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A Variational Approach to Simultaneous Image

Segmentation and Bias Correction
Kaihua Zhang, Qingshan Liu, Senior Member, IEEE, Huihui Song, and Xuelong Li, Fellow, IEEE

Abstract—This paper presents a novel variational approach for
simultaneous estimation of bias field and segmentation of images
with intensity inhomogeneity. We model intensity of inhomoge-
neous objects to be Gaussian distributed with different means and
variances, and then introduce a sliding window to map the orig-
inal image intensity onto another domain, where the intensity
distribution of each object is still Gaussian but can be bet-
ter separated. The means of the Gaussian distributions in the
transformed domain can be adaptively estimated by multiplying
the bias field with a piecewise constant signal within the slid-
ing window. A maximum likelihood energy functional is then
defined on each local region, which combines the bias field,
the membership function of the object region, and the constant
approximating the true signal from its corresponding object. The
energy functional is then extended to the whole image domain by
the Bayesian learning approach. An efficient iterative algorithm
is proposed for energy minimization, via which the image seg-
mentation and bias field correction are simultaneously achieved.
Furthermore, the smoothness of the obtained optimal bias field
is ensured by the normalized convolutions without extra cost.
Experiments on real images demonstrated the superiority of
the proposed algorithm to other state-of-the-art representative
methods.

Index Terms—Bias field, computer vision, energy minimization,
image segmentation, variational approach.

I. INTRODUCTION

I
NTENSITY inhomogeneity caused by imperfection of

imaging devices and subject-induced susceptibility effects

can lead to serious misclassifications by intensity-based seg-

mentation algorithms [1]–[4]. Statistically, misclassification

is caused by the prolonged tail of the intensity distribution

of each object, so that it is difficult to extract each object

accurately based on their intensities. Intensity inhomogene-

ity often exists in images obtained by different modalities,
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such as ultrasound, X-ray radiography/tomography, and mag-

netic resonance imaging (MRI). The inhomogeneity in MRI

is mainly caused by nonuniform magnetic field produced by

radio frequency coils as well as from object susceptibility.

Intensity inhomogeneity is particularly severe in high field

(e.g., 3T) MRI and ultra high field (e.g., 7T) MRI, which

challenges quantitative image analysis algorithms, such as

segmentation and registration [5]. Therefore, intensity inho-

mogeneity correction is usually a prerequisite before applying

quantitative algorithms.

Intensity inhomogeneity is usually ascribed to a smooth and

spatially varying field multiplying the true signal of the same

object in the measured image. This spatially varying smooth

field is named as bias field. Bias correction is a procedure to

estimate the bias field from the measured image to reduce its

side effect [1]. Existing bias correction approaches can be cat-

egorized into two categories, namely prospective [6]–[9] and

retrospective [1], [2], [10]–[21] approaches. Prospective meth-

ods aim at calibrating and improving image acquisition pro-

cessing by applying specific hardware or devising special

imaging sequences. However, these methods cannot correct

patient-induced inhomogeneity [5], [18]. Comparatively, ret-

rospective methods only rely on the acquired images and

sometimes some prior knowledge. Thus, they are relatively

more general, and can be used to correct patient-induced

inhomogeneity from different sources. The retrospective meth-

ods can be further categorized into several categories based

on filtering [4], surface fitting [19], histogram [20], and

segmentation [1], [2], [14]–[17], [22].

Among various retrospective methods, segmentation based

ones are most attractive, since they unify segmentation and

bias correction under a single framework to benefit from each

other, simultaneously yielding better segmentation and bias

correction results. In these methods, parameter model based on

the maximum-likelihood (ML) or maximum a posterior (MAP)

probability criterion is often used, in which the corresponding

parameters are often estimated by the expectation maximiza-

tion (EM) algorithm [14], [15], [21], and [23]. However, an

appropriate initialization of the EM algorithm is critical to

such algorithms, which requires either a close estimate of the

bias field or a coarse segmentation [22]. Manual selections

of seed points for each class are often used [21], but it is

subjective and irreproducible [5], [22]. In addition, since the

intensity probability models in [14], [15], [19]–[21], and [23]

do not exploit information of neighboring pixels belonging to

the same class, the segmentation results are often sensitive to

noise and the tissue borders may not be smooth [5]. Markov
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random fields (MRF) model can yield improved segmentation

results that are less sensitive to noise [24], [25].

Recently, Li et al. [2] proposed a parametric method for

simultaneous bias field correction and segmentation by mini-

mizing a least square energy functional. The bias field is mod-

eled as a linear combination of a set of orthogonal polynomial

basis functions [15], [22]. Although this leads to a very smooth

bias field, some bias fields cannot be well fitted by polyno-

mials, such as the bias field in 7T MRI [1], [17]. Moreover,

each pixel is assigned to one tissue class. However, intensities

of the partial volume voxels are composed of multiple class

intensities in images, and the proportion of the partial volume

voxels in low-resolution datasets can be up to 30% [22]. Thus,

the calculated bias field may be partially wrong. Li et al. [17]

proposed a variational level set (VLS) approach [26], [27] to

simultaneous segmentation and bias correction. However, this

method needs to alternatively iterate two partial differential

equations, which is very time-consuming. Furthermore, the

energy functional in the VLS method is not convex in the set of

characteristic functions, making it easy to be trapped into local

minima [28].

This paper presents a novel variational approach to simul-

taneous bias correction and segmentation. By exploiting local

image redundant information, we define a mapping from origi-

nal image domain to another domain so that the intensity prob-

ability model is more robust to noise. We then define an ML

energy functional based on the intensity distributions in each

local region in the transformed domain, which combines the

bias field, the membership function of each object region, and

the constant approximating the true signal from its correspond-

ing object. Finally, the ML energy functional is extended to

the whole image domain, which we call the criterion of max-

imum likelihood in transformed domain (MLTD). The MLTD

criterion achieves a global minimum with respect to each of

its variables. Moreover, analysis of the MLTD criterion shows

that it is a soft classification model, which assumes that each

pixel intensity belongs to more than one class, while the hard

classification assigns the intensity of each pixel to only one

class. Therefore, the MLTD criterion obtains a better corrected

bias field. In addition, the recently proposed CLIC criterion [1]

can be viewed as a special case of the MLTD criterion, while

the MLTD is more accurate to model inhomogeneous image

intensity.

The rest of this paper is organized as follows. Section II

introduces research background and related works. Section III

presents the proposed algorithm in detail. Section IV shows

extensive experimental results and Section V concludes the

paper.

II. BACKGROUND AND RELATED WORKS

A. Statistical Model of Intensity Inhomogeneity

Let � be image domain; I(x) : � �→ ℜ be a given image;

b(x) : � �→ ℜ be an unknown bias field; J(x) : � �→ ℜ
be a true signal to be restored; and n(x) : � �→ ℜ
be noise. We consider the following model of intensity

inhomogeneity [5]:

I(x) = b(x)J(x) + n(x). (1)

Suppose that there are N (N = 2 or 4 which is fixed in our

experiments) objects in the image domain �, and �i denotes

the ith object domain which will be evolved over iterations.

The true signal J(x) is often assumed to be piecewise con-

stant within each object domain, i.e., J(x) = ci for x ∈ �i,

where ci is a constant. The bias field b is often assumed to

be smooth in the image domain �. Noise n is assumed to

be Gaussian distributed with zero mean and variance σ 2
n in

the image domain [29]. Thus, the distribution of image inten-

sity can be approximated to be Gaussian with mean bJ and

variance σ 2
n . However, using only one Gaussian distribution

is not accurate enough to describe the statistical character-

istic of image intensity. Often multiple Gaussian probability

distributions are adopted to model the image intensity distri-

bution, with each distribution modeling the image intensity in

each object domain. The distribution corresponding with the

domain �i is [30], [31]

p (I(y)|αi) =
1

√
2πσi

e
− (I(y)−μi(x))2

2σ2
i , x, y ∈ �i (2)

where μi(x) is the spatially varying mean, σi is the standard

deviation, and αi = {ci, σi} is the parameter set of the dis-

tribution. Since bias field b varies slowly, it can be assumed

to be a constant in a small window [1], and we can assume

that μi(x) ≈ b(x)ci. Note that the standard deviation σi is

modeled as a spatially varying function in [30] and [32].

Although [32] has demonstrated good performance for seg-

mentation of images with intensity inhomogeneity by using a

single level set method [33]–[35], we utilize a piecewise con-

stant σi in each region because the spatially variation σi may

be unstable due to its local characteristic [30].

B. Related Works

In [1], a coherent local intensity clustering (CLIC) model

is proposed for simultaneous segmentation and bias cor-

rection. For each point x ∈ �, we define a local region

Ox = {y : |y − x| ≤ ρ} with radius ρ. The true signal J(x) in

each region �i is approximated to be a constant ci. Since the

bias function b varies slowly, it can also be approximated as

a constant in a local region Ox ∩ �i. Therefore, we have

b(y)J(y) ≈ b(x)ci, y ∈ Ox ∩ �i. (3)

Hence, b(x)ci is the cluster center for the intensities in the

neighborhood Ox ∩�i. A clustering criterion functional is pro-

posed in which a weight function w(y − x) is introduced to

measure the similarity of each pixel intensity I(y) to its clus-

ter center b(x)ci: the weight at position y far from its cluster

center x is smaller than the nearby ones, meaning its intensity

has less similarity than those near the center. The clustering

criterion function is defined as

Elocal
x (u, c, b(x)) =

N∑

i=1

∫

Ox

u
q
i (y)w(x − y)|I(y) − b(x)ci|2dy

(4)

where q is a positive integer, N is the assumed num-

ber of regions, ui is the indicator function for region �i,
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u = {ui, i = 1, . . . , N}, and c = {ci, i = 1, . . . , N}. w(·) in (4)

is a weight function defined as

w(x) =

{
1
a

e
−|x|2
2σ2 , |x| ≤ ρ

0, else
(5)

where a is a normalization constant. Then, (4) is extended to

the whole domain � that defines the following CLIC energy

functional:

ECLIC
u,c,b (u, c, b) =

∫

�

N∑

i=1

∫

Ox

u
q
i (y)w(x − y)|I(y)

− b(x)ci|2dydx. (6)

Then, the objective is to minimize ECLIC
u,c,b with respect to

the membership function set u (for any set X, a membership

function on X is any function from X to the real unit inter-

val [0, 1]), true signal set c and bias field b subject to the

constraints ui ≥ 0 and
∑N

i=1 ui = 1.

Recently, Li et al. [17] proposed a VLS method for simul-

taneous segmentation and bias correction with application to

MRI. They defined an energy functional similar to (6) but

the argument of the indicator function is level set function as

follows:

EVLS
�,c,b =

∫

�

N∑

i=1

∫

�

Mi(�(y))w(x − y)|I(y) − b(x)ci|2dydx

(7)

where � is the level set function set, and � = {φ} when N = 2

for binary-phase segmentation and � = {φ1, φ2} when N = 4

for four-phase segmentation. Mi(·) is the indicator function for

the region �i, whose argument is the level set function. Then,

the signed distance penalized energy functional and zero level

set length energy functional are added into (7) to regularize

the level set function, and the final level set evolution equation

with respect to the ith level set function φi is as follows:

∂φi

∂t
= −

N∑

j=1

∂Mj(�)

∂φi

ej + νδ(φi)div

(
∇φi

|∇φi|

)

+ λdiv

((
1 −

1

|∇φi|

)
∇φi

)
(8)

where ei(x) =
∫
�

w(y − x)|I(x) − b(y)ci|2dy, “div” is the

divergence operator, δ(·) is a Dirac function and λ, ν are fixed

positive constants.

III. OUR METHODOLOGY

A. Principle of the Proposed Method

Let us revisit the probability density function (PDF) of the

intensity I(y) represented by (2). For the clustering center

point x, we define a mapping T : I(x|αi) �→ I(x|αi) from

original image intensity domain D(T) to another domain R(T)

as follows:

I(x|αi) =
1

mi(x)

∑

y∈�i∩Ox

I(y|αi) (9)

where mi(x) = ‖�i ∩ Ox‖ is area size of the intersection

region. The intensity of pixel x is assumed to be independently

Fig. 1. Distributions of adjacent regions in the original image intensity
domain (blue solid curves) and the transformed domain (red dashed curves).

distributed [36]. Thus, for all I(x|αi) ∈ R(T), the corre-

sponding PDF is still a normal distribution, i.e., I(x|αi) ∼
N (μi, σ

2
i /mi(x)). Refer to the red dashed curves in Fig. 1,

the overlapping tails of the distributions are suppressed to

some extent. Therefore, the misclassification caused by the

overlapping intensity can be alleviated to some extent in the

transformed domain R(T). In the following, we will design

our energy functional on the domain R(T) by means of the

well-defined relationship between domain D(T) and R(T).

Since intensity inhomogeneity manifests itself as a smooth

intensity variation across the image [5], we can assume

I(y|αi) ≈ I(x|αi), for all y ∈ �i ∩ Ox. Furthermore,

since the product of several Gaussian PDFs is still Gaussian,

we have

∏

y∈�i∩Ox

p(I(y|αi)) ≈ p(I(x|αi))
mi(x) ∝ N

(
μi,

σ 2
i

mi(x)

)
. (10)

Let X = {Ii, i = 1, . . . , N} (we denote I(x|αi) as Ii for

convenience) where the elements I1, I2, . . . , IN are mutually

independent. Since I(x|αi) ∼ N (μi, σ
2
i /mi(x)), we have the

following likelihood function:

p(X|α) =
N∏

i=1

p(I(x|αi)) ∝
N∏

i=1

∏

y∈�i∩Ox

p(I(y|αi)) (11)

where α = {αi, i = 1, . . . , N}.
When p(α) is uniform or flat, (11) can be rewritten as

p(X|α) = p(α|X). So we can define the conditional cost energy

functional with the MLTD as EMLTD(α|x) = − log(p(α|X)) =
− log(p(X|α)). Putting (11) into EMLTD(α|x), we obtain the

following formula:

EMLTD(α|x) = constant −
N∑

i=1

∑

y∈�i∩Ox

log(p(I(y|αi))). (12)

The constant term can be eliminated, and by taking into

account all x ∈ �, the total cost energy functional is

formulated as follows:

EMLTD(α) =
∫

�

EMLTD(α|x)p(x)dx

� −
N∑

i=1

∫

�

∫

�i∩Ox

log(p(I(y|αi)))dyp(x)dx. (13)
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By setting p(�i) = 1/N [37], we have p(x) = 1/N. Then

EMLTD(α) can be rewritten as

EMLTD(α) = −
1

N

N∑

i=1

∫

�

∫

�i∩Ox

log(p(I(y|αi)))dydx. (14)

Let χρ(y,x) and ui(y) be the membership functions of

regions Ox and �i, respectively, such that

χρ(y,x) =
{

1, |y − x| ≤ ρ

0, |y − x| > ρ
(15)

N∑

i=1

ui(y) = 1, for all y ∈ � (16)

where 0 ≤ ui(y) ≤ 1. With (2), (15) and (16), (14) can be

rewritten as

EMLTD
c,u,σ,b =

1

N

N∑

i=1

∫

�

∫

�

χρ(y,x)ui(y)

(
log(

√
2πσi)

+ (I(y)−b(x)ci)
2

2σ 2
i

)
dydx

(17)

where c = {c1, . . . , cN}, u = {u1, . . . , uN}, and σ =
{σ1, . . . , σN}. EMLTD

c,u,σ,b is convex with respect to each of its vari-

ables while fixing other ones and thereby we can efficiently

obtain the closed form of solution for each variable. However,

EMLTD
c,u,σ,b is a nonconvex function with respect to all of its

variables. Thus, the final results may depend on the initial vari-

ables. In Section IV-A, we will show that the above objective

function has less dependence on the different initializations of

the variables (see Fig. 2).

Furthermore, we adopt the total variation (TV) of the

membership function to regularize the membership function

ERMLTD
c,u,σ,b = EMLTD

c,u,σ,b + γ

N∑

i=1

∫

�

|∇ui(x)|dx. (18)

The above model is termed as regularized MLTD (RMLTD)

model.

Remark 1: Our approach is essentially different from the

methods proposed by Brox and Cremers [38], Paragios and

Deriche [39], Wang et al. [32], and Zhan et al. [40]. In

Brox et al. [32]’s method, their energy functional has a single

integral which simply uses spatially varying means and vari-

ances instead of constant means and variances in the energy

functional defined by [36]. However, our energy functional has

a double integral with varying means and piecewise constant

variances. Brox et al. introduced a Gaussian kernel to com-

pute the spatially varying means and constant variances in

their implementation. However, this may be inconsistent with

theory as pointed out by Wang et al. [32]. Differently, the vary-

ing means and piecewise constant variances in our method are

directly obtained by energy minimization [see (17) and (18)].

Paragios et al. [39]’s method integrates boundary informa-

tion into an energy functional defined by [36]. Therefore, its

means and variances are constant. Our method is different

from Wang et al.’s method. First, we use spatially varying

means and piecewise constant variances in each local region

which are more stable than spatially varying variances in [32].

Second, our method can obtain the closed form of optimal

membership functions for each segmented region, which is

much more efficient than Wang et al. [32]’s method that needs

to iterate solving a level set formulation. In [40], an improved

VLS method is proposed for simultaneous bias correction and

segmentation based on Wang et al.’s method in which the local

mean of Gaussian distribution is replaced by multiplication

of the smooth bias filed function and piecewise constant true

signal. Therefore, the proposed method in [40] has similar

disadvantages as Wang et al.’s method.

B. Energy Minimization

1) Minimization With Respect to c: By fixing the other

variables in (18), we obtain the solution of c, denoted by

c̃ = { c̃i, i = 1, . . . , N}, as follows:

c̃i =
∫
�
(χρ ⊗ b)Iuidy∫

�
(χρ ⊗ b2)uidy

(19)

where ⊗ denotes the convolution operator.

2) Minimization With Respect to b: By fixing the other vari-

ables in (18), we obtain the solution of b, denoted by b̃, as

follows:

b̃ =
∑N

i=1 χρ ⊗ (Iui)∑N
i=1 χρ ⊗ ui · ci

. (20)

Note that b̃ is actually normalized convolution [28], which

naturally leads to a smooth approximation of the bias field b.

3) Minimization With Respect to σ : By fixing the other

variables in (18), we obtain the solution of σ , denoted by

σ̃ = {̃σi, i = 1, . . . , N}, as follows:

σ̃i =

√∫
�

∫
�

χρ(y,x)ui(y)(I(y) − b(x)ci)2dydx∫
�

∫
�

χρ(y,x)ui(y)dydx
. (21)

4) Minimization With Respect to u: By fixing the other

variables in (17), the solution of u, denoted by ũ = {̃ui, i =
1, . . . , N}, is as follows:

ũi(y) =
{

1, i = arg mini(ψi)

0, i �= arg mini(ψi)
(22)

where ψi(I(y)) =
∫
�

χρ(y,x)(log(σi) + ((I(y) − b(x)ci)
2/

2σ 2
i ))dx For an explanation of how to derive the above

solutions, please refer to Appendixes A, B, C, and D.

5) Minimization With Respect to u With TV Regularization:

For the objective function ERMLTD
c,u,σ,b with TV regularization,

we obtain the solution of u by using the fast optimization

algorithm proposed by [41] and [42] with procedures as

follows.

1) Fix ui, solve vi by the following formulation:

vi = ui − θγ div(qi), i = 1, . . . , N (23)

where θ is a fixed parameter and qi is solved by fixed

point method that iterates

qn+1
i =

qn
i + τ∇

(
div(qn

i ) − ui/θγ
)

1 + τ |∇
(
div(qn

i ) − ui/θγ
)
|

(24)

with q0
i = 0 and τ ≤ (1/8) to ensure convergence.
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2) Fix vi, solve ui by the following formulation:

ui = min

(
max

(
vi − θγ di − θγ ς(

∑
j �=i uj − 1)

1 + θγ ς
, 0

)
, 1

)

(25)

where ς is a fixed parameter.

The whole minimization procedure consists of the following

three steps, which are implemented iteratively.

1) Keep u fixed, optimize and update the variable sets

c, b, and σ .

2) Keep c, b, and σ fixed, optimize and update u.

3) Check whether the convergence has been reached. If not,

return to 1).

The convergence condition is |un+1
i −un

i | ≤ ε, i = 1, . . . , N,

where ε = 0.1 in our experiments.

Remark 2: The solution of {b(x), ci} is not unique because

{kb(x), (1/k)ci} with any positive factor k also minimizes the

proposed energy functionals EMLTD
c,u,σ,b and ERMLTD

c,u,σ,b . However,

these scale factors do not affect quality of the correction

because MR intensity is relative [43]. Furthermore, these

factors have no impact on the solutions of σ̃i and ũi

in (21) and (22), respectively, because their solutions are

based on the multiplication of b(x) and ci where b(x)ci =
kb(x)·(1/k)ci. Therefore, the final segmentation and estimated

bias field are robust to the initial variables.

C. Advantages of the MLTD Model

The CLIC energy functional [1] has two desirable

advantages over the well-known methods proposed by

Wells et al. [21] and Leemput et al. [15]. First, it is con-

vex with respect to each of its variables and we can obtain

the closed form of its solutions; second, the smoothness of

the bias field is ensured by the nature of the CLIC energy

functional. Therefore, we use CLIC as a reference to discuss

the advantages of the proposed model.

If we set σi in (17) to be 1/
√

2π , the membership function

of region Ox to be a truncated Gaussian window, (17) will

be the same as the CLIC energy functional with q = 1 [refer

to (6)] except for some trivial constant factors. Thus, the CLIC

model can be viewed as a special case of our MLTD model,

and the MLTD will be more accurate to model the image

with intensity inhomogeneity than the CLIC model. In [1], it

is claimed that the CLIC model will yield a hard classifica-

tion (the image intensity in a fixed position only belongs to

one tissue) when q = 1 in (6). Differently, we will discuss

that the proposed MLTD model leads to a soft classification

(image intensity in a fixed position belongs to all tissues with

a corresponding probability).

In medical imaging, partial volume voxels often have an

intensity composed of multiple class intensities. For exam-

ple, there is as much as 30% of partial volume voxels in low

resolution datasets [22]. The partial volume effect severely

influences the accuracy of estimated bias field if a hard clas-

sification method is adopted because the hard classification

method assumes the image intensity in a fixed position only

belongs to one tissue. Our proposed methods are soft classi-

fication methods which assume that intensity of each tissue

is composed of multiple class intensities, thereby alleviating

partial volume effect to some extent.

Equation (11) can be rewritten as multivariate Gaussian

distribution as follows:

p(X|α) =
N∏

i=1

p(I(x|αi)) ∼ N (μ,�) (26)

where

μ = �

N∑

i=1

mi(x)b(x)ci

σ 2
i

, �
−1 =

N∑

i=1

(
σ 2

i

mi(x)

)−1

. (27)

Intuitively, every pixel (voxel) is composed of multiple

classes of intensities depending on the position x, thus, the

MLTD model can yield a soft classification result, and the

partial volume effect [22] can be significantly eliminated.

Moreover, the intensity in the transformed domain exploits

information of the neighboring pixels belonging to the same

class [refer to (9)], so the classification result of MLTD is less

sensitive to noise, yielding smoother tissue border [5].

IV. EXPERIMENTAL RESULTS

In this section, we first demonstrate robustness of our

method to different parameter initializations and then compare

our method with the CLIC method [1], VLS method [17],

improved variational level set (IVLS) method [40], infor-

mation minimization (IM) method [18]1 and the N4ITK

method [44]2; then we apply our method to 7T MRI to

further verify its performance. Note that our method can

not only be applied to 2-D slices but also to 3-D images.

Except for Fig. 7 that uses a 3-D MR brain image, all

other experiments are tested on 2-D slices. The MATLAB

source code can be downloaded from https://drive.google.com/

file/d/0B_gmXtdIPtrbRTNKYmlfQTc4UXM/edit?usp=sharing.

A. Parameter Setting

It is easy to choose the parameters in our model. We first

randomly initialize b with a normal distribution whose mean

and standard deviation are zero and one, respectively, and then

we set b to be |b| that ensures its values nonnegative. The

initial ui, i = 1, . . . , N are generated with a uniform distri-

bution on the interval [0, 1]. Then, we normalize each ui to

be ui/
∑N

i=1 ui. Then, the initial ci can be calculated by (19).

After having the initial {b, ci, ui, i = 1, . . . , N}, we can esti-

mate the initial σi via (21). Our method is stable for a large

range of different ρ (e.g., 5 < ρ < 25). In all the following

experiments, we set ρ = 10. A small ρ makes the compu-

tation in each iteration more efficient, but the convergence is

slower. On the other hand, a large ρ increases computational

burden for each iteration while increasing the convergence rate

because information from a large region is used.

For the RMLTD model [refer to (18)], we set θ = 0.001,

γ = 0.01, τ = 0.1, and ς = 0.1.

Fig. 2 shows the sensitivity of our method to different

parameter initializations. We use the Jaccard similarity (JS) [1]

1http://lit.fe.uni-lj.si/contents/tools/InhomogeneityCorrection/
2http://www.insight-journal.org/browse/publication/640
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Fig. 2. Test of sensitivity of our method to different parameter initializations.
Top row: left, original image; right, ground truth image. Middle row: sample
segmentation results. Bottom: JS values for 30 different initializations. The
mean of JS values is 0.9886 and the standard deviation of JS values is 0.0061.

as an index to measure the segmentation accuracy to quan-

titatively evaluate the performance of our method. The JS

between two regions S1 and S2 is calculated by JS(S1, S2) =
|S1 ∩ S2|/|S1 ∪ S2|, which is the ratio between the intersec-

tional area of S1 and S2 and their united area. Obviously, the

closer the JS value is to 1, the more similar S1 is to S2. In our

experiments, S1 is the segmented region by our method, and

S2 is the ground truth. We use 30 random setting of parameter

values, and compute the JS value for each parameter initializa-

tion. It can be observed that segmentation results of different

initializations have no obviously visual effect (see the middle

row in Fig. 2). Moreover, the JS values for 30 different ini-

tializations fluctuate narrowly with standard deviation 0.0061.

This demonstrates the robustness of our method to different

parameter initializations. For the following experiments, we

used the similar initializations as those used in Fig. 2, and

found the results are very stable for different initializations.

B. Comparisons With Other Representative Methods

Fig. 3 compares our MLTD and RMLTD methods with the

CLIC and VLS methods for a synthetic image with noise. The

intensity of this synthetic image is severely inhomogeneous

and the noise is strong. From the third image of Fig. 3(d),

we can see that the segmentation result by CLIC method is

not visually satisfying because some background intensities

are misclassified as the object intensities. The segmentation

result by VLS method [see the third image of Fig. 3(e)] is

better than the CLIC method but there still exist some obvious

misclassifications. In general, MLTD yields the best segmen-

tation results among the three methods. However, there still

exist some small dot regions that are misclassified due to the

Fig. 3. Application to a synthetic image with noise. (a) Original image.
Results of (b) MLTD, (c) RMLTD, (d) CLIC, and (e) VLS. (b)–(e) From left
to right: estimated bias fields, bias corrected images, and binary segmentation
results.

strong noise. Fig. 3(c) shows results by RMLTD method. We

can see that adding the TV regularization term can effectively

remove the noise in the final segmentation result.

We test the seven competing methods on 30 Brainweb nor-

mal subjects (1 mm isotropic spacing, no added noise, discrete

anatomical labeling) with stimulated bias fields with 0%, 20%,

and 40% intensity inhomogeneity, respectively, from McGill

Brain Web.3 The 5%, 10%, and 20% levels of Gaussian noises

are then added to these images.

In Fig. 4, we use box plots to illustrate the distribution

of JS values of white matter (WM) and gray matter (GM)

generated by five methods without the IM and N4ITK meth-

ods because they are only designed for bias correction. The

top limit is calculated from the 25th percentile of the data

3http://www.bic.mni.mcgill.ca/brainweb/
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(a)

(b)

(c)

Fig. 4. Segmentation results: JS analysis for the BrainWeb data with different levels of bias fields and noises. (a) Segmentation results with 0% bias field.
(b) Segmentation results with 20% bias field. (c) Segmentation results with 40% bias field.

while the bottom is from the 75th percentile (p25% and p75%,

respectively). The median value is denoted by the horizontal

red line. The extent of the box plot whiskers is in the range

[p25% − 1.5(p75% − p25%), p75% − 1.5(p75% − p25%)], and any

datum outside of that range is considered as an outlier that is

denoted by the “+” symbol. Obviously, our methods achieve

the highest JS values among all the competing methods in most

cases, which demonstrates the superiority of our methods to

state-of-the-art variational methods.

We use the agreement of the estimated bias fields with the

ground truth ones as another performance assessment which is

evaluated by correlation coefficient between them. Other met-

ric (e.g., the normalized ℓ2-norm of the difference between

the estimated bias filed and the true one [45]) can also be

adopted for assessment. However, we have found that the

experimental results based on these two metrics have no sig-

nificant difference. Thus, we only report the results in terms

of correlation coefficients which are shown in the box plots of

Fig. 5. Again, our method achieves much better performance

than other competing methods in most cases. Furthermore,

we note that the segmentation-based methods (i.e., MLTD,

RMLTD, CLIC, VLS, IVLS) often perform better than those

without segmentation (i.e., IM, N4ITK), which gives the fact

that segmentation and bias correction can benefit each other

to achieve much more accurate results.

In Fig. 6, we compare the efficiencies among our methods,

the CLIC method, the VLS method, the IVLS method, and the

N4ITK method in processing images in Fig. 5. We report the

average processing time for 30 images with different levels of

noises and inhomogeneous intensity. Since our MLTD method

and the CLIC method utilize the membership function to indi-

cate different partitions, and both of their energy functionals

have only one global minimum with respect to each variable,

they are much more efficient than the VLS method. The VLS
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(a)

(b)

(c)

Fig. 5. Bias field results: correlation coefficient analysis for the BrainWeb data with different levels of bias fields and noises. (a) Results of estimated bias
field with 0% bias field. (b) Results of estimated bias field with 20% bias field. (c) Results of estimated bias field with 40% bias field.

method has to evolve two partial differential equations, which

is very time-consuming (see the green line in Fig. 6). Similar

problem also exists in the model proposed by [46] and the

IVLS method. For the N4ITK method, it has to estimate the

parameters of the B-spline, which is very time-consuming. The

iterations of MLTD is typically between 10 and 15 for these

30 images, so is the CLIC method. However, our method has

to compute the standard deviation term in (21), which makes

it a little less efficient than the CLIC method in some cases.

For the RMLTD method, we have to iterate three formula-

tions [i.e., (23)–(25)] many times to obtain the stable solution

of membership function, leading it less efficient than MLTD

and CLIC.

Fig. 7 shows the results by our method for a low-resolution

3T 3-D MR image. Similar to [2], we select three sagittal

slices in order to better visualize the results. From left to right,

the four columns show the original images, estimated bias

fields, the bias corrected images, and the segmentation results,

respectively. From the right column, we can see each tissue in

Fig. 6. Efficiency comparisons among the six methods: MLTD, RMLTD,
CLIC, VLS, IVLS, and N4ITK.

the bias corrected images is very homogeneous. The segmen-

tation results also highly agree with the brain anatomy (see the

fourth column in Fig. 7). The image size is 150 × 120 × 150.
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Fig. 7. Sagittal slice view of the 3-D segmentation and bias corrected results.
Column 1: original images. Column 2: estimated bias fields. Column 3: bias
corrected results. Column 4: segmentation results.

Fig. 8. Experiments on 3T MRI. From left column to right one: original
image, estimated bias fields, bias corrected images, and binary segmentation
results. Results of (a) MLTD, (b) RMLTD, (c) CLIC, and (d) VLS.

The computational time for precessing this image is 165.3 s

in MATLAB on a Pentium Dual-Core 2.10 GHz CPU with

2 GB RAM.

Fig. 8 compares results by MLTD and RMLTD, CLIC and

VLS on a 3-tesla MRI. The estimated bias fields, bias corrected

images, and segmentation results are shown in the second,

third, and fourth columns of Fig. 8(a)–(d), respectively. We

can observe that the segmentation result by RMLTD model has

less noise than MLTD model because the TV regularization in

RMLTD has smoothing effect on the segmentation result. The

histogram of the original MRI image and the histograms of

the bias corrected images by our methods, CLIC and VLS are

shown by Fig. 9. In the histograms, the right two significant

peaks correspond to the GM and WM, respectively. The peak

of the cerebrospinal fluid (CSF) is not distinct since its volume

Fig. 9. Histograms of original image and bias corrected images in Fig. 8.

Fig. 10. Bias correction results on two 7T MRI images by the pro-
posed method. Column 1: original images. Column 2: estimated bias fields.
Column 3: bias corrected images.

is relatively small [1]. From the histograms of the bias cor-

rected images recovered by MLTD, CLIC, and VLS, we see

that the histograms of specific tissues approximately satisfy

Gaussian distribution but with significantly different variances.

These results validate that our model is better consistent with

the intensity distribution of the image with intensity inho-

mogeneity than CLIC and VLS which do not consider the

variance of intensities belonging to different tissues. Moreover,

the segmentation results of MLTD are much closer to the brain

anatomy than CLIC and VLS.
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C. Further Application to 7T MRI

Finally, we show the segmentation results of our method

on a 7T MRI image in Fig. 10. From left to right, the

original images, estimated bias fields, and the bias cor-

rected images are shown in the three columns, respectively.

Obviously, the image qualities are significantly improved,

and some regions whose intensity contrast is too low

to be identified are able to be distinguished easily after

correction.

V. CONCLUSION

In this paper, we proposed a novel variational approach to

simultaneous estimation of the bias field and segmentation of

images with intensity inhomogeneity. Our method combines

information of the neighboring pixels belonging to the same

class, which makes it robust to noise. Moreover, the proposed

method yields a soft segmentation, which can eliminate the

partial volume effect [22] to some extent. Comparisons with

other representative methods on synthetic and real images

demonstrated the effectiveness and advantages of the proposed

algorithm.

APPENDIX A

Let us revisit (17), which can be rewritten as

EMLTD
c,u,σ,b =

1

N

N∑

i=1

∫

�

∫

�

χρ(y,x)ui(y)

(
log(

√
2πσi)

+ (I(y)−b(x)ci)
2

2σ 2
i

)
dydx

=
∫

�

N∑

i=1

ψi(y)ui(y)dy (28)

subject to ui ≥ 0,
∑N

i=1 ui = 1, where

ψi(y) =
∫

�

χρ(y,x)

(
log(σi) +

(I(y) − b(x)ci)
2

2σ 2
i

)
dx

= χρ ⊗

(
log(σi) +

(I − bci)
2

2σ 2
i

)
.

Assume the optimal solution of the constant true signal ci

is c̃i, by calculus of variations, we have

∂EMLTD
c,u,b,σ

c̃i

=
∫

�

N∑

j=1

∂ψj(y)

∂ c̃i

ui(y)dy

=
∫

�

∂ψi(y)

∂ c̃i

ui(y)dy

= −
∫

�

(
χρ ⊗

(Ib − b2c̃i)

σ 2
i

)
ui(y)dy = 0

=⇒ c̃i =
∫
�
(χρ ⊗ b)Iuidy∫

�
(χρ ⊗ b2)uidy

which corresponds to (19).

APPENDIX B

In (28), we assume that the optimal b is b̃ and add varia-

tion η to the variable b̃ such that b = b̃ + δη. Keeping other

variables except for b fixed, differentiating with respect to b

and letting δ → 0+, we have

EMLTD
c,u,σ,̃b+δη

=
∫

�

N∑

i=1

∫

�

χρ(y,x)ui(y)

(
log(σi)

+ (I(y))−(̃b(x)+δη(x)ci)
2

2σ 2
i

)
dydx

=⇒
∂EMLTD

c,u,σ,̃b+δη

∂δ

=
∫

�

N∑

i=1

∫

�

χρ(y,x)ui(y)

(
I(y) − b̃(x)ci

σ 2
i

)
η(x)cidydx

=⇒ b̃(x) =

∫
�

χρ(y,x)I(y)
∑N

i=1 ui(y) ci

σ 2
i

dy

∫
�

χρ(y,x)
∑N

i=1 ui(y)
c2

i

σ 2
i

dy

=
∑N

i=1 χρ ⊗ (Iui)∑N
i=1 χρ ⊗ ui · ci

which corresponds to (20).

APPENDIX C

In (28), assume the optimal solution of the constant true

signal σi is σ̃i, by calculus of variations, we have

∂EMLTD
c,u,σ,b

∂σ̃i

=
∫

�

N∑

j=1

∂ψj(y)

∂σ̃i

ui(y)dy =
∫

�

∂ψi(y)

∂σ̃i

ui(y)dy

=−
∫

�

(
χρ ⊗

(
1

σ̃i

−
(I − bci)

2

σ̃ 3
i

))
ui(y)dy = 0

=⇒ σ̃i =

√∫
�

∫
�

χρ(y,x)ui(y)(I(y) − b(x)ci)2dydx∫
�

∫
�

χρ(y,x)ui(y)dydx

which corresponds to (21).

APPENDIX D

In (28), fixing other parameters except for the parameter u,

minimizing EMLTD
c,u,σ,b with respect to the indicator function u is

equivalent to the following linear programming problem:

arg min
u

EMLTD
c,u,σ,b =

∫

�

N∑

i=1

ψi(y)ui(y)dy

⇐⇒ arg min
u

�Tu

subject to u ≥ 0, 1Tu = 1, where � = (ψ1, . . . , ψN) and

1 = (11, . . . , 1N)T .

First, without loss of generality, we assume the components

of � are sorted in increasing order with ψ1 = ψ2, . . . ,=
ψk ≤ ψk+1 ≤, . . . ,≤ ψN . Then, we have �Tu ≤ ψ1(1

Tu) =
mini(ψi). For all feasible �, the equality is satisfied if and only

if
∑k

i=1 ui = 1, ui ≥ 0, i = 1, . . . , k, ui = 0, i = k + 1, . . . , N.

Therefore, we have the optimal solution ũi as follows:

ũi =
{

1, i = arg mini(ψi)

0, i �= arg mini(ψi)

which corresponds to (22).
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