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Summary

Drops of a conducting fluid in electrowetting devices tend to spread when a difference of

potential V0 is set between the drop and an electrode external to it. The classical Lippmann

theory predicts unlimited spreading, with a decrease of the contact angle between drop and

solid substrate, as one increases V0. This fact is in contradiction with current experiments,

where saturation of the contact angle to a limiting value is found. A further increase of V0 does

not lead to further spreading but to the appearance of instabilities in the form of emitted drops

at the contact line. We provide an explanation to these two related phenomena based solely on

interfacial and electrostatic energies. A local analysis close to the contact line is also provided

and an expression for the most unstable mode is deduced.

1. Introduction

Electrowetting has become one of the most widely used tools for manipulating tiny amounts of

liquids on surfaces. Applications range from ‘lab-on-a-chip’ devices (1) to adjustable lenses and

new kinds of electronic displays (2, 3). In the simplest configuration, represented in Fig. 1, a drop

of conducting fluid rests over a solid substrate and a difference of potential V0 is established be-

tween the drop and an electrode placed at a distance d for the substrate. This case represents ‘static

electrowetting’ as opposed to ‘spontaneous electrowetting’ where a spontaneous thin front-running

electrowetting film is pulled out ahead of the macroscopic drop with the use of planar parallel

line electrodes (cf. (4)). Lippmann (5) developed a formula, nowadays called Lippmann’s law, for

the value of the contact angle of the drop under a potential V0 as a function of Young’s angle θY ,

liquid–gas surface tension coefficient γlv , the distance between drop and electrode, and the dielectric
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466 M. A. FONTELOS AND U. KINDELÁN

constant ε0 εr of the medium between electrode and drop:

cos θ(V0) = cos θY +
ε0εr

2dγlv
V 2

0 . (1)

Since Lippmann assumed that the drop is a spherical cap, the value of a, the radius of the circular

solid–liquid interface, follows immediately from θ(V0). Despite the importance of the phenomenon

of electrowetting, some of its most important features are not well understood. This is the case

of saturation and contact line instability phenomena that are exhibited instead of the unlimited

spreading predicted by Lippmann’s law when cos θ(V0) → 0. Moreover, once the saturation angle

is reached, an increase of V0 produces instabilities at the contact line that result in the emission of

multiple fingers, whose number increases with increasing potential. Various explanations to these

phenomena have been proposed, like effects of charge trapping, air ionization or intrinsic material

properties of both the drop and the substrate (see, for instance, (6)).

In this article, we provide an explanation for the saturation and instability effects, which only

needs to invoke interfacial and electrostatic effects. According to our results, these phenomena arise

as a consequence of instabilities leading to the breakup of axial symmetry. The manifestation of such

instabilities is an undulation of the contact line, sometimes with large wave numbers. We show that

the instabilities occur for not very large values of the wetted area and hence represent a limitation

of applicability of electrowetting procedures.

The starting point of our analysis is the formula for the energy in the configuration represented in

Fig. 1:

E = γlv [Alv − (cos θY )Asl ] −
1

2
CV 2

0 , (2)

where C represents the electric capacity of the capacitor formed by the drop electrode system; γlv ,

the liquid–vapor surface tension and Alv and Asl represent the areas of the liquid–vapor and solid–

liquid interfaces, respectively. The equilibrium shape of the drop that occupies a given volume will

be such that the energy (2) is minimized. When V0 = 0 the minimizers, of (2) are spherical caps with

a contact angle θY . When V0 6= 0, the minimizers cannot be computed analytically, but for given

θY ≪ 1, d and V0 ≪ 1 the deformation of the drop due to the presence of the electric field should

be small, the drop would be very flat so that the capacity of the drop electrode system could be

Fig. 1 Sketch of the physical setting
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A VARIATIONAL APPROACH TO CONTACT ANGLE SATURATION 467

approximated by C ≈ ε0εr

2d
Asl and the shape would be a spherical cap with contact angle θ following

Lippmann’s law. Nevertheless, we shall show now that there exist configurations where the circular

symmetry of the liquid–solid interface is broken and possessing less energy than the spherical caps

predicted by Lippmann’s law. For simplicity, we will consider in most of our discussion εr = 1.

Usually, in experiments, εr is chosen larger than 1 and the electric field is increased near the contact

line. As we will see, this fact does not change our conclusions.

2. Drops with broken axial symmetry

We introduce cylindrical coordinates, with z being the axis of symmetry of a spherical cap, and an

O(ε) azimuthal perturbation so that

r(θ, z) =
a(z)

√

1 + ε2

2

(1 + ε cos(nθ)), (3)

where n = 1, 2, . . . represents the perturbed drop’s surface (see Fig. 2) and 0 6 z 6 H , with

H being the drop’s height. We show below that the perturbed shapes (3) produce, under certain

conditions on a(z), the energy functional (2) smaller than the axisymmetric counterpart (that is

with ε = 0). Notice that the perturbation introduced in (3) makes the resulting shape only Lipschitz

continuous at the apex. This is not a problem since both area and capacity are well defined. Then,

the liquid–solid interface area remains unchanged as well as the drop’s volume, but the liquid–vapor

interface area changes an amount

Alv (ε) =
∫ H

0

∫ 2π

0

√

r2 + r2
θ + r2r2

z dθdz

=
∫ H

0

∫ 2π

0

r

√

1 + r2
z






1 +

r−2r2
θ

√

1 + r2
z +

√

1 + r−2r2
θ + r2

z






dθdz

Fig. 2 Triangularization of the drop’s surface for axisymmetric shape (left) and the same shape perturbed with

a n = 4 mode
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468 M. A. FONTELOS AND U. KINDELÁN

=
∫ H

0

∫ 2π

0

r

√

1 + r2
z







1 + r−2r2
θ

√

1 + r2
z +

√

1 + r−2r2
θ + r2

z






dθdz

+
∫ H

0

∫ 2π

0

r

√

1 + r2
z dθdz = I1 + I2,

where

I1 =
∫ H

0

∫ 2π

0

r

√

1 + r2
z







1 + r−2r2
θ

√

1 + r2
z +

√

1 + r−2r2
θ + r2

z






dθdz

6

∫ H

0

∫ 2π

0

r

2
n2ε2 sin2(nθ)dθdz = n2ε2 π

2

∫ H

0

a(z)dz = c1n2ε2,

and

I2 =
∫ H

0

∫ 2π

0

r

√

1 + r2
z dθdz

=
∫ H

0

∫ 2π

0

a

√

1 + a2
z

[

1 −
ε2

4
+

ε2

2

a2
z

1 + a2
z

−
ε2

4

a4
z

(

1 + a2
z

)2
+ O(ε3)

]

dθdz

=
∫ H

0

∫ 2π

0

a

√

1 + a2
z

[

1 −
ε2

4

1
(

1 + a2
z

)2
+ O(ε3)

]

dθdz

= Alv (0) + c2ε
2 + O(ε3).

Hence,

Alv (ε) = Alv (0) + ε2(c1n2 + c2) + O(ε3), (4)

where c2 6 0 and, for a drop of unit volume,

c1 =
π

2

∫ H

0

adz 6

(∫ H

0

π

4
dz

)

1
2
(∫ H

0

πa2dz

)

1
2

6

√
π

2
H

1
2 .

The capacity of the drop electrode system can be estimated to be

C(ε) = C0 + ε2Cn,1 + O(ε3), (5)

where C0 is the capacity of the axisymmetric drop and

Cn,1 > Cn−1,1 > 0, (6)

for all n. The proof of (5) and (6) follows from a calculation similar to Fontelos and Kindelán (7),

but adapted to take into account the presence of an electrode. We denote � as the region occupied

by the fluid, �′ as its mirror image with respect to the electrode and R as the exterior of � ∪ �′.
Then, by the classical method of images in electrostatics, the capacity can be computed as

C =
ε0

2

∫

R

|∇V |2 dx, (7)
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A VARIATIONAL APPROACH TO CONTACT ANGLE SATURATION 469

where V is an harmonic function outside R decaying at infinity and such that V = 1 on the surface

of � and V = −1 on the surface of �′. We assume now � to be a perturbation of the form (3) of

an axisymmetric drop �0. We change variables into a new system r ′ =
√

1 + ε2

2
r/(1 + ε cos(nθ)),

θ ′ = θ , z′ = z so that

∂V

∂r
=

∂V

∂r ′
1

1 + ε cos(nθ ′)
, (8)

∂V

∂θ
=

∂V

∂θ ′ +
∂V

∂r ′ r ′ εn sin(nθ ′)

1 + ε cos(nθ ′)
, (9)

and hence, calling R0 the exterior of �0 ∪ �′
0, we have

C =
ε0

2

∫

R0

{

∣

∣

∣

∣

∂V

∂r ′

∣

∣

∣

∣

2

+
1

r ′2

∣

∣

∣

∣

∂V

∂θ ′

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∂V

∂z′

∣

∣

∣

∣

2
}

dx′

+
ε0

2

∫

R0

{

2

r ′
∂V

∂θ ′
∂V

∂r ′
εn sin(nθ ′)

(1 + ε cos(nθ ′))
+
∣

∣

∣

∣

∂V

∂r ′
εn sin(nθ ′)

1 + ε cos(nθ ′)

∣

∣

∣

∣

2

+

(

2ε cos(nθ ′) + ε2 cos2(nθ ′) −
ε2

2

)

∣

∣

∣

∣

∂V

∂z′

∣

∣

∣

∣

2
}

dx′ + O(ε3). (10)

We write now V (r ′, θ ′, z′) = V 0(r ′, θ ′, z′) + εV 1(r ′, θ ′, z′), where V 0 = 1 at the boundary of �0,

V 0 = −1 at the boundary of �′
0, V 1 = 0 at the boundary of �0 ∪ �′

0 and 1V 0 outside �0 ∪ �′
0.

Then, from (10) we get

C =
ε0

2

∫

R0

∣

∣

∣
∇V 0

∣

∣

∣

2
dx′ + ε2 ε0

2

∫

R0

∣

∣

∣
∇V 1

∣

∣

∣

2
dx′

+ε2 ε0

2

∫

R0







2

r ′
∂V 1

∂θ ′
∂V 0

∂r ′ n sin(nθ ′) +

(

∂V 0

∂r ′

)2

n2 sin2(nθ ′)

+
1

2
cos(2nθ ′)

(

∂V 0

∂z′

)2

+ 4 cos(nθ ′)
∂V 1

∂z′
∂V 0

∂z′







dx′ + O(ε3)

= C0 + ε2Cn,1 + O(ε3), (11)

where we used
∫

R0
∇V 0 · ∇V 1dx′ = 0 and C0 = ε0

2

∫

R0

∣

∣∇V 0
∣

∣

2
dx′. From the definition of V 1 and

the fact that 1xV = 0, it follows

1x′ V 1 = −
1

r ′
∂V 0

∂r ′ n2 cos(nθ ′) − 2
∂2V 0

∂z′2 cos(nθ ′), (12)
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470 M. A. FONTELOS AND U. KINDELÁN

in R0 with V 1 = 0 at the boundary. Since V 0 depends only on (r ′, z′), we can look for V 1 in the

form V 1 = cos(nθ ′)8(r ′, z′) and then

Cn,1 =
πε0

2

∫∫





n2

2

∣

∣

∣

∣

∣

∂V 0

∂r ′

∣

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂8

∂r ′

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂8

∂z′

∣

∣

∣

∣

2

+
n2

2r ′2 82 −
n2

r ′ 8
∂V 0

∂r ′ + 2
∂8

∂z′
∂V 0

∂z′

)

r ′dr ′dz′. (13)

The integral runs for all values of z′. By Dirichlet’s principle, the integral (13) can be character-

ized as the minimum overall possible 8 of the same integral. Then

Cn,1 =
πε0

2
min
8

∫∫





n2

2

∣

∣

∣

∣

∣

∂V 0

∂r ′ −
8

r ′

∣

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂8

∂r ′

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂8

∂z′

∣

∣

∣

∣

2

+ 2
∂8

∂z′
∂V 0

∂z′



 r ′dr ′dz′

>
πε0

2
min
8

∫∫





(n − 1)2

2

∣

∣

∣

∣

∣

∂V 0

∂r ′ −
8

r ′

∣

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂8

∂r ′

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂8

∂z′

∣

∣

∣

∣

2

+ 2
∂8

∂z′
∂V 0

∂z′



 r ′dr ′dz′ = Cn−1,1. (14)

The later inequality is a simple consequence of the following fact: if a functional F is larger or

equal than a functional G when acting on any function 8, then the minimum of F is larger or

equal than the minimum of G. The capacity C(ε) can be characterized as the minimum of I =
ε0
2

∫

R
|∇V |2 = ε0

∫

z>0
|∇V |2 (by symmetry with respect to the plane z = 0) for V such that V = 0

at z = 0 and V = 1 at the surface of �. Schwartz’s symmetrization principle (see Pólya and Szegö

(8), the principle stated in VII-3 applies directly to our case) establishes that the minimum of I

when the integral is defined over R is larger than the capacity of the symmetrized set that results

from replacing each cross-section of � and �′ (orthogonal to the z-axis) with circles of the same

area. This process leads to �0 and �′
0 with capacity C0. We are going to show that C2,1 > 0 and,

therefore by (14), Cn,1 > 0. Notice that integration by parts, together with the fact that 8 = 0 at

∂
(

�0 ∪ �′
0

)

and 1x′ V 0 = 0 yield

∫∫

2
∂8

∂z′
∂V 0

∂z′ r ′dr ′dz′ =
∫∫

2
∂8

∂r ′
∂V 0

∂r ′ r ′dr ′dz′,

and the resulting integrand in (13) can be estimated, for n = 2, by

2

∣

∣

∣

∣

∣

∂V 0

∂r ′

∣

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂8

∂r ′

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂8

∂z′

∣

∣

∣

∣

2

+
2

r ′2 82 −
4

r ′ 8
∂V 0

∂r ′ + 2
∂8

∂r ′
∂V 0

∂r ′

=
1

2

∣

∣

∣

∣

∂8

∂z′

∣

∣

∣

∣

2

+
2

r ′ 8
∂8

∂r ′ + 2

∣

∣

∣

∣

∣

∂V 0

∂r ′

∣

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂8

∂r ′ −
2

r ′ 8

∣

∣

∣

∣

2

+ 2

(

∂8

∂r ′ −
2

r ′ 8

)

∂V 0

∂r ′ >
1

2

∣

∣

∣

∣

∂8

∂z′

∣

∣

∣

∣

2

+
2

r ′ 8
∂8

∂r ′ .
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A VARIATIONAL APPROACH TO CONTACT ANGLE SATURATION 471

Since
∫∫

2
r ′ 8

∂8
∂r ′ r

′dr ′dz′ = 0, we conclude

C2,1 >
πε0

2

∫∫

1

2

∣

∣

∣

∣

∂8

∂z′

∣

∣

∣

∣

2

r ′dr ′dz′
> 0.

C2,1 could only be 0 if 8 = 0, but then by (13) Cn,1 would be > πε0
2

∫∫

2

∣

∣

∣

∂V 0

∂r ′

∣

∣

∣

2
r ′dr ′dz′ > 0,

which is a contradiction. Hence, C2,1 > 0. Therefore, the quantities Cn,1 are strictly positive and

increase with n, what proves inequality (6). A more involved proof of (6) was provided in Fontelos

and Kindelán (7). An explicit evaluation of Cn,1 is, in general, only possible by numerical methods.

Nevertheless, in the case of flat bodies that are a perturbation of a disk of radius a and with the

electrode placed far away (d → ∞, the case considered in Fontelos and Kindelán (7)), a simple

scaling argument shows that Cn,1 are proportional to a. Hence, Cn,1 increases with a. We believe,

from our numerical calculations, this is a general property independently of the distance d at which

the electrode is placed, but a mathematical proof cannot be provided at the moment.

The variation of the total energy under the symmetry-breaking perturbation (3) is, by (4) and (5),

given by

δE = δAlv − cos θY δAsl −
1

2γlv
δCV 2

0

= ε2

[

(c1n2 + c2) −
1

2γlv
Cn,1V 2

0

]

+ O(ε3). (15)

The constant c1 will be small if H is small, that is, if the drop is sufficiently flat. For flat disks of

radius a, Cn,1 increases with a (at least if d ≫ 1). Therefore, for ε sufficiently small, if the drop

is sufficiently flat so that H ≪ 1, then δE may be minimum and negative for some n > 2. Hence,

a drop perturbed with a cos(nθ) mode is energetically more favorable than both the axisymmetric

drop and its perturbation with the cos(2θ) mode. The formation of multiple fingers is then natural

from the energetic point of view. Let us remark at this point that our estimation of relative capacities

in (10)–(14) does not rely in the fact that no dielectric is placed between substrate and electrode. If

a dielectric layer is introduced, then the capacity is defined by C = ε0
2

∫

R
εr (z) |∇V |2 dx with εr (z)

constant and larger than 1 in the dielectric. Since the region occupied by the dielectric is invariant

under the change of variables (3), all the arguments in (10)–(14) are identical, with the only change

being a factor εr (z) inside the integrals in (14) and the use of Poisson’s equation for V 0 in the form

∇x′ · (εr (z
′)∇x′ V 0) = 0.

To test our calculations and give quantitative estimates, we have computed numerically the equi-

librium profiles by solving the Euler–Lagrange equation associated to (2):

γlvκ −
σ 2

2ε0
= −p, (16)

where p is the difference of pressure across the interface (which is a Lagrange multiplier associated

to the constancy of volume in the minimization problem) and σ = ε0

(

∂V
∂n

)

is the surface charge

density. Equation (16) may be further simplified by introducing the changes

x → (Vol.)
1
3 x, V → (Vol.)

1
6 (γlvε

−1
0 )

1
2 V, σ → (Vol.)−

1
6 (γlvε0)

1
2 σ, p → γlv (Vol.)−

1
3 p, (17)

leading to:

κ −
σ 2

2
= −p. (18)
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Equation (18) can be considered as an integrodifferential second-order equation: if we denote

h(z) as the distance of each point of the drop to the solid substrate, then κ will involve second-order

derivatives of h, and σ will result from computing the normal derivative of V , which is a solution of

1V = 0 with boundary conditions V = 0 on the electrode and V = V0 on the drop’s surface. We

found it convenient to find the solutions to (18) as the stationary solutions of the evolution problem

ht − 1

(

κ −
σ 2

2

)

= 0, (19)

with boundary conditions

h(a) =
∂

∂n

(

κ −
σ 2

2

)∣

∣

∣

∣

∣

r=a

= 0. (20)

The surface charge density is computed by using a boundary elements method (9) adapted to an

axially symmetric geometry. Since 1V = 0, this amounts to solving, after using the method of

images to account for the fact that V = 0 at the electrode, the integral equation

V 0 =
1

4πε0

∫

�

σ(x′)

|x − x′|
dx′ −

1

4πε0

∫

�

σ(x′)

|x − x′ − 2dez |
dx′, (21)

for all x in �. In Fig. 3, we represent for given θY and a (radius of the circular solid–liquid interface)

the value of the potential V0 for which the drop spreads that radius a. To construct this plot, we fixed

values of V0, took as an initial drop’s shape a spherical cap of unit volume with solid–liquid inter-

face radius a and solved (19) and (20) till we reached a steady configuration. σ was computed by

solving numerically the integral equation (21) imposing axial symmetry (which allows to integrate

analytically in θ ). Once a steady configuration is found, we compute the electric capacity, C = QV0,

where Q =
∫

σ is the drop’s charge, and the energy rescaled in the new variables defined above:

E = Alv − (cos θY )Asl − 1
2
CV 2

0 , as a function of θY . The energy is written as E = E1 − cos θY E2,

where E1 = Asl and E2 = Alv − 1
2
CV 2

0 . A minimum of energy would correspond to a certain a if
∂ E
∂a

= 0 or, equivalently, a certain value of a would correspond to a minimizer of the energy if

θY = arccos

((

∂ E1

∂a

)/(

∂ E2

∂a

))

. (22)

Therefore, we only need to compute, for given V0 and varying a, the stationary profiles and their

energies E1 and E2. We compute their numerical derivatives with respect to a and find θY using

(22). The results of Fig. 3 have been computed numerically with this procedure for d = 0 · 5. In

Fontelos and Kindelán (7), an isolated drop was considered, which is formally equivalent to making

d → ∞. If one takes a particular solid–liquid configuration, and with it a particular θY , then the

value of a as a function of V0 can be found simply by looking at the intersection between the line

θY = constant and the curve corresponding to the given V0. Notice that the curves V0 = constant

are such that a → ∞ for finite values of θY , which would imply an infinite spreading, for given θY ,

if V0 is sufficiently large; just as predicted by Lippmann’s law. If one wishes to represent θ(V0) as a

function of the applied potential V0 and for a given θY , a horizontal line in Fig. 3 must be traced and

its intersections with the curves of constant potential would yield the values of a from which the

values of θ(V0) would follow under the assumption of a spherical cap drop’s geometry. In fact, such

assumption is in general incorrect except for sufficiently large values of a. In Fig. 5, we represent
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several drop’s profiles for a given V0 together with the theoretical Lippmann’s profile, a spherical

cap. We remark that the real contact angle is not the apparent θ(V0) but θY , with a sharp transition

between both angles in a small region near the contact line (10).

In Fig. 3, we represent in dashed line, the line to determine the dependence of the drop’s base

radius a as a function of the applied potential V0 for θY = 1 radian. The corresponding values of

cos θ(V0) (determined from the values of a assuming a spherical cap geometry) are represented in

Fig. 4 together with the best fit to a quadratic polynomial and the curve that would correspond to

the application of Lippmann’s law for the given parameters. As we can see, the results fit very well

into a parabolic profile, but which is not exactly the parabola given by Lippmann’s law. The reason

for this discrepancy lies in the fact that the capacity of the drop electrode system is not exactly the

one of a planar capacitor since distance d is comparable to the drop’s radius, edge effects become

important in the determination of the capacity making it slightly larger (see (11)). The increase

of the drop’s base radius with V0 is limited by the first bifurcation curve that the dashed line in 3

intersects as a increases. Saturation takes place at this point according to the computations above.

At the end of the paper, we will provide also support to our theory through published experimental

results (cf. (12)).

We implemented a fully three-dimensional boundary elements method to compute energies for

nonaxially symmetric drops (details can be found in Fontelos and Kindelán (7)). Drops are perturbed

sinusoidally in the radial direction, their surface is triangularized (Fig. 2) and their surface charge

density is computed by solving the integral equation (21). The thick lines in Fig. 3 delimitate the

region where a drop perturbed radially with and n-mode sinusoid is energetically more favorable

that the unperturbed drops. Hence, they delimitate the values of V0 for which circular drops reach

saturation so that they cannot spread circularly any further and symmetry-breaking instabilities

Fig. 3 The bifurcation diagram for d = 0 · 5 and a drop of unit volume. The thin curves provide, for given θY

and V0, the radius a to which an axisymmetric drop spreads. The thick lines n = 2, 3, 4 delimitate the regions

where the drop’s shape with n-mode perturbation is energetically favorable with respect to the axisymmetric

drop
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474 M. A. FONTELOS AND U. KINDELÁN

Fig. 4 Representation of cos θ(V0)− cos θY as a function of the applied potential V0 for a drop of unit volume

and d = 0 · 5. We fit to a quadratic polynomial and compare with the parabola given by Lippmann’s law

(assuming that the profiles are spherical caps, which is not totally correct unless d ≪ 1). Saturation occurs

when the curve reaches the first bifurcation curve in Fig. 3

Fig. 5 Drop’s profiles (continuous lines) for V0 = 0 · 76 together with spherical cap approximations (dashed

lines). The electrode is placed at d = 0 · 5. The spherical cap approximation deteriorates as a increases. The

drops tend to adopt the form of flat pancakes and close to the contact line a sharp transition between the contact

angle θY and θ(V0) takes place

emerge. A further increase of the potential may excite higher modes and multiple fingers can emerge

from the contact line, as observed in experiments. In fact, we argued above that for sufficiently flat

drops, higher order modes lead to more favorable shapes and the appearance of multiple fingers

is a reflection of this fact. This is also seen from the fact that the bifurcation curves in Fig. 3

tend to intersect for large values of a. These results have been deduced under a particular kind

of perturbation, namely (3). If one considers more general perturbations, instabilities may develop

even for smaller values of V0.

3. Analysis in the neighborhood of the contact line

The perturbation introduced in (3) represents a deformation for any value of z. One would expect

that deformations near the solid–liquid interface should have a dominant impact in the overall en-

ergy balance since electric field is very intense there. We are going to argue now at the level of a

neighborhood of the contact line and for perturbations with a wavelength much smaller than the

radius of curvature of the contact line. Hence, we approximate the liquid–vapor interface at a given
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point of the contact line by its tangent plane. By introducing local Cartesian coordinates centered at

that point, such a plane can be represented as

x = (cot θY ) z,

and the perturbed interface by

x = (cot θY ) z − εg(z) sin(ky), (23)

with g(z) such that g(0) = 1 and g(∞) = 0. Notice that (23) represents an undulation in the

y direction that decays fast as z → ∞. Then, the area created by the perturbation of the planar

interface in one y-period 2π/k will be

δAlv =
∫ (

√

1 + (cot θY − εg′(z) sin(ky))2 + (εkg(z) cos(ky))2 − (1 + cot2 θY )

)

dydz

≃
π

2
ε2k2 I sin θY ≡ c1

sin θY

2
ε2k2, for k ≫ 1, (24)

where I =
∫

g2(z)dz. The relative variation of the area of the liquid–solid interface is 0. The

contribution to the capacity in a region S, exterior to the volume D delimited by the liquid–solid

and the liquid–vapor interfaces and consisting of one y-period and for the points in D such that

(x, z) are in a ball of radius R will be given by ε0
2

∫

S
|∇x V |2. By changing variables

x ′ = x + εg(z) sin(ky),

we can write

∫

S

|∇x V |2 =
∫

S

(

∂V

∂x ′

)2

+
(

∂V

∂x ′ εkg(z) cos(ky) +
∂V

∂y′

)2

+
(

∂V

∂z′ εg′(z) sin(ky) +
∂V

∂x ′

)2

=
∫

S

|∇x ′ V |2 + 2ε

∫

S

∂V

∂x ′
∂V

∂y′ kg(z) cos(ky) +
∂V

∂z′
∂V

∂x ′ g′(z) sin(ky)

+ε2

∫

S

(

∂V

∂x ′ kg(z) cos(ky)

)2

+
(

∂V

∂z′ g′(z) sin(ky)

)2

.

Writing now V = V 0 +εV1, with V 0 the potential in the exterior of the unperturbed wedge of angle

θY , we get

∫

S

|∇x V |2 =
∫

S

∣

∣

∣
∇x ′ V 0

∣

∣

∣

2
+ 2ε

∫

S

∇x ′ V 0 · ∇x ′ V 1

+2ε

∫

S

∂V 0

∂x ′
∂V 0

∂y′ kg(z) cos(ky) +
∂V 0

∂z′
∂V 0

∂x ′ g′(z) sin(ky)

+2ε2

∫

S

(

∂V 0

∂x ′
∂V 1

∂y′ +
∂V 1

∂x ′
∂V 0

∂y′

)

kg(z) cos(ky)
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+

(

∂V 0

∂x ′
∂V 1

∂z′ +
∂V 1

∂x ′
∂V 0

∂z′

)

g′(z) sin(ky)

+ε2

∫

S

(

∂V 0

∂x ′ kg(z) cos(ky)

)2

+

(

∂V 0

∂z′ g′(z) sin(ky)

)2

+ ε2

∫

S

∣

∣

∣
∇x ′ V 1

∣

∣

∣

2
.

We can write V 1 = sin(ky′)8(x, z). The relative variation of capacity will then be, for k ≫ 1 and

letting R → ∞,

δC =
ε0

2

∫

|∇x V |2 −
ε0

2

∫

|∇x ′ V |2

≃
ε0

2
ε2π



k2

∫

W

(

∂V 0

∂x ′ g(z) + 8

)2

+
∫

W

|∇8|2


 ≡
ε0

2
ε2π

(

min
8

Jk(8)

)

,

where W is the exterior to the two-dimensional wedge formed by the unperturbed liquid–vapor and

liquid–solid interfaces and we have used that all the O(ε) terms vanish in the limit R → ∞. The

reason for this cancellation is that
∫

∇x ′ V 0 · ∇x ′ V 1 = 0 and V 0 is independent of y′. Reasoning as

in the case of a perturbed axisymmetric drop, it is clear that min8 Jk(8) increases with increasing

k and is positive. We are also able, in this case, to estimate it for large values of k. The equations

satisfied by 8 are

−18 + k28 = −k2 ∂V 0

∂x ′ g(z) in W,

8 = 0 in ∂�.

For k ≫ 1, the solution is 8 = − ∂V 0

∂x ′ g(z) + O(k−2) except for a O(k−1) thick boundary layer

around ∂� where 8 changes, along the curve x0 + sn (with x0 ∈ ∂W and n the normal direction to

∂W ), from 0 to − ∂V 0

∂x ′ g(z)
∣

∣

∣

x0

. Along this boundary layer 8 satisfies

−8ss + k28 = −k2 ∂V 0

∂x ′ g(z)

∣

∣

∣

∣

∣

x0

,

8(s = 0) = 0.

Then,

8(s) = −
∂V 0

∂x ′ g(z)

∣

∣

∣

∣

∣

x0

(1 − e−ks),

and we can approximate

min
8

Jk(8) ≃ 2k2

∫

∂W

(

∂V 0

∂x ′ g(z)

)2
∫ ∞

0

e−2ksds = 2k

∫

∂W

(

∂V 0

∂x ′ g(z)

)2

.

Hence,

δC ≃ ε0πε2k

∫

∂W

(

∂V 0

∂x ′ g(z)

)2

≡ c2ε
2k. (25)
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Notice that c1 in (24) may be smaller than c2 in (25) provided θY is sufficiently small or

∣

∣

∣

∂V 0

∂x ′

∣

∣

∣
is

sufficiently large. Since ∂V 0

∂x ′ = −Ex ′ , we conclude that instabilities with large wavenumber are

enhanced if electric field is made sufficiently intense close to the contact line.

We conclude then with the following expression for the dispersion relation for periodic perturba-

tions with small wavelength of the contact line:

δE = ε2(γlvc1 sin θY k2 −
1

2
c2kV 2

0 ).

This formula allows to compute the wavenumber at which the energy decreases most:

kmax =
1

4γlv

c2

c1

V 2
0

sin θY

.

We can simplify further, using V 0 = 1 at ∂W :

c2

c1
=

ε0

∫

∂W

(

∂V 0

∂x ′ g
)2

∫

g2(z)dz
=

ε0

∫

lv

(

∂V 0

∂x ′ g
)2

∫

lv g2 sin θY

=
ε0

∫

lv g2
(

∂V 0

∂n′

)2
sin2 θY

∫

lv g2 sin θY

=
sin θY

ε0V 2
0

∫

lv g2σ 2

∫

lv g2
,

and conclude with

kmax =
1

4γlvε0

∫

lv g2σ 2

∫

lv g2
,

a formula valid for small enough wavelengths (much smaller than the radius of curvature of the

contact line) and depending solely on the local charge densities near the contact line independent of

whether they have been created or amplified by any external element such as electrodes or dielectrics

under the substrate.

To summarize, we have explained saturation and instability of spreading droplets in electrowet-

ting as a bifurcation phenomenon by which a drop loses its axial symmetry and develops multiple

fingers. We remark that for levitating droplets (which would correspond to the limit d → ∞ and

θY = π ) the appearance of instabilities once a drop has been charged above a critical value is a well-

known fact (13). In this case, spherical drops when reaching the critical charge become energetically

unfavorable with respect to ellipsoidal drops, deform with a n = 2 mode and eventually form cone-

like singularities at the interface (14) with the formation of multiple daughter droplets. Our result

serves to connect this behavior with the less understood behavior of drops in electrowetting. The

dynamic transition from axisymmetric to multiple finger drop profiles is currently underway (15).

4. Connection to experiments

There are already plenty experimental results we can compare our results with. The article (6)

contains a compilation of results from various other articles and comparison with its authors’ own

theory. Some of the experimental data available only provide information on the parameters entering

in Lippmann’s formula (which is incorrect in some regimes) but are missing other parameters such

as the volume of fluid deposited on the substrate. In this sense, the data in Blake et al. (12) are

complete and we will use them for our analysis. A 40-µl drop of glycerol solution is deposited onto

the surface of a polyethylene terephthalate (PET) film with thickness of d = 100 µm, with electric

permittivity εr = 3 · 2. The surface tension coefficient γlv is 64 mN/m. Young’s angle was found to
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478 M. A. FONTELOS AND U. KINDELÁN

be 66◦. Given these parameters, one can define a typical length scale l∗ as the radius of the drop if

it were a sphere, that is, l∗ = 2 · 1 × 10−3 m. Hence, the thickness of the PET film is much smaller

than the length scale l∗ and one can approximate the whole system by a plane capacitor. This fact

allows (1) to replace the dielectric of thickness 100 µm with εr = 3 · 2 by a dielectric of thickness

100/3 ·2µm with εr = 1 and (2) approximate the drops by spherical caps. In Quinn et al. (6), it was

found that the experimental results in Blake et al. (12) matched almost exactly a law

cos θ(V0) − cos θY = β
ε0εr

dγlv
V 2

0 ,

with β = 0·29 (remind that β = 0 · 5 for Lippmann’s law) and saturation was reached at about

V0 = 500 V with a contact angle of 48◦. The value of β obtained is compatible with Lippmann’s

law if we take

β
εr

d
=

1

2

1

deff
,

where deff is the effective thickness of a dielectric with εr = 1 so that the experimental results of

Blake et al. (12) match Lippmann’s law. We have computed, for such a dielectric, the energies (2)

of configurations with axial symmetry and compared them with the energies of these configurations

when symmetry broken in the form explained in previous sections. We write our results in terms

of the nondimensional units by changing in the form given by (17) but using as length scale l∗ .

In particular, the potential we take is V0 = l∗− 1
2 (γlvε

−1
0 )−

1
2 V , where V is the applied potential in

physical units, and the energy computed is E = Alv − (cos θY )Asl − 1
2
CV 2

0 with C the capacity

of the system (in nondimensional units). In Fig. 6, we represent the difference between the energy

of the axisymmetric drop and the same drop with the symmetry broken by the n = 2 mode, as a

function of the potential V0. The drop with the broken symmetry becomes energetically favorable

for V0 > 0 · 1658. In physical units, this is V > 645 V. The voltage for which contact angle

Fig. 6 Difference in energy between the unperturbed axisymmetric drop and the drop perturbed with the n = 2

mode, as a function of the applied potential V0. Notice that bifurcation takes place at V0 ≃ 0 · 1658
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saturation was reached in the experiment (12) is about 500 V when dc was used, while a slower

transition to saturation was observed with ac and, according to Blake et al. (12), appears to saturate

above 600 V.
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