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Abstract This paper addresses the problem of non-rigid

video registration, or the computation of optical flow from

a reference frame to each of the subsequent images in a

sequence, when the camera views deformable objects. We

exploit the high correlation between 2D trajectories of dif-

ferent points on the same non-rigid surface by assuming that

the displacement of any point throughout the sequence can

be expressed in a compact way as a linear combination of a

low-rank motion basis. This subspace constraint effectively

acts as a trajectory regularization term leading to temporally

consistent optical flow. We formulate it as a robust soft con-

straint within a variational framework by penalizing flow

fields that lie outside the low-rank manifold. The resulting

energy functional can be decoupled into the optimization

of the brightness constancy and spatial regularization terms,

leading to an efficient optimization scheme. Additionally, we

propose a novel optimization scheme for the case of vector

valued images, based on the dualization of the data term. This

allows us to extend our approach to deal with colour images

which results in significant improvements on the registra-

tion results. Finally, we provide a new benchmark dataset,

based on motion capture data of a flag waving in the wind,

with dense ground truth optical flow for evaluation of multi-

frame optical flow algorithms for non-rigid surfaces. Our

experiments show that our proposed approach outperforms

state of the art optical flow and dense non-rigid registration

algorithms.
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1 Introduction

Optical flow in the presence of non-rigid deformations is a

challenging task and an important problem that continues to

attract significant attention from the computer vision commu-

nity. It has wide ranging applications from medical imaging

and video augmentation to non-rigid structure from motion.

Given a template image of a non-rigid object and an input

image of it after deforming, the task can be described as one

of finding the displacement field (warp) that relates the input

image back to the template. In this paper we consider long

video sequences instead of a single pair of frames—each of

the images in the sequence must be aligned back to the refer-

ence frame. Our work concerns the estimation of the vector

field of displacements that maps pixels in the reference frame

to each image in the sequence (see Fig. 1).

Two significant difficulties arise. First, the image displace-

ments between the reference frame and subsequent ones are

large since we deal with long sequences. Secondly, as a con-

sequence of the non-rigidity of the motion, multiple warps

can explain the same pair of images causing ambiguity. In

this paper we show that a multi-frame approach allows us

to exploit temporal information, resolving these ambiguities

and improving the overall quality of the optical flow. We

make use of the strong correlation between 2D trajectories

of different points on the same non-rigid surface. These tra-

jectories lie on a lower dimensional subspace and we assume

that the trajectory vector storing 2D positions of a point

across time can be expressed compactly as a linear com-

bination of a low-rank motion basis. This leads to a signifi-

cant reduction in the dimensionality of the problem while

implicitly imposing some form of temporal smoothness.

Figure 2 depicts the lower dimensional trajectory subspace.

Subspace constraints have been used before both in the

context of sparse point tracking (Irani 2002; Brand 2001;
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Fig. 1 Video registration is equivalent to the problem of estimating

dense optical flow u(x; n) between a reference frame Ire f and each

of the subsequent frames In in a sequence. We propose a multi-frame

optical flow algorithm that exploits temporal consistency by imposing

subspace constraints on the 2D image trajectories

Torresani et al. 2001; Torresani and Bregler 2002) and opti-

cal flow (Irani 2002; Garg et al. 2010) in the rigid and non-

rigid domains, to allow correspondences to be obtained in

low textured areas. While Irani’s original rigid (Irani 2002)

formulation along with its non-rigid extensions (Torresani

et al. 2001; Brand 2001; Torresani and Bregler 2002) relied

on minimizing the linearized brightness constraint without

smoothness priors, Garg et al. (2010) extended the subspace

constraints to the continuous domain in the non-rigid case

using a variational approach. Nir et al. (2008) propose a

variational approach to optical flow estimation based on a

spatio-temporal model. However, all of the above approaches

impose the subspace constraint as a hard constraint. Hard

constraints are vulnerable to noise in the data and can be

avoided by substituting them with principled robust con-

straints.In this paper we extend the use of multi-frame tempo-

ral smoothness constraints within a variational framework by

providing a more principled energy formulation with a robust

soft constraint which leads to improved results. In prac-

tice, we penalize deviations of the optical flow trajectories

from the low-rank subspace manifold, which acts as a tem-

poral regularization term over long sequences. We then

take advantage of recent developments (Chambolle 2004;

Chambolle and Pock 2011) in variational methods and opti-

mize the energy defining a variant of the duality-based effi-

cient numerical optimization scheme. We are also able to

prove that our soft constraint is preferable to a hard con-

straint imposed via reparameterization. To do this we provide

a formulation of the hard constraint and its optimization and

we perform thorough experimental comparisons where we

show that the results obtained via the soft constraint always

outperform those obtained after reparameterization.

The paper is organized as follows. In Sect. 2 we describe

related approaches and discuss the contributions of our work.

Section 3 defines the trajectory subspace constraints that we

use in our formulation. In Sect. 4 we describe the energy

and provide a discussion on the design of our effective tra-

jectory regularizer. Section 5 addresses the optimization of

our proposed energy. This is followed by a description of the

estimation of the motion basis in Sect. 6. In Sect. 7 we pro-

pose the extension of our algorithm to vector-valued images

and Sect. 8 discusses implementation details. Finally Sect. 9

describes the alternative formulation of the subspace con-

straint as a hard constraint while Sect. 10 describes our exper-

imental evaluation.

2 Related Work and Contribution

Variational methods formulate the optical flow or image

alignment problems as the optimization of an energy func-

tional in a continuous domain. Stemming from Horn and

Schunck’s original approach (Horn and Schunck 1981), the

energy incorporates a data term that accounts for the bright-

ness constancy assumption and a regularization term that

allows to fill-in flow information in low textured areas. Vari-

ational methods have seen a huge surge in recent years due

to the development of more sophisticated and robust data

fidelity terms which are robust to changes in image brightness

lies in
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Fig. 2 The strong correlation between 2D trajectories of different

points on the same non-rigid surface can be exploited to impose tem-

poral coherence by modelling long term temporal coherence imposing

subspace constraints. These trajectories lie on a lower dimensional man-

ifold which leads to a significant reduction in the dimensionality of the

problem while implicitly imposing some form of temporal smoothness
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or occlusions (Brox and Malik 2011; Brox et al. 2004);

the addition of efficient regularization terms such as Total

Variation (TV) (Zach et al. 2007; Wedel et al. 2008) or

temporal smoothing terms (Weickert and Schnörr 2001b);

and new optimization strategies that allow computation of

highly accurate (Wedel et al. 2009) and real time optical

flow (Zach et al. 2007) even in the presence of large dis-

placements (Alvarez et al. 2000; Brox and Malik 2011; Stein-

bruecker et al. 2009).

One important recent advance in variational optical flow

methods has been the development of the duality based effi-

cient optimization of the so-called TV-L1 formulation (Zach

et al. 2007; Chambolle and Pock 2011) (which owes its

name to the Total Variation that is used for regularization

and the robust L1-norm that is used in the data fidelity term).

An example of this class is the Improved TV-L1 (ITV-L1)

method (Wedel et al. 2009), which yielded notable quantita-

tive performance, by also carefully considering some practi-

cal aspects of the optical flow algorithm.Duplication of the

optimization variable via a quadratic relaxation is used to

decouple the linearized data and regularization terms, decom-

posing the optimization problem into two, each of which is

a convex energy that can be solved in a globally optimal

manner. The minimization algorithm then alternates between

solving for each of the two variables assuming the other

one fixed. One of the key advantages of this decoupling

scheme is that since the data term is point-wise independent,

its optimization can be highly parallelized using graphics

hardware (Zach et al. 2007). Following its success in opti-

cal flow computation, this optimization scheme has since

been successfully applied to motion and disparity estima-

tion (Pock et al. 2010) and real time dense 3D reconstruc-

tion (Newcombe et al. 2011; Stuehmer et al. 2010). In this

work we adopt this efficient duality based TV-L1 optimiza-

tion scheme (Zach et al. 2007) and extend it to the case

of multi-frame optical flow for video registration, by mod-

elling long term temporal coherence imposing subspace con-

straints.

Despite being such a powerful cue most optical flow algo-

rithms do not take advantage of temporal coherence and

only work on pairs of images. Few previous attempts to

multi-frame optical flow estimation exist in the literature

(Weickert and Schnörr 2001b,a; Papadakis et al. 2007; Nir

et al. 2008; Werlberger et al. 2009; Volz et al. 2011). Even

in those cases, temporal smoothness constraints are only

exploited over a very small number of frames (typically 1

or 2 frames either side of the current image) and not for an

entire sequence. This is mostly due to the difficulty of provid-

ing an explicit model for longer term trajectories. In recent

work Volz et al. (2011) report improvements in optical flow

computation by imposing first and second order trajectory

smoothness over 5 frames. We take this further and exploit

temporal coherence throught the entire video. Moreover,

while previous approaches incorporate explicit temporal

smoothness regularization terms over a few frames, our sub-

space constraint acts as an implicit long term trajectory

regularization term leading to temporally consistent optical

flow.

Our approach is related to the recent work of Garg et al.

(2010) in which dense multi-frame optical flow for non-rigid

motion is computed under hard subspace constraints. Our

approach departs in a number of ways. First, while Garg

et al. (2010) imposes the subspace constraint via reparame-

terization of the optical flow, we use a soft constraint and

optimize over two sets of closely coupled flows, one that lies

on the low-rank manifold and one that does not. Secondly, our

use of a robust penalizer for the data term allows us to have

more resilience than Garg et al. (2010) against occlusions and

appearance changes. Moreover, our use of a modified Total

Variation regularizer instead of the non-robust L2-norm and

quadratic regularizer used by Garg et al. (2010) allows to

preserve object boundaries. Finally, by providing a gener-

alization of the subspace constraint, we have extended the

approach to deal with any orthonormal basis and not just the

PCA basis. More recently Ricco and Tomasi (2012) also pro-

posed the use of subspace constraints to model multi-frame

optical flow with explicit reasoning for occlusions. However,

their approach is restricted to hard subspace constraints with

a known PCA basis which is computed from sparse feature

tracking.

Non-rigid image registration, has recently seen substantial

progress in its robust estimation in the case of severe deforma-

tions and large baselines both from keypoint-based and learn-

ing based approaches. Successful keypoint-based approaches

to deformable image registration include the parametric1

approach of Pizarro and Bartoli (2010) who propose a warp

estimation algorithm that can cope with wide baseline and

self-occlusions using a piecewise smoothness prior on the

deforming surface. A direct approach that uses all the pix-

els in the image is used as a refinement step. Discriminative

approaches on the other hand, learn the mapping that pre-

dicts the deformation parameters given a distorted image but

require a large number of training samples. In recent work,

Tian and Narasimhan (2010) combine generative and dis-

criminative approaches which results in lowering the total

number of training samples.

2.1 Our contribution

In this paper we adopt a robust approach to non-rigid image

alignment where instead of imposing the hard constraint that

1 The parametric warp functions used in this work include Thin Plate

Spline (TPS) and Free-Form Deformations (FFD) based on 2D Cubic

B-Splines.
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the optical flow must lie on the low-rank manifold (Garg

et al. 2010), we penalize flow fields that lie outside it.

Formulating the manifold constraint as a soft constraint

using variational principles (Garg et al. 2011) leads to an

energy with a quadratic term that allows us to adopt a

decoupling scheme, related to the one described above (Zach

et al. 2007; Chambolle and Pock 2011), for its efficient opti-

mization. We propose a new anisotropic trajectory regular-

ization term, parameterized in terms of the basis coefficients,

instead of the full flow field. This results in an impor-

tant dimensionality reduction in this term, which is usu-

ally the bottleneck of other quadratic relaxation duality

based approaches (Zach et al. 2007; Chambolle and Pock

2011). Moreover, the optimization of our regularization

step can be highly parallelized due to the independence

of the orthonormal basis coefficients adding further advan-

tages to previous approaches. Our approach can be seen

as an extension of Zach et al. (2007) efficient TV-L1 flow

estimation algorithm to the case of multi-frame non-rigid

optical flow, where the addition of subspace constraints

acts as a temporal regularization term. In practice, our

approach is equivalent to Zach et al. (2007) in the degen-

erate case where the identity matrix is chosen as the motion

basis.

We take advantage of the high level of parallelism inherent

to our approach by developing a GPU implementation using

the Nvidia CUDA framework. This parallel implementation

vastly outperforms the equivalent Matlab code.

Additionally, we provide an extension of our multi-frame

approach to the case of vector-valued images which allows

us to use the information from all colour channels in image

sequences, and further improve results. Our novel optimiza-

tion scheme is based on the dualization of the linearized data

term. Unlike Râket et al.’s previous attempt to extend TV-

L1 flow to vector valued images (Rakêt et al. 2011), our

new algorithm is not restricted to the use of the L1-norm

penaliser and instead allows the use of more general convex

robust penalizers in the data term.

Currently, there are no benchmark datasets for the eval-

uation of optical flow that include long sequences of non-

rigid deformations. In particular, the most popular one (Baker

et al. 2011) (Middlebury) does not incorporate any such

sequences. To facilitate the quantitative evaluation of multi-

frame non-rigid registration and optical flow and to promote

progress in this area, we provide a new dataset based on

motion capture data of a flag waving in the wind, with dense

ground truth optical flow.

Our quantitative evaluation on this dataset using different

motion bases shows that our proposed approach improves on

state of the art algorithms including large displacement (Brox

and Malik 2011) and duality based (Zach et al. 2007) optical

flow algorithms and the parametric dense non-rigid registra-

tion approach of Pizarro and Bartoli (2010).

3 Multi-frame Image Registration

Consider a video sequence of non-rigid objects moving and

deforming in 3D. In the classical optical flow problem, one

seeks to estimate the vector field of image point displace-

ments independently for each pair of consecutive frames. In

this paper, we adopt the following multi-frame reformulation

of the problem. Taking one frame as the reference template,

typically the first frame, our goal is to estimate the 2D trajec-

tories of every point visible in the reference frame over the

entire sequence, using a multi-frame approach (Fig. 1 illus-

trates our approach). The use of temporal information in this

way allows us to predict the location of points not visible

in a particular frame making us robust to self-occlusions or

external occlusions by other objects.

3.1 Low-Rank Trajectory Space

To solve the multi-frame optical flow problem, we make use

of the fact that the 2D image trajectories of points on an object

are highly correlated, even when the object is deforming. We

model this property by assuming that the trajectories lie near

a low-dimensional linear subspace. This assumption is anal-

ogous to the non-rigid low-rank shape model, first proposed

by Bregler et al. (2000), which states that the time varying 3D

shape of a non-rigid object can be expressed as a linear com-

bination of a low-rank shape basis. This rank constraint has

been successfully exploited for 3D reconstruction by Non-

Rigid Structure from Motion (NRSfM) algorithms (Torresani

et al. 2008) where the matrix of 2D tracks is factorized into

the product of two low-rank matrices: a motion matrix that

describes the camera pose and time varying coefficients and

a shape matrix that encodes the basis shapes.

The low-rank shape basis model of Bregler et al. (2000),

Torresani et al. (2008) exploits the spatial properties of non-

rigid motion, introducing rank constraints on the 3D location

of the set of points (shape) at any given frame. Interestingly,

the dual formulation of this model states that the rank con-

straint can be instead applied to the trajectories of each indi-

vidual point, modelling them as a linear combination of basis

trajectories. Therefore, the motion and shape matrices can

exchange their roles as basis and coefficients and we can

either interpret the 2D tracks as the projection of a linear com-

bination of 3D basis shapes or as the linear combination of a

2D motion basis. This concept of non-rigid trajectory basis

was first introduced in 2D by Torresani and Bregler (2002)

who applied it to non-rigid 2D tracking as an extension of

the rigid subspace constraints proposed by Irani (2002). Later

Akhter et al. (2008, 2011) extended the trajectory basis to 3D

to model non-rigid 3D trajectories using the Discrete Cosine

Transform (DCT) basis.
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Fig. 3 The displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank trajectory

basis. The basis vectors qi (n) encode the temporal information while the coefficient maps Li describe the spatial distribution of the individual basis

trajectories

3.2 Dense Trajectory Subspace Constraints

This paper extends the use of 2D trajectory subspace con-

straints to the case of estimating dense multi-frame optic

flow using a variational approach.

More precisely, we assume that the input image sequence

has F frames and the n0-th frame, n0 ∈ {1, . . . , F} has been

chosen as the reference. We denote by � ⊂ R
2 the image

domain and we define the function:

u(x; n) =
[

u1(x; n)

u2(x; n)

]

: � × {1, . . . , F} → R
2 (1)

that represents the point trajectories in the following way. For

every visible point x ∈ � in the reference image, u(x; ·) :
{1, . . . , F} → R

2 is its discrete-time 2D trajectory over all

frames of the sequence. The coordinates of each trajectory

u(x; ·) are expressed with respect to the position of the point

x at n = n0, which means that u(x; n0) = 0 and that the

location of the same point in frame n is x + u(x; n).We

use the term multi-frame optical flow to describe u, since it

corresponds to a multi-frame extension of the conventional

optical flow: the latter is given by u(x; 2) in the degenerate

case where the sequence contains only F = 2 frames and the

first one is considered as the reference (n0 = 1).

Mathematically, the robust linear subspace constraint on

the 2D trajectories u(x; n) can be expressed in the following

way. For all x ∈ � and n ∈ {1, . . . , F}:

u(x; n) =
R

∑

i=1

qi (n)L i (x) + ε(x; n), (2)

which states that the trajectory u(x; ·) of any point x ∈ �

can be approximated as the linear combination of R basis

trajectories q1(n), . . . , q R(n) : {1, . . . , F} → R
2 that are

independent from the point location. We include a modeling

error ε(x; n) which will allow us to impose the subspace

constraint as a penalty term.Normally the values of ε(x; n)

are relatively small, yet sufficient to improve the robustness

of the multi-frame optical flow estimation.

Note that we consider that the chosen trajectory basis

is orthonormal. We refer to the linear span of these basis

trajectories as a trajectory subspace and denote it by SQ .

The linear combination is controlled by coefficients L i (x)

that depend on x, therefore we can interpret the collection of

all the coefficients for all the points x ∈ � as a vector-valued

image L(x) � [L1(x), . . . , L R(x)]T : � → R
R . Figure 3

illustrates the subspace constraint.

In many cases, effective choices for the model order (or

rank) R correspond to values smaller than 2F, which means

that the above representation is compact and achieves a sig-

nificant dimensionality reduction on the point trajectories.

We now re-write equation (2) in matrix notation, which

will be useful in the subsequent presentation. Let U(x) and

E(x) : � → R
2F be equivalent representations of the func-

tions u(x; n) and ε(x; n) that are derived by vectorizing the

dependence on the discrete time n and let Q be the tra-

jectory basis matrix whose columns contain the basis ele-

ments q1(n), . . . , q R(n), after vectorizing them in the same

way:

U
︸︷︷︸

2F×1

(x) �

⎡

⎢
⎣

u(x; 1)
...

u(x; F)

⎤

⎥
⎦ , Q

︸︷︷︸

2F×R

�

⎡

⎢
⎣

q1(1) · · · q R(1)
...

...

q1(F) · · · q R(F)

⎤

⎥
⎦ ,

E
︸︷︷︸

2F×1

(x) �

⎡

⎢
⎣

ε(x; 1)
...

ε(x; F)

⎤

⎥
⎦ (3)

The subspace constraint (2) can now be written as follows:

U(x) = Q L(x) + E(x), ∀x ∈ � (4)

3.3 Non-Rigid Video Registration from Multi-frame

Optical Flow

Let I (x; n) : � × {1, . . . , F} → R be the sequence of

grayscale image frames, which are given either directly from

the input frames or from the input frames after some pre-

processing, such as structure-texture decomposition (Wedel

et al. 2009).

In our formulation, the estimation of the multi-frame opti-

cal flow is equivalent to the simultaneous registration of all

the frames with the reference frame n0: Recall that for every
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frame n the coordinates x+u(x; n) yield the current location

of any image point x of the reference. Therefore, the image:

x → I (x + u(x; n) ; n) (5)

is the registered version of the image I (x ; n) back to the

reference I (x ; n0), or in other words it is the warping

of the image I (x ; n) to the image I (x ; n0). As it will

be described later, we expect that the brightness differences

between every registered image and the reference image to

be small and therefore we use an appropriate brightness con-

stancy term in our proposed energy.

4 Variational Multi-frame Optical Flow Estimation

In this section we show how dense motion estimation can be

combined with the trajectory subspace constraints described

in Sect. 3. In order to estimate the 2D trajectories of all

the points, or equivalently simultaneously register all the

frames with the reference frame n0, we propose the following

energy:

E[u(x; n), L(x)] = αEdata + βElink + Ereg, (6)

where

Edata =
∫

�

F
∑

n=1

|I (x + u(x; n) ; n) − I (x; n0)| dx, (7)

Elink =
∫

�

F
∑

n=1

∣
∣
∣
∣
∣
u(x; n) −

R
∑

i=1

qi (n)L i (x)

∣
∣
∣
∣
∣

2

dx, (8)

Ereg =
∫

�

R
∑

i=1

g(x) |∇L i (x)|ǫ dx . (9)

We minimize this energy jointly with respect to the point

trajectories u(x; n) and their components on the trajectory

subspace that are determined by the linear model coefficients

L(x). We also add the constraint that u(x; n0) = 0, since

this corresponds to the flow from the reference image frame

to itself. The positive constants α and β weigh the balance

between the terms of the energy. Also, | · |ǫ in (9) denotes the

Huber norm of a vector and g(x) is a space-varying weighting

function (see Sect. 4 for more details).

Note that the functions u(x; n) and L(x) determine two

sets of trajectories that are relatively close to each other but

not identical since the subspace constraint is imposed as a

soft constraint.This improves the robustness of our method

against overfitting to the image data in cases where the bright-

ness constancy assumption fails. For this reason, we con-

sider that the final output of our method are the trajectories

U
′(x) = Q L(x) that lie on the trajectory subspace and are

directly derived by the coefficients L(x).

4.1 Description of the Energy

In this section we provide more details about the properties

of the proposed energy (6).

The first term (Edata) is a data attachment term that uses

the robust L1-norm and is a direct multi-frame extension

of the brightness constancy term used by most optical flow

methods, e.g. Zach et al. (2007). It is based on the assumption

that the image brightness I (x; n0) at every pixel x of the ref-

erence frame is preserved at its new location, x + u(x; n), in

every frame of the sequence. The use of an L1-norm improves

the robustness of the method since it allows deviations from

this assumption, which might occur in real-world scenarios

because of noise, illumination changes or occlusions of some

points in some frames.

The second term (Elink) penalizes the difference between

the two sets of trajectories u(x; n) and QL(x) and acts as

a coupling (linking) term between them. This term serves

as a soft constraint that the trajectories u(x; n) should

be relatively close to the subspace spanned by the basis

Q.Concerning the weight β, the larger its value the more

restrictive the subspace constraint becomes. Since the sub-

space of Q is low-dimensional, this constraint operates also

as a temporal regularization that is able to perform temporal

filling-in in cases of occlusions or other distortions.

An equivalent interpretation is that this term is derived

from the constraint that the error ε(x; n) in (2) has a bounded

L2 norm, i.e.
∫

�

F∑

n=1

|ε(x; n)|2 dx ≤ C, for some appropriate

constant C. Then β corresponds to the Lagrange multiplier

for this constraint.

The third term (Ereg) corresponds to the spatial regu-

larization of the trajectory coefficients. This term penalizes

spatial oscillations of each coefficient caused by image noise

or other distortions but not strong discontinuities that are

desirable in the borders of each object. In addition, this term

allows to fill in textural information into flat regions from

their neighbourhoods. Following Werlberger et al. (2009),

Newcombe et al. (2011), we use the Huber norm over the gra-

dient of each subspace coefficient L i (x), which is defined as:

|∇L i (x)|ǫ = Hǫ(|∇L i (x)|2), with:

Hǫ(s
2) =

{

s2

2ǫ
if s ≤ ǫ

s − ǫ
2

otherwise
(10)

where ǫ is a relatively small constant. The Huber norm is a

convex differentiable function that combines quadratic reg-

ularization in the interval |∇L i | ≤ ǫ, with Total Variation

regularization outside the interval.For small gradient mag-

nitudes the Huber norm offers smooth solutions, whereas

for larger magnitudes the discontinuity preserving properties

of Total Variation are maintained. Following Alvarez et al.

(1999), Wedel et al. (2009), Newcombe et al. (2011), we also
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incorporate a space-varying weight g(x) that depends on the

reference image as follows:

g(x) = exp(−cg|∇Gσg (x) ∗ I (x; n0)|2) (11)

where cg is a constant and σg is the standard deviation of

the 2D Gaussian G(x) that convolves the reference image

I (x; n0). This weight encourages discontinuities in flow to

coincide with edges of the reference image by reducing the

regularisation strength near those edges.Further discussion

on our proposed regularization term Ereg is provided in

Sect. 4.

4.2 Connections to Previous Work

Interestingly, our adopted strategy of estimating two sets of

trajectories, u(x; n) and Q L(x), resembles the techniques of

quadratic relaxation and duplication of the optimization vari-

able that have been previously used in the context of optical

flow and depth map estimation (Zach et al. 2007; Pock et al.

2010; Stuehmer et al. 2010; Newcombe et al. 2011). Simi-

larly, we benefit from the fact that the optimization problem

can be decomposed into two parts, each of which is a convex

energy2 that can be solved efficiently and in a globally opti-

mal manner. However, our formulation offers an additional

advantage: the spatial regularization step, which is the bottle-

neck in these optimization schemes, is computationally much

more efficient since it is applied to the coefficients L(x) that

normally have smaller dimensionality than the flow u(x; n).

Note that there is a degenerate case in which our pro-

posed approach becomes equivalent to independently esti-

mating the flow from the reference I (·; n0) to each frame

I (·; n) by applying F −1 times the ITV-L1 optical flow algo-

rithm (Wedel et al. 2009). This degenerate case occurs when:

– The motion basis is set to Q = I2F , where I2F is the

2F × 2F identity matrix, in which case R = 2F ; and

– cg = 0 and ǫ = 0.

When cg = 0 and ǫ = 0, the terms g(x) |∇L i (x)|ǫ become

equivalent to |∇L i (x)| and therefore our regularization term

Ereg is a summation of Total Variation terms. Furthermore,

the choice Q = I2F converts the energy (6) into a summation

of F decoupled energy terms Jn :

Jn = α

∫

�

|I (x + u(x; n) ; n) − I (x; n0)| dx

+β

∫

�

∣
∣
∣
∣
u(x; n) −

[

L2n−1(x)

L2n(x)

]∣
∣
∣
∣

2

dx

+
∫

�

2n
∑

i=2n−1

|∇L i (x)| dx (12)

2 After the linearization of the brightness constancy term

Each term Jn corresponds to a specific frame n and depends

only on u(x; n) and the two coefficients L2n−1(x) and

L2n(x). These coefficients stacked together as a vector-

valued function can be seen as the auxiliary variable of

u(x; n) so the energy term Jn is equivalent to the con-

vex relaxation of the TV-L1 functional used in Wedel et al.

(2009).

4.3 Effective Trajectory Regularization

In this section we provide further intuition into our choice

of multi-frame optical flow regularization Ereg. The presen-

tation of this section follows a constructive approach—we

build our proposed regularizer from the simplest choice of

regularization term in successive steps, each of which adds

more complexity but improves its effectiveness. We start by

revisiting common practices in the literature and conclude

by proposing our novel anisotropic trajectory regularization

term in the final step. Our goal is to regularize the multi-

frame optical flow U
′(x) that lies on the trajectory subspace.

Note that U
′(x) can be interpreted as a vector valued func-

tion with 2× F channels encoding the horizontal and vertical

components of the optical flow at each frame as defined in

equation (3).

Step 1. A simple choice would be to use homogeneous reg-

ularization of U
′(x), which is a straightforward multiframe

generalization of the model of Horn and Schunck (1981):

∫

�

F
∑

n=1

|∇u′
1(x; n)|2 + |∇u′

2(x; n)|2 dx

=
∫

�

‖D U
′(x)‖2

F dx (13)

where ‖ · ‖F denotes the Frobenius norm of a matrix and

D U
′(x) is the Jacobian of U

′(x) (each row contains the gra-

dient of the corresponding channel of U
′(x)). However, this

regularizer leads to oversmoothing on the motion boundaries

since the quadratic term excessively penalizes large magni-

tudes of the gradients of U
′(x), which correspond to motion

discontinuities.

Step 2. A way to avoid this is by applying a robust function

� that penalizes outliers of the gradient less severely than

the quadratic penalizer:
∫

�

�

(

‖D U
′(x)‖2

F

)

dx (14)

This choice is used in Nir et al. (2008) and when only two

frames are taken into account it is equivalent to the regulariz-

ers used in Schnörr (1994), Weickert (1998), Brox and Malik

(2011) (isotropic flow-driven regularization in the terminol-
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ogy of Weickert and Schnörr (2001a)). Some examples of

the robust function � include the following:

– �(s2) = s, in which case the regularizer is the vectorial

total variation (Sapiro 1997) of the vector-valued func-

tion U
′(x) that encodes the multi-frame optical flow.

– �(s2) = Hǫ(s
2) or the Huber norm (10), which is the

choice adopted in our approach.

The robust function � in (14) penalizes outliers of the norm

‖D U
′(x)‖F less strongly, therefore allows discontinuities to

occur at U
′(x). However, such outliers correspond only to

the points x where all the channels of U
′(x) display sharp

discontinuities. If for example only few channels of U
′(x)

have a high gradient at a point x, then ‖D U
′(x)‖F is not

treated as an outlier, since it is still low (because of the sum of

squares over all channels that is involved in this norm). This

regularizer is thus much less tolerant to motion boundaries

that occur at individual channels.

Step 3. The above problem can be addressed by applying

the penalizer � independently to the squared norm of the

gradient of each channel of U
′(x):

∫

�

F
∑

n=1

{

�

(

|∇u′
1(x; n)|2

)

+ �

(

|∇u′
2(x; n)|2

)}

dx (15)

This is a direct multi-frame extension of the regularizer used

in Deriche et al. (1995), Kumar et al. (1996), Aubert et al.

(1999), Zach et al. (2007), Wedel et al. (2009) for which

efficient numerical implementations exist (Zach et al. 2007;

Wedel et al. 2009). In this way, each channel of U
′(x) can

have different boundaries. However, this regularizer is on the

other extreme of the regularizer of Step 2: where substantial

correlation between the different channels exists, it is inef-

fective since it allows correlated trajectories to have different

boundaries.

In addition, in contrast to the regularizers proposed in pre-

vious steps, it is not rotation invariant (Weickert and Schnörr

2001a).

Step 4. To avoid the aforementioned problems, we adopt our

subspace model for the 2D trajectories U
′(x) = QL(x) and

rewrite the norm ‖D U
′(x)‖F as a function of the coeffi-

cients:

‖D U
′(x)‖2

F =
∣
∣
∣
∣

∂U
′(x)

∂x1

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∂U
′(x)

∂x2

∣
∣
∣
∣

2

=
∣
∣
∣
∣
Q

∂ L(x)

∂x1

∣
∣
∣
∣

2

+
∣
∣
∣
∣
Q

∂ L(x)

∂x2

∣
∣
∣
∣

2

=
R

∑

i=1

|∇L i (x)|2 , (16)

where we have used the property of orthonormality of the

basis Q. Provided that the trajectory basis Q has been chosen

appropriately, the coefficients L(x) are much less correlated

than the channels of U
′(x). We conclude that it is more effec-

tive to apply the robust function � independently to the basis

coefficients (instead of the flow fields) and we derive the reg-

ularizer:

∫

�

R
∑

i=1

�

(

|∇L i (x)|2
)

dx (17)

Furthermore, this regularizer leads to a much more efficient

implementation for two main reasons. First, the resultant reg-

ularization is applied to the coefficients L(x), that typically

have lower dimensionality than the flow U
′(x). Second, this

regularization is decoupled for each coefficient and can thus

be highly parallelized. Note that the regularizer (15) derived

in Step 3 can be considered as a special case of the above

regularizer when the 2F × 2F identity matrix is chosen as

the basis Q. However, in our work, we use two choices for

Q: DCT and PCA (derived from an initial flow). We now

analyze each of these cases separately:

– When the basis matrix Q has been estimated by apply-

ing PCA to some trajectory samples, the correlation

between the coefficients can be considered negligible.

Furthermore, in this case we regain the desirable prop-

erty of rotation invariance, since the proposed regularizer

(17) is consistent with the general design principle of

Weickert and Schnörr (2001a) for rotationally invariant

anisotropic regularizers. According to that principle3,

given an appropriate decomposition of ‖D U
′(x)‖2

F =
∑

j ρ j where ρ j are rotationally invariant expressions,

one should use the regularizer
∫

�

∑

j �(ρ j ), which is

rotationally invariant and anisotropic. In our case, the

expressions ρ j correspond to the coefficients L i (x),

which are indeed rotation invariant: If we assume that

a rotation of the input frames causes the same rotation

to be applied to the trajectory samples, then the basis

trajectories will be equally rotated. Therefore, the coef-

ficients L i (x) of a specific reference image point 4 will

remain invariant and the corresponding trajectory U
′(x)

will simply be rotated.

– In the case of the DCT basis, the above properties do not

hold. However, the regularizer (17) with a DCT basis is

much more effective than the regularizer (15), since the

DCT frequency components of a trajectory are typically

less correlated than its actual coordinates. This is due

3 In Weickert and Schnörr (2001a) this design principle is expressed

for the classical optical flow case where the input is a single pair of

frames, but here we present its straight-forward extension to the case of

multiple frames.

4 By specific reference point we mean that we associate the new loca-

tion (after rotation) of a point on the reference image with its original

location.
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to the fact that when the actual motions of the image

points are compositions of different physical motions,

these motions are expected to be much more localized in

the frequency domain rather than in the time domain.

Step 5. Finally, it is reasonable to assume that the bound-

aries of all the motion components tend to be a subset of

the edges on the reference image. Following Alvarez et al.

(1999), Wedel et al. (2009), Newcombe et al. (2011), in order

to prevent any smoothing along the motion boundaries our

final regularizer Ereg is weighted by a space-varying func-

tion g(x) that depends on the reference image as described

in (11).

In our extensive experiments, we have empirically evalu-

ated that the introduction of such a weighting improves the

accuracy of the multiframe optical flow. This is in accordance

with the experimental evidence reported in Wedel et al.

(2009) for the classical optical flow.

5 Optimization of the Proposed Energy

In order to minimize the energy (6), we follow a coarse-to-fine

technique with multiple warping iterations (Brox et al. 2004).

In every warping iteration, we use an initialization u0(x; n)

that comes from the previous iteration. We approximate

the data term (7) by linearizing the image I (·; n) around

x + u0(x; n). After this approximation, the energy (6)

becomes convex.

Following Zach et al. (2007), we implement the optimiza-

tion of the energy (6) using an alternating approach. We

decouple the data and regularization terms to decompose

the optimization problem into two, each of which can be

more easily solved. In this section we show how to adapt the

method of Zach et al. (2007) to our problem, to take advan-

tage of its computational efficiency and apply it to multi-

frame subspace-constrained optical flow. The key difference

to Zach et al. (2007) is that we do not solve for pairwise opti-

cal flow but instead we optimize over all the frames of the

sequence while imposing the trajectory subspace constraint

as a soft constraint.

We apply an alternating optimization, updating either

u(x; n) or L(x) in every iteration, as follows:

– Repeat until convergence:

Minimization Step 1: For u(x; n) fixed, update L(x) by

minimizing E[u(x; n), L(x)] w.r.t. L(x).

Minimization Step 2: For L(x) fixed, update u(x; n) by

minimizing E[u(x; n), L(x)] w.r.t. u(x; n).

Convergence is declared if the relative update of L(x) and

u(x; n) is negligible according to some appropriate distance

threshold. Since at every step the value of the energy does

not increase and this value is bounded below by its global

minimum, the above alternation is guaranteed to converge to

a global minimum point.

5.1 Minimization Step 1

Since in this step we keep u(x; n) fixed, we observe that only

the last two terms, Elink and Ereg, of the energy (6) depend

on L(x). Therefore we must minimize βElink + Ereg with

respect to L(x). Using the matrix notation defined in (4), we

can write the term Elink as:

F
∑

n=1

|u(x;n)−
R

∑

i=1

qi (n)L i (x)|2 = |U(x)−QL(x)|2 (18)

Let Q⊥ be an 2F × (2F − R) matrix whose columns form

an orthonormal basis of the orthogonal complement of the

trajectory subspace SQ . Then the block matrix [Q Q⊥] is an

orthonormal 2F × 2F matrix, which means that its columns

form a basis of R
2F . Consequently, U(x) can be decomposed

into two orthonormal vectors as

U(x) = Q M(x) + Q⊥ Mout (x) (19)

where

M(x) � QT
U(x) and Mout (x) � (Q⊥)T

U(x) (20)

are the coefficients that define the projections of U(x) onto

the trajectory subspace SQ and its orthogonal complement.

Equation (18) can now be further simplified:

|U(x) − Q L(x)|2

=
∣
∣
∣Q

⊥ Mout (x)+Q (M(x) − L(x))

∣
∣
∣

2

= |Mout (x)|2+|M(x) − L(x)|2 , (21)

due to the orthonormality of the columns of Q and Q⊥ (which

makes the corresponding transforms isometric) and Pythago-

ras’ theorem. The component |Mout (x)|2 is constant with

respect to L(x); therefore it can be ignored from the cur-

rent minimization. In other words, with U being fixed and

Q L lying on the linear subspace SQ, penalizing the distance

between Q L and U is equivalent to penalizing the distance

between Q L and the projection of U onto SQ .

Thus, the minimization of Step 1 is equivalent to the min-

imization of:

β

∫

�

|M(x) − L(x)|2dx +
∫

�

R
∑

i=1

g(x)|∇L i (x)|ǫdx

=
R

∑

i=1

∫

�

g(x) |∇L i (x)|ǫ +β(Mi (x)−L i (x))2dx

(22)
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where Mi (x) is the i-th coordinate of M(x). We have

finally obtained a new form of the energy that allows the

trajectory model coefficients L i (x) to be decoupled. The

minimization of each term in the above sum can be done

independently and corresponds to a small modification of

the TV-L2 Rudin-Osher-Fatemi (ROF) model (Rudin et al.

1992) applied to each coefficient L i (x): This modification

consists of incorporating an edge weighting g(x) and replac-

ing the L2 norm |∇L i (x)| with the Huber norm |∇L i (x)|ǫ .

This modified ROF model has been recently studied in New-

combe et al. (2011) for the problem of depth estimation.The

optimum L i (x) is actually a regularized version of Mi (x)

and the extent of this regularization increases as the weight

β decreases.

The benefits of the computational efficiency of the above

procedure are twofold. First, these independent minimiza-

tions can be parallelized. Second, several efficient algorithms

exist to implement such regularization models. Appendix A

describes the actual algorithm we used for the optimization of

this energy, which is related to the method proposed in New-

combe et al. (2011).

5.2 Minimization Step 2

Keeping L(x) fixed, we observe that only the first two terms

of the energy (6), Edata and Elink, depend on u(x; n) and

therefore we have to minimize with respect to u(x; n) the

following:

αEdata + βElink =
∫

�

F
∑

n=1

{

α |I (x + u(x; n) ; n) − I (x; n0)|

+ β
∣
∣u(x; n) − u′∣∣2

}

dx, (23)

where u′ =
∑R

i=1 qi (n)L i (x). This cost depends only on

the value of u on the specific point x and the discrete time

n (and not on the derivatives of u). Therefore the variational

minimization of Step 2 is equivalent to the minimization of a

bivariate function of u for every spatiotemporal point (x; n)

independently.

We implement this point-wise minimization by applying

the technique proposed in Zach et al. (2007) to every frame.

More precisely, for every frame n and point x the image

I (·; n) is linearized around x +u0(x; n), where u0(x; n) are

the initializations of the trajectories u(x; n). The function to

be minimized at every point will then have the simple form

of a summation of a quadratic term with the absolute value of

a linear term. The minimum can be easily found analytically

using the thresholding scheme reported in Zach et al. (2007).

6 Derivation of the Trajectory Basis

Concerning the choice of 2D trajectory basis Q, we consider

orthonormal bases as it simplifies the analysis and calcula-

tions in our method (see Sect. 4). Of course this assumption

is not restrictive, since for any basis an orthonormal one can

be found that will span the same subspace. We now describe

several effective choices of trajectory basis that we have used

in our formulation.

Predefined bases for single-valued discrete-time signals

with F samples can be used to model separately each coor-

dinate of the 2D trajectories. Assuming that the rank R is

an even number, this single-valued basis should have R/2

elements w1(n), . . . , wR/2(n) and the trajectory basis would

be given by:

qi (n) =
{

[wi (n), 0]T , if i = 1, . . . , R
2

[0, wi−R/2(n)]T , if i = R
2

+ 1, . . . , R
(24)

Provided that the object moves and deforms smoothly,

effective choices for the basis {wi (n)} are (i) the first R
2

low-

frequency basis elements of the 1D Discrete Cosine Trans-

form (DCT) or (ii) a sampling of the basis elements of the

Uniform Cubic B-Splines of rank R/2 over the sequence’s

time window, followed by orthonormalization of the yielded

basis. The obvious advantage of using a predefined basis is

that it does not need to be estimated in advance.

An alternative is to estimate the basis by applying Princi-

pal Component Analysis (PCA) to some sample trajectories.

Provided that it is possible to estimate a set of sample trajec-

tories that adequately represent the trajectories of the points

over the whole object, the choice of the PCA basis is optimum

for the linear model of a given rank R, in terms of represen-

tational power. In this work we consider two possibilities.

(i) The sample trajectories could come from an initial esti-

mate of optical flow. We have found that the flow obtained

using the DCT basis provides a very good initial flow on

which we then apply PCA to obtain an optimized basis.

(ii) Alternatively, the sample trajectories could be a small

subset of reliable point tracks, which we consider to be

those where the texture of the image is strong in both spa-

tial directions and can be selected using Shi and Tomasi’s

criterion (Shi and Tomasi 1994). However, this option is

not resilient to outliers.

In practice, in our experimental evaluation section we

show that the multi-frame optical flow obtained with the opti-

mized PCA basis proposed in (i) provides the best results. It

has the added advantage that, since we initialize the flow

from our algorithm using the DCT basis, which is predefined

and needs not be estimated, the entire process is automated

and less affected by outliers.
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7 Generalization to Sequences of Vector-Valued Images

The algorithm we have described so far assumes that the

images in the sequence are grayscale. In this section we

develop a generalization of our approach to the case of

sequences of vector-valued images. We propose an optimiza-

tion scheme that is based on the dualization of the data term

of the energy.

The use of vector-valued images can significantly improve

the accuracy of the estimated optical flow for various rea-

sons. First of all, the vector-valued images can incorporate

all the color channels of an image. The color cue in a video

offers important additional information and resolves ambi-

guities that are present in the grayscale images. Furthermore,

this generalization offers the potential for incorporating other

powerful image cues as additional channels. For instance,

the spatial derivatives of the color channels can be added to

impose the gradient constancy assumption (Uras et al. 1988;

Brox et al. 2004; Papenberg et al. 2006; Brox and Malik 2011)

or even more complex features such as SIFT (Liu et al.

2011) features or others derived using a Field-of-Experts

formulation (Sun et al. 2008), which can improve the robust-

ness against illumination changes of the scene. Note that in

our experimental evaluation we have only incorporated the

color channels. To cope with illumination changes we have

used structure-texture decomposition as a preprocessing step,

which is an alternative way to gain robustness (Wedel et al.

2009).

7.1 Proposed Dual Formulation

Let us assume that the video frames that are used in our data

term are vector-valued images with Nc channels:

I(x; n) : � × {1, . . . , F} → R
Nc (25)

To cope with this more general case, we only have to modify

two elements of the formulation of our energy: (i) the data

term Edata of the proposed energy (6) and (ii) the edge-

weighting function of the regularization term g(x) described

in (11) that depends on the reference image.

The original definition of the function g(x) is based on the

term |∇Gσg (x) ∗ I (x; n0)|2 used as a simple edge-strength

predictor. For vector-valued images, we use a common and

natural extension of this predictor (Blomgren and Chan 1998;

Tschumperlé and Deriche 2005) by adding the contributions

of the different image channels. We thus generalize the edge-

weighting function as follows:

g(x) = exp

(

−cg

Nc∑

i=1

|∇Gσg (x) ∗ Ii (x; n0)|2
)

(26)

Concerning the data term Edata, we also make a further

generalization by applying a generic robust function 5 
 to

the image differences:


 : R
Nc → R. (27)

Our generalized data term becomes:

Edata =
∫

�

F
∑

n=1


(I (x + u ; n) − I(x; n0)) dx (28)

Since only the data term is affected by the extension to

vector-valued images, the optimization of our proposed

energy (6) only requires a modification of the minimization

of αEdata +βElink with respect to u(x; n) (Step 2 in Sect. 5).

Similarly to the case of grayscale images, this minimization

is independent for every spatio-temporal point (x; n). But

the point-wise energy that must be minimized with respect

to u is now the following:

Eaux (u) = α
 (I (x + u ; n) − I(x; n0)) + β
∣
∣u − u′∣∣2

For every point x in every frame n each channel of I(·; n)

is linearized around x + u0(x; n), where u0(x; n) are the

initializations of the trajectories u(x; n). With this approxi-

mation, Eaux can be written as:

Eaux (u) = α
 (Au + b) + β
∣
∣u − u′∣∣2 (29)

where b = I (x + u0; n) − I (x; n0) − Au0 and A =
∂ I(x+u0;n)

∂x
is the Nc × 2 (spatial) Jacobian of the n-th frame

I(·; n), evaluated at x + u0.

Assuming that the function 
 is proper convex and

lower semi-continuous, we dualise it by using its convex

bi-conjugate (Rockafellar 1997; Chambolle and Pock 2011):


(s) = sup
I

{〈s, I〉 − 
∗(I)} (30)

where, 
∗(I) is the Legendre-Fenchel transform of 
(s) and

I is the dual variable to s. We can now rewrite the energy

Eaux (29) as:

Eaux (u) = α max
I

{〈Au + b,I〉 − 
∗(I)}

+β
∣
∣u − u′∣∣2 (31)

Based on the above expression, we propose to minimise Eaux

by solving the following saddle point problem:

min
u

max
I

E sp(u,I), (32)

5 Note that, for the sake of clarity in our presentation, the generic robust

function 
 defined here differs from the robust function � that we used

in Sect. 4: 
 is applied directly to the vectorial differences whereas �

is applied to their squared norms. The two definitions are linked by:


(v) = �(|v|2)
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where

E sp(u,I) � α
(

〈Au + b,I〉 − 
∗(I)
)

+β
∣
∣u − u′∣∣2 (33)

Given a specific choice for the robust function 
, one can

derive efficient algorithms to solve the saddle point problem

(32), using a similar framework as in Esser et al. (2010),

Chambolle and Pock (2011), Pock and Chambolle (2011).

In Appendix B we provide such algorithms for two special

cases of 
 of particular interest:

– 
(v) = |v|, which leads to L1- norm of the image dif-

ferences in Edata (28). This is the choice that we use in

our experiments on colour images.

– 
(v) = Hǫ(|v|2), which corresponds to the Huber norm

(10).

Note that Rakêt et al. (2011) recently proposed an exten-

sion of the TV-L1 algorithm for vector-valued images. Their

method corresponds to the choice 
(v) = |v| and uses a step

of projection onto an elliptic ball. The formulation that we

propose in this section can be seen as an alternative to the

aforementioned work. The advantage of our approach is that

it allows the use of more general robust functions 
.

8 Implementation Details

In this section we provide details about the implementation

of the numerical optimization schemes for our grayscale and

vector-valued multi-frame subspace optical flow algorithms.

We used a similar numerical optimisation scheme and pre-

processing of images6 to the one proposed in Wedel et al.

(2009) to minimise the energy (6), i.e. we use the structure-

texture decomposition to make our input robust to illumina-

tion artifacts due to shadows and shading reflections. We also

used blended versions of the image gradients and a median

filter to reject flow outliers. Concerning the choice of para-

meters, the default values proposed in Wedel et al. (2009) for

the ITV-L1 algorithm were found to give the best results for

ITV-L1 and our method on the benchmark sequence (5 warp

iterations, 20 alternation iterations and the weights α and β

were set to 30 and 2). The same settings were used in all our

experiments on real sequences. Note that when we ran the

colour version of our algorithm we downweighed the value

of α by a factor of 1√
3

to account for the three colour chan-

nels. Regarding the parameters of the space varying weight

of the regularization term g(x) defined in (11), we used the

following values: σg = 1 pixel, cg = 0.8 and ǫ = 0.1.

6 Note that we have normalized the image intensity values to lie between

0 and 1.

Since our algorithm can be efficiently parallelized on stan-

dard graphics hardware we have developed a GPU implemen-

tation using the CUDA framework. We run our algorithm on

an NVIDIA GTX-580 GPU card hosted on a dual-core CPU.

We obtain an average speedup of ×50 with respect to our

CPU Matlab implementation which runs on a 4 quad-core

server with 192Gb of memory.

9 Reparameterization of the Optical Flow: Hard

Subspace Constraint

In the special case where the error ε(x; n) in (2) is close to

zero everywhere in the image, or equivalently when β → ∞
in (6), our soft constraint becomes a hard constraint and the

optical flow u(x; n) can be reparameterized as:

R
∑

i=1

qi (n)L i (x) (34)

where the coefficients of the motion basis L i (x) are the

unknown variables. In this case the energy for vector val-

ued images with Nc channels can be rewritten as:

Eh =
∫

�

F
∑

n=1

|I (x + Qn L(x) ; n) − I(x; n0)| dx

+
∫

�

R
∑

i=1

g(x) |∇L i (x)|ǫ dx (35)

where Qn is the 2 × R matrix
[

q1(n) · · · q R(n)
]

, i.e. two

rows of the basis matrix Q which correspond to frame n.

Appendix C describes a primal-dual optimization algorithm

to minimize this energy obtained via reparameterization of

the flow.

A valid question at this point would be: how does this

hard subspace constraint compare with respect to our pro-

posed soft constraint? In Sect. 3 we argued that a soft con-

straint would provide increased robustness. For this reason, in

Sect. 10 we have conducted a thorough experimental com-

parison between the two approaches which in fact reveals

that it is indeed beneficial to allow deviations from the sub-

space constraint. Our robust soft constraint consistently out-

performs imposing a hard constraint via reparameterization

of the optical flow.

10 Experimental Results

In this section we evaluate our method and compare its perfor-

mance with state of the art optical flow (Brox and Malik 2011;

Zach et al. 2007) and image registration (Pizarro and Bartoli

2010) algorithms. We show quantitative comparative results
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Fig. 4 Rendering process for ground truth optical flow sequence of a

non-rigid object for different images in each row. (a) Sparse surface

sn representing MOCAP data (White et al. 2007), (b) Dense surfaces

Sn constructed using thin plate spline interpolation, (c) Ground truth

optical flow u(x; n) visualized with the color coding that is shown at

n = 1, ((d)) Color sequence In − c rendered from Sn using texture

mapping of a graffiti image, (e) Grayscale version In −occl of the same

sequence with superimposed red disks indicate regions where intensities

are replaced by black in the case of synthetic occlusions, (f) Grayscale

sequence In −gn with synthetic gaussian noise, (g) Grayscale sequence

In − spn with synthetic salt and pepper noise (Color figure online)

on our new benchmark ground truth optical flow dataset and

qualitative results on real-world sequences7.

Furthermore, we analyse the sensitivity of our algorithm

to some of its parameters, such as the choice of trajectory

basis and regularization weight. Since our algorithm com-

putes multi-frame optical flow and incorporates an implicit

temporal regularization term, it would have been natural to

compare its performance with a spatiotemporal optical flow

formulation such as Weickert and Schnörr (2001b). How-

ever, due to the lack of publicly available implementations

we chose to compare with LDOF (Large Displacement Opti-

cal Flow) (Brox and Malik 2011), one of the best performing

optical flow algorithms, that can deal with large displace-

ments by integrating rich feature descriptors into a varia-

tional optic flow approach to compute dense flow. We also

compare against the duality-based ITV-L1 (Improved TV-

7 Videos of the results as well as our benchmark dataset can be

found on the following URL: http://www.eecs.qmul.ac.uk/~lourdes/

subspace_flow

L1) algorithm (Wedel et al. 2009), which we use as a baseline

since our method can be seen as its generalization to the case

of multi-frame non-rigid optical flow via robust trajectory

subspace constraints (see Sect. 4). In both cases, we register

each frame in the sequence independently with the reference

frame. We also compare with Pizarro and Bartoli’s state of the

art keypoint-based non-rigid registration algorithm (Pizarro

and Bartoli 2010).

Note that all these algorithms can only be used on

grayscale images.

10.1 Construction of a Ground Truth Benchmark Dataset

For the purpose of quantitative evaluation of multi-frame

non-rigid optical flow we have generated a new benchmark

sequence with ground truth optical flow data. To the best of

our knowledge, this is one of the first attempts to generate

a long image sequence of a deformable object with dense

ground truth 2D trajectories. We use sparse motion capture

(MOCAP) data from White et al. (2007) to capture the real
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Fig. 5 Inverse warps W
−1(Ii ) and error maps ǫi (x) for frames (i =

20, 25, 30) of the original benchmark sequence. Each row shows

results for different methods. (a–b) Multi-frame subspace flow on color

images: (a) mfsfcPCA, (b) mfsfcDCT. (c–d) Multi-frame subspace flow

on grayscale images: (c) mfsfPCA, (d) mfsfDCT. Against (e) itv- l1,

Wedel et al. (2009). (f) LDOF Brox and Malik (2011), (g) Pizarro and

Bartoli (2010)

deformations of a waving flag in 3D. This sparse data is

interpolated to create a continuous dense 3D surface using

the motion capture markers as the control points for smooth

Spline interpolation. Figure 4 shows four frames of the (a)

sparse and (b) dense interpolated 3D flag surface. This dense

3D surface is then projected synthetically onto the image

plane using an orthographic camera. We use texture map-

ping to associate some texture to the surface while rendering

60 frames of size 500×500 pixels. We provide both grayscale

and colour sequences.The advantage of this new sequence is

that, since it is based on MOCAP data, it captures the complex

natural deformations of a real non-rigid object while allow-

ing us to have access to dense ground truth optical flow. We

have also used three degraded versions of the original ren-

dered sequences by adding (i) Gaussian noise, of standard

deviation 0.2 relative to the range of image intensities, (ii)

salt & pepper (S&P) noise of density 10% and (iii) synthetic

occlusions generated by superimposing some black circles of

radius 20 pixels moving in linear orbits. Figure 4 shows four

frames of the original colour sequence, the ground truth opti-

cal flow and the equivalent frames of the grayscale sequence

with: synthetic occlusions, Gaussian noise and salt &

pepper noise.

10.2 Quantitative Results on Benchmark Sequence

We tested our Multi-Frame Subspace Flow algorithm for

grayscale (mfsf) and colour images (mfsf c) using the

three different proposed motion basis: PCA, DCT and Cubic

B-Spline (Figs. 5, 6). In Table 1, we provide a quantita-

tive comparison of the performance of the different ver-

sions of our algorithm, against the state of the art methods

listed above, using the four different versions of the ren-

dered flag sequence as input. We report the root mean square

123



300 Int J Comput Vis (2013) 104:286–314

(RMS) of the endpoint error, i.e. the amplitude of the differ-

ence between the ground truth and estimated flow u(x; n).

These measures are computed over all the frames and for

all the foreground pixels. Note that the results obtained

with the Spline basis were omitted since they were almost

equivalent to those obtained with the DCT basis, as Fig. 7a

reveals.

First we compare the performance of our original algo-

rithm for grayscale images (mfsf) with ITV-L1 (Wedel et al.

2009), LDOF Brox and Malik (2011) and Pizarro and Bartoli

(2010), since these algorithms can only be used on grayscale

images. We report results for our algorithm using the full rank

(R = 2F) DCT basis (mfsfDCT) and a full rank PCA basis

(mfsfPCA). Note that the PCA basis was estimated using as

input the flow obtained after running our algorithm with the

DCT basis (mfsfDCT). We also ran our algorithm using the

identity matrix as the basis (mfsfI2F
) to show the degrada-

tion of the results when subspace constraints are not applied

to compute the multi-frame optical flow.

Table 1 shows that our proposed algorithms (mfsfPCA) and

(mfsfDCT) rank top amongst the grayscale algorithms, out-

performing all other methods and yielding the lowest RMS

errors on all the sequences: original, occlusions, Gaussian

noise and salt & pepper noise. The best results are obtained

using the PCA basis.

Moreover, the top two rows of Table 1 show that using

the novel extension of our algorithm to colour images (mfsf

c) described in Sect. 7 improves significantly the results in

all versions of the sequence. Once more, the results obtained

using a full rank PCA basis (mfsfcPCA) outperform those

obtained with the DCT basis (mfsfcDCT).

Regarding the choice of parameters, as we described in

Sect. 8 the default values proposed in Wedel et al. (2009) for

the ITV-L1 algorithm were also found to give best results on

our grayscale algorithm (mfsf). 8

However, we found that these parameters needed some

tuning on the noisy and occluded versions of our benchmark

sequence. A lower value of the data term weight α = 18

was found to provide best results. Additionally, on the noisy

sequences, the weight of the quadratic term was lowered to

β = 0.4. These modified values were used on mfsfPCA,

mfsfDCTand mfsfI2F
.

Figure 5 shows a visual comparison of the results on the

benchmark sequence reported in Table 1. We show a closeup

of the reverse warped images W−1(Ii ) of three frames in the

sequence (i = 20, 25, 30) which should look identical to the

template frame; and the error in the flow estimation ǫi for

8 Note that, as we discussed in Sect. 4, mfsfI2F
and ITV-L1 Wedel

et al. (2009) are equivalent algorithms and should therefore provide

the same results. The difference in the numerical results is due to two

factors: (i) in mfsfI2F
cg = 0 and ǫ �= 0 (ii) the ITV-L1 algorithm was

run with its default parameters and mfsfI2F
with the tuned parameters

described above.

the same frames, expressed in pixels, encoded as a heatmap.

Notice the significant improvements that our proposed algo-

rithms for colour images (mfsfcPCA, mfsfcDCT) show with

respect to their grayscale counterparts (mfsfPCA, mfsfDCT).

Overall, all our approaches outperform state of the art meth-

ods: ITV-L1 optical flow (Wedel et al. 2009); LDOF (Brox

and Malik 2011) and Pizarro and Bartoli’s registration algo-

rithm (Pizarro and Bartoli 2010).

Figure 7 shows results of the experiments on the bench-

mark sequence with synthetic occlusions. The error maps

ǫi for images (i = 20, 25, 30, 60) encoded as heatmaps

are shown for all the variants of our grayscale (mfsfPCA,

mfsfDCT) and colour (mfsfcPCA, mfsfcDCT) algorithms as

well as ITV-L1 (Wedel et al. 2009), LDOF (Brox and Malik

2011) and Pizarro and Bartoli (2010). We notice the same

behaviour as in the experiments without occlusions—the

error maps obtained with our algorithms show a superior

performance with respect to state of the art approaches.

Amongst our proposed approaches, one can observe signifi-

cant improvements of the colour versions over their grayscale

equivalents.

Figure 6a shows a graph of the RMS error over all the

frames of the optical flow estimated using the 3 different

bases for different values of the rank and of the weight β

associated with the soft constraint. For a reasonably large

value of β all the basis can be used with a significant reduc-

tion in the rank. The optimization also appears not to overfit

when the dimensionality of the subspace is overly high. Fig-

ure 6c establishes the same fact in the case of noisy images

and sequences with occlusions. Figure 6b explores the effect

of varying the value of the weight β on the accuracy of

the optical flow. While low values of β cause numerical

instability (data and regularization terms become completely

decoupled) high values of β, on the other hand, lead to slow

convergence and errors since the point-wise search is not

allowed to leave the manifold, simulating a hard constraint.

Another interesting observation is that our proposed method

with a PCA basis of rank R=50, yields a better performance

than with a full rank PCA basis R=120. This reflects the fact

that the temporal regularization due to the low dimensional

subspace is often beneficial. Note that to analyze the sensi-

tivity of our algorithm to its parameters in Fig. 6a–c we used

ground truth tracks to compute the PCA basis to remove the

bias from tracking.

10.3 Experimental Comparison of Soft Versus Hard

Subspace Constraint

In this section we use the synthetic grayscale flag sequence

to conduct an experimental comparison of the optical flow

obtained using our proposed soft subspace constraint with

that obtained imposing the hard constraint described in

Sect. 9. The energy associated with the hard constraint (59)
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Fig. 6 (a) RMS flow error vs increasing values of the rank of the dif-

ferent trajectory bases (PCA, DCT, UCBS). The graph shows that the

PCA motion basis provides best results and that our algorithm does not

overfit when the rank of the basis is overestimated. (b) RMS flow error

vs increasing values of the weight of the subspace constraint β. (c) RMS

flow error for increasing value of the rank of the PCA basis on the dif-

ferent variants of the benchmark sequence (occlusions, Gaussian noise,

salt & pepper noise). All experiments are for our grayscale multi-frame

subspace flow algorithm mfsf

Table 1 RMS endpoint errors in pixels on the benchmark sequences of our proposed method for colour (mfsfc) and grayscale (mfsf) images using

different motion basis (PCA, DCT and I2F )

Image type Method Version of input sequence:

Original Occlusions Gauss. noise S&P noise

Color mfsfcPCA 0.69 0.80 1.25 1.01

mfsfcDCT 0.80 1.00 1.52 1.17

mfsfPCA 0.75 0.85 1.52 1.18

mfsfDCT 0.89 1.12 1.84 1.38

Grayscale mfsfI2F 1.13 1.43 1.83 1.60

ITV-L1 (Wedel et al. 2009) 1.43 1.89 2.61 2.34

LDOF (Brox and Malik 2011) 1.71 2.01 4.35 5.05

Pizarro and Bartoli (2010) 1.24 1.27 1.94 1.79

We compare the different versions of our grayscale algorithm (mfsf) against state of the art optical flow (ITV-L1 (Wedel et al. 2009), LDOF (Brox

and Malik 2011)) and non-rigid registration (Pizarro and Bartoli 2010) methods

Numbers in bold highlight best performing color/grayscale algorithm

can be obtained by removing the quadratic term Elink from

our energy (6) and reparameterizing the optical flow in terms

of the trajectory coefficients.

We use the primal-dual algorithm described in Appen-

dix C to minimise the energy obtained via reparameteriza-

tion (59) with 200 iterations per warp to ensure convergence.

We observed that 200 iterations were enough for the conver-

gence of the cost function to a reasonable tolerance (which

we consider to be when the change in cost per iteration is

<1000th of the total change).

Our energy (6) based on the soft subspace constraint,

is minimized using our optimization scheme described in

Sect.5. To establish a fair comparison, we used 20 denois-

ing iterations for the regularization step and 20 alternation

iterations between the minimisation of Step 1 and Step 2 to

ensure convergence.

Table 2 reports the RMS endpoint error, measured in pix-

els, of the flow obtained with the soft (S) and hard (H) con-

straints using 3 different basis:

1. Low rank (R = 75) PCA basis obtained from sparse

tracking using Pizarro and Bartoli (2010).

2. Full rank PCA basis obtained from ground truth optical

flow.

3. Full rank DCT basis.

The comparative results in Table 2 show that the optical

flow obtained with our soft constraint consistently outper-

forms the flow obtained after reparameterization (hard con-

straint) in all three experiments on all the different sequences

(orginal, noisy and with occlusions). This is particularly the

case in the presence of Gaussian noise when the endpoint
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7 Flow error maps ǫi (x) on the benchmark sequence with syn-

thetic occlusions for frames (i = 20, 25, 30, 60). Each column shows

results for different methods and errors are displayed as heatmaps.

(a–b) Multi-frame subspace flow on color images: (a) mfsfcPCA, (b)

mfsfcDCT. (c–d) Multi-frame subspace flow on grayscale images: (c)

mfsfPCA, (d) mfsfDCT. (e) itv- L1 Wedel et al. (2009). (f) ldof Brox and

Malik (2011) (g) Pizarro and Bartoli (2010). It is easy to see from the

error maps for frames 20 or 25 that the colour versions of our algorithm

(a) mfsfcPCA and (b) mfsfDCT improve substantially on their grayscale

counterparts (c) mfsfPCA and (d) mfsfDCT

Table 2 RMS endpoint error in pixels for the optical flow obtained with the hard (H) versus soft (S) constraints

Basis Rank Constraint Version of input sequence:

Original Occl. Gauss.

noise

S&P

noise

Sparse PCA 75 Soft (S) 0.90 1.01 1.80 1.46

Hard (H) 0.98 1.05 2.22 1.60

GT PCA 120 Soft (S) 0.69 0.76 1.43 1.07

Hard (H) 0.70 0.77 1.65 1.08

DCT 120 Soft (S) 0.89 1.12 1.83 1.38

Hard (H) 1.09 1.28 2.00 1.42

We carry out 3 experiments using: (top) a low-rank sparse PCA basis (using tracks given by Pizarro and Bartoli (2010)); (middle) a full rank ground

truth PCA basis (computed using the ground truth optical flow); and (bottom) a full rank DCT basis. The algorithms were tested on all the different

types of sequence (original, noisy and with occlusions)

errors differ most. However, this is to be expected since our

soft constraint allows some deviations from the subspace

manifold.

In the first experiment we used a low rank PCA basis

estimated from sparse tracking (obtained using Pizarro and

Bartoli’s matching algorithm (Pizarro and Bartoli 2010)) to

test the case of an inaccurate basis. This is the case when it is

most clearly beneficial to allow deviations from the subspace

manifold. This is naturally reflected on significantly higher

endpoint errors on the flow computed with the hard constraint

compared with that computed with our soft constraint.

It is also interesting to observe that even in the case when

we used the full rank PCA basis computed from the ground

truth flow the soft constraint performs marginally better than

the hard constraint. In the sequence with Gaussian noise it

provides a more clear benefit. Finally, the third experiment

with a full rank DCT basis also shows that it is beneficial to

use a soft constraint in all the different image sequences.

In conclusion, the optical flow obtained using the subspace

constraint as a soft constraint consistently outperforms the

flow obtained by reparameterization when both algorithms

were ran until convergence. The benefits of the soft constraint
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Fig. 8 Results on the Actor sequence: (a–b) Some frames of the

grayscale and colour input sequences. This is a challenging sequence

with large displacements and strong deformations. Frame 31 I31 is used

as the reference frame. (c–d) Inverse warp images W
−1(In) comparing

two versions of our grayscale algorithm: c without subspace constraints

(mfsfI2F
) and (d) with subspace constraints (mfsfcI2F ). (e–f) Inverse

warp images W
−1(In) comparing two versions of our colour algorithm:

(e) without subspace constraints (mfsfcI2F ) and (f) with subspace con-

straints (mfsfcPCA)
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Fig. 9 Results on the grayscale Actor sequence: Top row (a) shows

some frames of the original grayscale sequence. Middle (b) and bottom

(c) rows compare the optical flow results obtained with two of our pro-

posed grayscale algorithms: (c) with subspace constraints (mfsfPCA)

and (b) without subspace constraints (mfsfI2F
). The flow is visualized

with a grid superimposed on the images to reveal the optical flow in a

sparse subset of points. Points on the mouth are shown in yellow to high-

light the results on the area with strongest deformations (Color figure

online)
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Fig. 10 Results on the colour Actor sequence: Top row (a) shows some

frames of the original colour sequence. Middle (b) and bottom (c) rows

compare the optical flow results obtained with two of our proposed

colour algorithms: (c) with subspace constraints (mfsfcPCA) and (b)

without subspace constraints (mfsfcI2F ). The flow is visualized with a

grid superimposed on the images to reveal the optical flow in a sparse

subset of points. Points on the mouth are shown in yellow to highlight

the results on the area with strongest deformations (Color figure online)
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Fig. 11 Results on the Actress sequence: (a) Some frames of the original grayscale sequence. (b) Inverse warp images obtained with our best

performing grayscale method using subspace constraints (mfsfPCA). (c) Original images augmented with some texture to simulate a tattoo

are stronger when dealing with noisy images and in the case

of an inaccurate motion basis which is to be expected.

10.4 Experiments on Real Sequences

In this section we provide details about the experiments we

have carried out on four video sequences which display large

displacements and strong deformations.

10.4.1 Actor sequence

This challenging sequence is a 39 frame long clip from a well

known film, acquired at 25 frames per second with images

of size 500 × 550 pixels. The top two rows of Fig. 8 show

5 frames of this sequence in grayscale and colour. Note that

frame 31 was used as the reference frame 9. The bottom

four rows in Fig. 8 show comparative results of the inverse

warp images (using the computed optical flow to warp the

current image back to the reference frame) estimated using

the following different versions of our algorithm: mfsfI2F
,

mfsfPCA, mfsfcI2F , mfsfcPCA. The first two methods work

on grayscale images and use the identity matrix and PCA

basis as the motion basis respectively while the last two are

9 We choose the reference frame to be one in which the points we are

interested in tracking are all visible and also to reduce the maximum

displacements.

their equivalent colour versions. Comparing the results of

mfsfI2F
and mfsfPCA(or mfsfcI2Fand mfsfcPCA) allows us

to show the advantages of using subspace constraints (PCA

basis) versus not using a temporal model for the trajecto-

ries (I2F basis). We use a full rank PCA basis obtained after

applying principal components analysis to an initial flow esti-

mated with our algorithm using the DCT basis.

The advantages of using subspace constraints are clear.

For instance, notice that for grayscale images mfsfI2F
failed

completely to warp frame 10 while mfsfPCA provides an

accurate inverse warp image for the same frame and con-

sistently superior results throughout the sequence. It is also

clear that making use of all three colour channels using the

extension of our algorithm to vector valued images provides

substantial improvements. Both mfsfcI2F and mfsfcPCA out-

perform their grayscale equivalents. In row (d) of Fig. 8 we

have highlighed in red areas where the flow has clearly failed

on the grayscale mfsfPCAalgorithm but have been correctly

warped in its colour version mfsfcPCA .

Notice also that mfsfcI2Fcopes with the large displace-

ments in frame 10 much better than mfsfI2F
. However, just

using colour without subspace constraints is not enough to

estimate accurate flow. Comparing the bottom two rows of

Fig. 8 reveals that using subspace constraints significantly

improves results also in the case of colour. In conclusion, the

best overall results are obtained with mfsfcPCA, our colour

algorithm with subspace constraints using the PCA basis.
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Input sequence

Inverse warps; MFSF ;

Images with augmented grid; MFSF ;

Inverse warps; ITV-

Images with augmented grid; ITV-

Inverse warps; LDOF

Images with augmented grid; LDOF

Fig. 12 Results on Paper Bending-1 grayscale sequence: Compara-

tivev results of the optical flow estimated with our best performing

grayscale algorithm (mfsfPCA) against state of the art optical flow meth-

ods (ITV-L1(Wedel et al. 2009), LDOF (Brox and Malik 2011)). We

show two visualizations of the optical flow estimated with the three

methods in alternate rows: (i) the inverse warped images and (ii) a grid

superimposed on the images to reveal the optical flow in a sparse subset

of points. Top row shows some frames of the original sequence
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Fig. 13 Results on Paper Bending-1 colour sequence: The top row

shows some frames of the original colour sequence. The bottom row dis-

plays the same sequence augmented with some new texture. The optical

flow obtained with our best performing colour algorithm mfsfcPCAwas

used to re-texture the original sequence

Figures 9 and 10 support our claims by showing a grid

superimposed on the images to reveal the optical flow in a

sparse subset of points. The points on the mouth are high-

lighted in yellow since that is where most of the deforma-

tions occur. Once more, Fig. 9 reveals that the quality of the

flow computed using trajectory regularization constraints on

grayscale images (mfsfPCA) is far better than that obtained

without using subspace constraints (mfsfI2F
). Notice the

complete failure of mfsfI2F
on frame 10. Similar conclusions

can be drawn from the results on the colour images shown in

Fig.10. Notice the improvements particularly on the lips.

10.4.2 Actress sequence

This 72 frame long clip from the same film shows a close-

up of an actress opening the mouth widely. The resolution

of the images was 640 × 360 pixels. This sequence is sim-

ilarly challenging to the previous one with very large dis-

placements and deformations. In this case we only ran our

best performing method on grayscale images mfsfPCAwith

subspace constraints using a PCA basis of rank R = 100.

Figure 11 shows the original sequence (top row); the inverse

warp images estimated from the optical flow (middle row)

and the original images augmented with some texture (bot-

tom row) to simulate a tattoo.

10.4.3 Paper bending-1 sequence

Figure 12 shows results on a sequence of textured paper bend-

ing smoothly (Bartoli et al. 2008); a challenging sequence

due to its length (100 frames) and the large camera rotation.

We show results comparing our best performing grayscale

algorithm (mfsfPCA) against state of the art optical flow meth-

ods (ITV-L1 (Wedel et al. 2009), LDOF (Brox and Malik

2011)). For completeness in our experimental evaluation, in

this case we computed the motion basis by applying PCA

to KLT tracks (Lucas and Kanade 1981) keeping the first 12

components. We ran the LDOF and ITV-L1 algorithms using

a multi-resolution scaling factor of 0.95, whereas for our

algorithm the value 0.75 was sufficient (pointing to faster

convergence). Comparing the warped images W−1(In), we

observe that our method yields a significant improvement

on the accuracy of the optical flow, especially after some

frames (see e.g. the artifacts annotated by the red ellipses in

the results of LDOF and ITV-L1). We show an alternative

visualization of the same results with a grid superimposed

on the images to reveal the optical flow in a sparse subset of

points. This visualization helps to highlight the superiority

of the optical flow estimated with our algorithm (mfsfPCA)

with respect to others.

In Fig. 13 we show results on the colour version of this

sequence, subsampled taking every fifth frame to give a 25

frame long sequence. In this case, we augment the images

with new texture using the optical flow results given by

our colour multi-frame subspace algorithm using a PCA

basis (mfsfcPCA). In this case we use a full rank PCA basis

obtained after applying principal components analysis to an

initial flow estimated with our algorithm using the DCT basis

(mfsfcDCT).

10.4.4 Paper bending-2 sequence

Figure 14 shows a 71 frame long grayscale sequence intro-

duced in Varol et al. (2009) of a paper being bent backwards
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Fig. 14 Results on the Paper bending-2 sequence: Top row shows some

images of this grayscale sequence. The 30th frame is used as the ref-

erence. Next rows show inverse warp images and colour coded optical

flow comparing our best performing grayscale algorithm (mfsfPCA)

using a very low rank PCA decomposition (R = 6) against state of the

art optical flow methods (ITV-L1 (Wedel et al. 2009), LDOF (Brox and

Malik 2011))
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which is widely used for 3D reconstruction in non-rigid struc-

ture from motion (NRSfM). Our method used a PCA basis

of rank R = 6 obtained from KLT tracks. The 30th frame

is used as the reference. Once more, we compare results of

our algorithm (mfsfPCA) against the same state of the art

approaches as in previous experiments. The inverse warped

images and the colour coded optical flow in Fig. 14 reveal

that despite having used a very low rank PCA motion basis,

our results outperform LDOF and provide more accurate flow

boundaries than ITV-L1.

11 Conclusions

We have provided a new formulation for the computation

of multi-frame optical flow exploiting the high correlation

between 2D trajectories of points in a long sequence by

assuming that these lie close to a low dimensional sub-

space. Our main contribution is to formulate the man-

ifold constraint as a soft constraint which, using varia-

tional principles, leads to a robust energy that can be effi-

ciently optimized. We propose a new anisotropic trajec-

tory regularization term that acts on the coefficients of

the trajectory basis. We take advantage of the high level

of parallelism inherent to our approach by developing a

GPU implementation using the Nvidia CUDA framework.

We also provide an extension of our approach to the case

of vector-valued images which allows us to exploit all

three colour channels and gain substantial improvements in

the accuracy of the estimated optical flow. We also pro-

vide a new benchmark dataset, with ground truth optical

flow. Our experimental results on the benchmark dataset

and on real video footage reveal that using subspace con-

straints significantly improves results. Our approach outper-

forms state of the art optical flow and non-rigid registration

algorithms.
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Appendix A: Primal Dual Algorithm for Denoising

This appendix describes the optimization of the energy min-

imized in Step 1 of our algorithm as defined in (22):

Ed =
∫

�

g(x) |∇L(x)|ǫ + β(M(x) − L(x))2dx (36)

which corresponds to a small modification of the TV-L2

Rudin-Osher-Fatemi (ROF) model (Rudin et al. 1992), as

described in Sect. 5.1. Note that as the trajectory model coeffi-

cients L i (x) in (22) are decoupled for each i, in the following

derivation we have dropped the subscript for simplicity.

The first step in the optimization is the dualisation of

the weighted Huber functional g(x)Hǫ(|∇L(x)|2) of the

above energy with respect to the gradient ∇L(x) using its

Legendre-Fenchel transform (Rockafellar 1997). After spa-

tial discretization, the minimisation of (36) is equivalent to

the following saddle point problem:

min
L

max
L

∑

x∈X

{

〈∇L(x),L(x)〉 − δ

(
L(x)
g(x)

)

− ǫ
|L(x)|2
2g(x)

+β(M(x) − L(x))2
}

. (37)

where X is the set of image grid points, ∇ denotes the discrete

gradient operator as defined in Chambolle and Pock (2011),

L(x) ∈ R
2 are the dual variables for every (x), and δ(L) is

the indicator function of the unit ball:

δ(L) �

{

0 if |L| ≤ 1

∞ otherwise
(38)

The problem (37) can be considered as a special case of

the following general form of primal-dual problems that are

studied in Chambolle and Pock (2011):

min
p

max
q

〈K p, q〉 − F∗(q) + G(p). (39)

In the case of (37), the norm of the linear operator K = ∇ is

bounded by
√

8. Also, both G and F∗ are uniformly convex

with convexity parameters 2β and ǫ respectively.

Therefore, we solve (37) by applying Algorithm 3 of

Chambolle and Pock (2011). The steps of the algorithm can

be written as follows :

• Initialize L
0 = 0, L0(x) = L̄0(x) = M(x)

• Iterate for k = 0, 1, 2, . . . until a convergence criterion

is satisfied:

L
k+1(x) = g(x)�

(

L
k(x) + τ∇ L̄k(x)

g(x) + τǫ

)

(40)

Lk+1(x)=
1

1+2σβ

(

2σβM(x)+Lk(x)+σdiv(Lk+1(x))

)

(41)

L̄k+1(x) = 2Lk+1(x) − Lk(x) (42)

where div(.) is the descrete divergence operator and the oper-

ator �(s) projects a vector s onto the unit ball as:

�(s) =
s

max(1, |s|)
(43)
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We choose the following values for the steps σ, τ, that guar-

antees the convergence:

σ =
√

ǫ

16β
, τ =

√

β

4ǫ
(44)

Appendix B: Primal Dual Algorithm for Robust

Vector-Valued Image Matching

This appendix provides the details of the algorithm to opti-

mise the saddle point problem (32) for vector-valued images

using Euclidean norm and Huber penalisers.

Euclidean Norm Penaliser

This case corresponds to 
(v) = |v| and is a straightforward

extension of the absolute value of image differences that we

used for Edata in (7) for grayscale images. After dualisation,

(32) can be written as:

min
u

max
I

{

〈α Au,I〉 + α〈b,I〉 − δ(I) + β
∣
∣u − u′∣∣2

}

(45)

This problem is also a special case of the general saddle

point problem (39) with the linear operator K = α A. Since

the function β
∣
∣u − u′∣∣2 is uniformly convex with convexity

parameter 2β, we apply Algorithm 2 of Chambolle and Pock

(2011) and derive following optimisation algorithm:

– Choose σ0 = τ0 = 1
αBA

– Initialize u0 from the previous alternation iteration.

– Initialize ū0 = u0,Ik = 0.

– Iterate for k = 0, 1, 2, . . . until a convergence criterion

is satisfied:

I
k+1 = �(Ik + ατk(Aūk + b)) (46)

uk+1 =
1

1 + 2σkβ

(

2σkβu′ + uk − σk AT
I

k+1
)

, (47)

θk =
1

√
1 + 4βσk

, σk+1 = θkσk, τk+1 =
τk

θk

(48)

ūk+1 = uk+1 + θk(uk+1 − uk) (49)

where BA can be any upper bound on the norm of A.

Although the saddle point problem is minimised separately

for each spatio-temporal point of the video and A is spatially

varying, for simplicity we choose a common upper bound on

the linear operator for all the points. It can be shown that L A

as defined below is a valid upper bound.

BA =

√
√
√
√max

n

Nc∑

i=1

(

max
x

∣
∣
∣
∣

∂ I i (x; n)

∂x

∣
∣
∣
∣

2

+max
x

∣
∣
∣
∣

∂ I i (x; n)

∂y

∣
∣
∣
∣

2
)

(50)

where (x, y) are the horizontal and vertical coordinate axes

of the image plane.

Huber Penaliser

When the robust function used in the data term of the

energy for vector-valued images is the Huber norm: 
(v) =
Hǫ(|v|2), the saddle point problem (32) can be written as:

min
u

max
I

{

〈Au, I〉+〈b, I〉−
ǫ

2α
|I |2−δ

(
I

α

)

+β
∣
∣u − u′∣∣2

}

(51)

This problem is again of the form (39) with the linear operator

K = A. The corresponding G and F∗ functions are both

uniformly convex with parameters 2β and ǫ
α
. We thus solve

(51) using Algorithm 3 of Chambolle and Pock (2011) and

derive the following optimisation algorithm:

– Initialize u0 from the previous alternation iteration.

– Initialize ū0 = u0,Ik = 0.

– Iterate for k = 0, 1, 2, 3, . . . until a convergence criterion

is satisfied:

I
k+1 = α�

(

I
k + τ(Aūk + b)

α + τǫ

)

(52)

uk+1 =
1

1 + 2σβ

(

2σβu′ + uk − σ AT
I

k+1
)

, (53)

ūk+1 = 2uk+1 − uk (54)

We choose the following step-sizes which ensure the conver-

gence of our algorithm:

σ =
1

BA

√
ǫ

2βα
, τ =

1

BA

√

2βα

ǫ
(55)

where BA is, again, any upper bound on the operator norm of

A. As in the case of Euclidean norm penalisation, we choose

BA as defined in (50).

Appendix C: Optimization of the Hard Subspace

Constraint

This appendix describes the optimization of the energy

Eh =
∫

�

F
∑

n=1

|I (x + Qn L(x) ; n) − I(x; n0)| dx

+
∫

�

R
∑

i=1

g(x) |∇L i (x)|ǫ dx (56)

which corresponds to the case when the subspace constraint

is imposed as a hard constraint and the 2D flow u(x; n) can be
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reparameterized as
R∑

i=1

qi (n)L i (x). First, each image chan-

nel of I(·; n) is linearised around Qn L0(x), using an initial

estimate L0(x). Under this approximation the data term can

be written as:

Edata =
∫

�

F
∑

n=1

|C(x; n)L(x) + d(x; n)| dx (57)

where, for every spatio-temporal point (x; n),

C(x; n) =
∂ I (x + Qn L0(x) ; n)

∂x
Qn (58)

is the Nc × R Jacobian matrix and d(x; n) = I(x +
Qn L0(x); n)−I(x; n0)−C(x; n)L0(x) is a Nc dimensional

vector.

Thus, the following minimization problem must be solved:

min
L(x)

∫

�

{

α

F
∑

n=1

|ρ(L(x); n)| +
R

∑

i=1

g(x) |∇L i (x)|ǫ

}

dx.

(59)

where ρ(L(x); n) = C(x; n)L(x)+d(x; n) is the linearised

color constancy. After dualisation of the data and regularisa-

tion terms and spatial discretization, the minimisation (59)

is equivalent to the following saddle point problem:

min
L

max
I,L

∑

x∈X

{

α

F
∑

n=1

(

〈ρ(L(x); n),I(x; n)〉−δ(I(x; n))
)

+
R

∑

i=1

(

〈∇L i (x),Li (x)〉−δ

(
Li (x)

g(x)

)

−ǫ
|Li (x)|2

2g(x)

)
}

(60)

where I(x; n) ∈ R
Nc and Li (x) ∈ R

2 are the dual variables

for every (x; n) and (x; i) respectively.

The energy (60) can be considered as a special case of

the general form of primal-dual problem (39) where the lin-

ear operator K is the (Nc F + 2R)Np × RNp dimensional

matrix:

K =
[

α C̃

∇

]

; C̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C(x1; 1)
...

C(x1; F)

. . .

C(xNp ; 1)
...

C(xNp ; F)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(61)

where x1, . . . , xNp are the image grid points and n ∈
{1, · · · , F}.

Thus, we solve (52) by applying Algorithm 1 of

Chambolle and Pock (2011). In this case, the steps of this

algorithm can be written as follows :

– Initialize L0(x) = L̄
0
(x) = L0(x)

– Initialize I
0(x; n) = L

0(x; n) = 0

– Iterate for k = 0, 1, 2, . . . until a convergence criterion

is satisfied:

I
k+1(x; n) = �

(

I
k(x; n) + ταρ(L̄

k
(x); n)

)

(62)

L
k+1
i (x) = g(x)�

(

L
k
i (x) + τ∇ L̄k

i (x)

g(x) + τǫ

)

(63)

Lk+1
i (x) = Lk

i (x) − σα

F
∑

n=1

C(x; n)T
I

k+1(x; n)

+ σdiv(Lk+1
i (x)) (64)

L̄
k+1

(x) = 2Lk+1(x) − Lk(x) (65)

We use the following step-sizes, which guarantee the con-

vergence of this algorithm too:

σ = τ =
1

BK

(66)

BK is the following upper bound on the operator norm of K

(61):

BK =
√

8 + α2 B2
A (67)

where BA is given by (50).
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