23 32
sph sph sph sph sph sphδ δ δ δ δ′ + ′ + ′ + ′ + ′ = −′ ′ (58)

where

M
A

01
1=

�
! 

"
$#       M

A

04
4=

�
! 

"
$# (59)

Φ ′ = −s A
23 2
sph (60)
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Φ ′ =s A
32 3
sph (61)

3) The generalized coordinates q and joint-attachment vectors ′sij  are changed such that

       
Φ Φ Φ Φ Φ Φ

$ $ $ $ $ $z z z z z zB B M s M s B M s
2 2 2 2 3 31 1 2

2

3
4 41 1 12 3 4 4 43

sph sph sph sph sph sphq
q

q
qδ

δ
δ

δ δ δ δ+
�
! 

"
$# + ′ + ′ + + ′

            +Φ Φ Φ′ ′′ + ′ = −s ss s
23 3223 32
sph sph sphδ δ (62)

Simulation results due to changing ′s23  from 0 −12.2 0[ ]T
 to 0 −10 0[ ]T

 are presented in
Table 2.  Column 2 presents the initial estimates for a general configuration.  An initial assembly is
computed and entered into column 3.  Using Eq. (57), only the generalized coordinates are
allowed to change and those values computed for an assembled configuration are shown in
column 4.  If only the joint-attachment vectors are allowed to change using Eq. (58), the
computed assembly is entered into column 5 of Table 2.  Figure 4a depicts a schematic of the
mechanism after computing the new joint coordinates (method 1).  Note that only joint angles
have changed.  Figure 4b depicts a schematic of the mechanism after computing only new joint-
attachment vectors.  Note that, even for a very small tolerance (a norm of ~ 10 6− ), the method
exhibits a high rate of convergence (within 4 iterations).

TABLE 2
  Simulation results due to changing s

23

’

1
variables

2
initial estimates

3
initial assembly

4
q

5
′sij

6
q, ′sij

q1 0 0.0764 28.9745 15.3243

q2 180 179.8572 142.6831 160.2042

q3 227.6 227.6018 227.4333 227.5725

q4 208.3 208.1882 175.4225 190.5807
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 

 

 
 
 

 

 

 
 
 

s12
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0
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−0.1102
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s23
’
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s32
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P2
0.9187

−0.3475

−0.0665

−0.1758

 

 
 
 

 

 
 
 

Φ s
norm 1.2547e-05 7.3779e-05 2.1756e-15 6.1485e-07

Iteration number 1 4 2 4

s23
As32

A

s23
B

s32
B

Fig. 4 Assembled mechanisms using (a) method 1
and (b) method 2

If the length of link 2, however, is reduced from 12.2 to 6, it is geometrically impossible that
an assembled configuration be obtained since link 2 and link 3 cannot be connected by a spherical
joint.  Nevertheless, an assembled configuration can be obtained using the other two methods.  In
fact, it has been our experience that methods (2) and (3) are more practical from a design point of
view.

Another possibility arises for which the Euler parameters can be changed.  In such a case, the
orientation of a body can be altered, i.e., varying p1 , p2  and p3 .  There are three practical
methods to be performed.
1) The generalized coordinates q are changed (Eq. 57).
2) The generalized coordinates q and joint attachment vectors ′sij  are changed (Eq. 58).

3) The generalized coordinates q, joint attachment vectors ′sij , and Euler parameters p j  are

changed such that

Φ Φ Φ Φ Φ Φ
$ $ $ $ $ $

( ) ( )z z z z z zB B M s M s N A E p N A E p
2 2 2 2 2 21 1 2

2

3
4 41 1 12 1 4 1 1 2 1 2 22 2sph sph sph sph sph sphq

q

q
δ

δ
δ

δ δ δ δ+
�
! 

"
$# + ′ + ′ + +

        Φ Φ Φ Φ Φ Φ
$ $ $

( )z z z s sB M s N A E p s s
3 3 3 23 323 4 4 43 3 4 3 3 23 322sph sph sph sph sph sphqδ δ δ δ δ+ ′ + + ′ + ′ = −′ ′ (63)
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~
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Euler parameters p3  are changed from [0.7071 0.7071 0 0]T to [0 0.7071 0.7071 0]T, thus
the corresponding transformation matrix C43  from revolute joint reference frame to ground
reference frame is changed from

1 0 0

0 0 −1

0 1 0

 

 

 
 
 

 

 

 
 
  to 

0 0 1

0 −1 0

1 0 0

 

 

 
 
 

 

 

 
 
 

Using the three methods described above, the system can be assembled satisfactorily.  The results
are presented in Table 3.  Initial estimates are entered into column 2.  An initial assembly is
computed and entered into column 3.  For a change in the link orientations while keeping constant
joint-attachment vectors, the generalized coordinates are computed and entered in column 4.
Note that 34 iterations were required to compute q.  If the generalized coordinates and the joint-
attachment vectors are computed using Eq. (58) , only 12 iterations are needed to converge to an
assembled configuration the results of which are entered into column 5.  If the generalized
variables, the joint-attachment vectors, and the Euler parameters are computed using Eq. (63),
only 8 iterations are needed to converge to a solution.  The results are entered into column 6.

TABLE 3
Simulation results due to changing p3

1
variables

2
initial estimates

3
initial assembly

4
q

5
q, ′sij

6
q, ′sij  and p j

q1
0 0.0764 247.9598 -64.4176 4.7796

q2
180 179.8572 -44.4288 281.3515 190.5383

q3
227.6 227.6018 -224.4808 55.9736 224.9965

q4
208.3 208.1882 190.7124 120.2919 200.8773
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P2
0.9187

−0.3475

−0.0665

−0.1758

 

 
 
 

 

 
 
 

0.8759

−0.4289

0.1490

0.1631

 

 
 
 

 

 
 
 

Φ s
norm 1.2547e-05 1.1235e-4 4.8947e-07 2.7985e-06

Iteration number 1 34 12 8

It can be noticed, in this case as in most cases that have been implemented using this
experimental code, that allowing the code to compute generalized coordinates, joint attachment-
vectors, and Euler parameters (method 3), exhibits the highest rate of convergence.

VI.  CONCLUSIONS

An analytical formulation for studying the kinematic sensitivity of the spatial four-bar
mechanism is presented.  The formulation presented in this paper and illustrated by a numerical
example demonstrates the validity of a general purpose formulation and experimental computer
code for the computation of design parameters after an alteration in the original design.

The spatial four-bar mechanism is modeled using graph theory and closed loops are converted to
a tree structure using a cut-joint constraint formulation.  It was shown that this formulation can
be derived with respect to design parameters to obtain kinematic sensitivity.   These constraints
are derived keeping the joint-attachment vectors and orientation matrices (Euler parameters) as
design variables.  Variations of these vectors and matrices were also developed.

It was shown that the Jacobian matrix in Cartesian space can be transformed to joint
coordinate space to compute variations.  It was shown that starting from an initial configuration
that satisfies the constraints, applying a design change to the joint-attachment vectors or Euler
parameters, can be propagated throughout the mechanism.  It was shown that an assembled
configuration can be obtained using the Moore-Penrose pseudo inverse method.  The method has
showed to be applicable for a variety of design parameters.  It has been shown that the method of
changing linkage lengths while maintaining constant generalized coordinates is the fastest
method to obtain a new set of variables.  This method has also exhibited  the highest accuracy.

The kinematic sensitivity due to changing the orientation of a body has showed a higher rate of
convergence to an assembled configuration using the method of allowing the generalized
coordinates, joint-attachment vectors, and Euler parameters to be automatically computed.  It has
been our experience that allowing the maximum number of design parameters to change, results
in higher potential for convergence.
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