
METHODOLOGY ARTICLE Open Access

A variational Bayes algorithm for fast and
accurate multiple locus genome-wide association
analysis
Benjamin A Logsdon1, Gabriel E Hoffman1, Jason G Mezey1,2*

Abstract

Background: The success achieved by genome-wide association (GWA) studies in the identification of candidate

loci for complex diseases has been accompanied by an inability to explain the bulk of heritability. Here, we

describe the algorithm V-Bay, a variational Bayes algorithm for multiple locus GWA analysis, which is designed to

identify weaker associations that may contribute to this missing heritability.

Results: V-Bay provides a novel solution to the computational scaling constraints of most multiple locus methods

and can complete a simultaneous analysis of a million genetic markers in a few hours, when using a desktop.

Using a range of simulated genetic and GWA experimental scenarios, we demonstrate that V-Bay is highly

accurate, and reliably identifies associations that are too weak to be discovered by single-marker testing

approaches. V-Bay can also outperform a multiple locus analysis method based on the lasso, which has similar

scaling properties for large numbers of genetic markers. For demonstration purposes, we also use V-Bay to confirm

associations with gene expression in cell lines derived from the Phase II individuals of HapMap.

Conclusions: V-Bay is a versatile, fast, and accurate multiple locus GWA analysis tool for the practitioner interested

in identifying weaker associations without high false positive rates.

Background
Genome-wide association (GWA) studies have identified

genetic loci associated with complex diseases and other

aspects of human physiology [1,2]. All replicable associa-

tions identified to date have been discovered using

GWA analysis techniques that analyze one genetic mar-

ker at a time [3]. While successful, it is well appreciated

that single-marker analysis strategies may not be the

most powerful approaches for GWA analysis [4]. Multi-

ple locus inference is an alternative to single-marker

GWA analysis that can have greater power to identify

weaker associations, which can arise due to small allelic

effects, low minor allele frequencies (MAF), and weak

correlations with genotyped markers [4]. By correctly

accounting for the effects of multiple loci, such

approaches can reduce the estimate of the error var-

iance, which in turn increases the power to detect

weaker associations for a fixed sample size. Since loci

with weaker associations may contribute to a portion of

the so-called ‘missing’ or ‘dark’ heritability [5-7], multi-

ple locus analyses have the potential to provide a more

complete picture of heritable variation.

Methods for multiple locus GWA analysis must address

a number of problems, including ‘over-fitting’ where too

many associations are included in the genetic model, as

well as difficulties associated with model inference when

the number of genetic markers is far larger than the sam-

ple size [8]. Two general approaches have been suggested

to address these challenges: hierarchical models and parti-

tioning/classification. Hierarchical modeling approaches

[9-14] employ an underlying regression framework to

model multiple marker-phenotype associations and use

the hierarchical model structure to implement penalized

likelihood [10], shrinkage estimation [15], or related

approaches to control over-fitting. These methods have

appealing statistical properties for GWA analysis when

both the sample size and the number of true associations

expected are far less than the number of markers analyzed,

which is generally considered a reasonable assumption in
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GWA studies [8]. Alternatively, partitioning methods do

not (necessarily) assume a specific form of the marker-

phenotype relationships but rather assume that markers

fall into non-overlapping classes, which specify phenotype

association or no phenotype association [13,16]. Control

of model over-fitting in high dimensional GWA marker

space can then be achieved by appropriate priors on mar-

ker representation in these classes [13].

Despite the appealing theoretical properties of multiple

locus methods that make use of hierarchical models or

partitioning, these methods have not seen wide accep-

tance for GWA analysis. There are at least two reasons

for this. First, an ideal multiple locus analysis involves

simultaneous assessment of all markers in a study and,

given the scale of typical GWA experiments, most tech-

niques are not computationally practical options

[9,10,16-18]. Second, there are concerns about the accu-

racy and performance of multiple locus GWA analysis.

This is largely an empirical question that needs to be

addressed with simulations and analysis of real data.

Here we introduce the algorithm V-Bay, a (V)aria-

tional method for (Bay)esian hierarchical regression, that

can address some of the computational limitations

shared by many multiple locus methods [9,10,16-18].

The variational Bayes algorithm of V-Bay is part of a

broad class of approximate inference methods, which

have been successfully applied to develop scalable algo-

rithms for complex statistical problems, in the fields of

machine learning and computational statistics [19-22].

The specific type of variational method implemented in

V-Bay is a mean-field approximation, where a high

dimensional joint distribution of many variables (in this

case genetic marker effects) is approximated by a pro-

duct of many lower dimensional distributions [23]. This

method is extremely versatile and can be easily extended

to a range of models proposed for multiple locus analy-

sis [4,11,14,24].

The specific model implemented in V-Bay is a hier-

archical linear model, which includes marker class parti-

tioning control of model over-fitting. This is particularly

well suited for maintaining a low false-positive rate

when identifying weaker associations [13]. V-Bay imple-

ments a simultaneous analysis of all markers in a GWA

study and, since the computational time complexity per

iteration of V-Bay is linear with respect to sample size

and marker number, the algorithm has fast convergence.

For example, simultaneous analysis of a million markers,

genotyped in more than a thousand individuals, can be

completed using a standard desktop (with large memory

capacity) in a matter of hours.

We take advantage of the computational speed of

V-Bay to perform a simulation study of performance,

for GWA data ranging from a hundred thousand to

more than a million markers. In the Results we focus

on the simulation results for single population simula-

tions, but we also implement a version of the algorithm

to accommodate known population structure and miss-

ing genotype data. We demonstrate that in practice, V-

Bay consistently and reliably identifies both strong mar-

ker associations, as well as those too weak to be identi-

fied by single-marker analysis. We also demonstrate that

V-Bay can outperform a recently proposed multiple

locus methods that uses the least absolute shrinkage and

selection operator (lasso) penalty [14], a theoretically

well founded and widely accepted method for high

dimensional model selection. V-Bay therefore provides a

powerful complement to single-marker analysis for dis-

covering weaker associations that may be responsible for

a portion of missing heritability.

Results and Discussion
The V-Bay Algorithm

The V-Bay algorithm consists of two components: a hier-

archical regression model with marker class partitioning

and a variational algorithm for approximate Bayesian

inference. The underlying hierarchical model of V-Bay is

a Bayesian mixture prior regression [25] that has been

previously applied to association and mapping problems

[13]. The regression portion of this hierarchical model is

a standard regression used to model genetic marker-phe-

notype associations, and allows for natural incorporation

of population structure and other covariates. The model

partitioning incorporates global features of genetic mar-

ker associations, which are assumed to be distributed

among positive, negative, and zero effect classes. The

zero effect class is used to provide a parametric represen-

tation of the assumption that most markers in GWA stu-

dies will not be linked to causative alleles and therefore

do not have true associations with phenotype [13].

Approximate Bayesian inference with V-Bay is accom-

plished by an algorithm adapted from variational Bayes

methods [26]. As with other variational Bayes methods,

the goal of V-Bay is to approximate the joint posterior

density of the hierarchical regression model with a fac-

torized form and then to minimize the Kullback-Liebler

(KL) divergence between the factorized form and the

full posterior distribution [27]. This is accomplished by

taking the expectation of the log joint posterior density,

with respect to each parameter’s density from the fac-

torized form, and iterating until convergence [23]. The

overall performance of V-Bay will depend on how well

the factorized form approximates an informative mode

of the posterior distribution of the hierarchical model.

We have chosen a factorization with respect to each

regression and hierarchical parameter, which appears to

perform extremely well for identifying weak associations

when analyzing simulated GWA data that include large

numbers of genetic markers.
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Computational speed

The computational efficiency of V-Bay derives from two

properties: it is a deterministic algorithm and the objec-

tive function has a factorized form. Since V-Bay is deter-

ministic it does not need the long runs of Markov chains

required by exact Bayesian MCMC algorithms [28]. For

GWA analysis, these latter stochastic algorithms can be

very slow to converge, particularly when marker numbers

are large and when there are complex marker correla-

tions produced by linkage disequilibrium [8]. The factor-

ized form of V-Bay means that the minimization is

performed with respect to each parameter independently,

where each iterative update satisfies consistency condi-

tions for maximizing the lower bound, given the state of

the other parameters. Unlike univariate update algo-

rithms, which may not necessarily have efficient updates

with respect to the likelihood gradient function [4], the

consistency conditions produced by the factorized form

ensure that the univariate updates produce a computa-

tionally efficient approach to a KL-divergence minimum.

More precisely, V-Bay has linear time complexity scal-

ing with respect to both marker number and sample

size per iteration (Additional file 1, Methods). V-Bay

therefore has better computational scaling properties

than most currently proposed multiple locus algorithms

for full likelihood or exact MCMC Bayesian analysis,

when simultaneously considering all markers in a GWA

study [9,10,16-18]. While the total time to convergence

will depend on the true underlying genetic model, total

computational times appear to be very tractable. As an

example, using a dual-quad core Xeon 2.8 Ghz, with 16

Gb of memory, V-Bay converges in less than four hours

for data sets in the range of 1 million markers, for a

sample size of 200, and has average convergence around

ten hours for sample sizes of 1000.

Significance thresholds

We assessed significance of marker associations using

-log10 p-vbay, the negative log posterior probability of a

marker being in either the positive or negative effect

class. This is a natural statistic for deciding significance,

since p-vbay is the (approximate posterior) probability

that the marker has an association with the phenotype.

While different significance thresholds based on -log10
p-vbay can be assigned to control false positive rate, as

illustrated in Figure 1, the distribution of this statistic

has an appealing property. The statistic has a value of

zero for most of the true hits and there is a large gap

(about 1-2 orders of magnitude) between significant

markers and those with less significant scores. This is

true even when the individual heritabilities of the true

hits are low. This property of V-Bay is remarkably

robust. A GWA practitioner using V-Bay can therefore

easily identify a significant association (a ‘hit’) in practice

when applying a conservative significance threshold.

Performance of V-Bay compared to single-marker analysis

We empirically analyzed V-Bay performance on 150

simulated GWA data sets. Marker numbers for these

data were one-hundred thousand, six-hundred thousand,

or one million markers and were simulated using the

approximate coalescent simulator MaCS [29]. We simu-

lated a continuous phenotype with normally distributed

error under the conditions listed in Table 1, where each

GWA data set analyzed was produced by choosing a

combination of these conditions. For these simulated

data sets, we analyzed the performance of V-Bay com-

pared to a single-marker analysis that was implemented

by applying a linear regression model individually to

each marker.

As illustrated in Table 2, V-Bay can perform better

than single-marker analysis given a sufficient sample

size or a sufficient number of loci with high individual

heritabilities. Both the number of true associations iden-

tified and the amount of heritable variation explained

can be greater when employing highly conservative false

positive tolerances. For example, when using a false

positive rate approaching a Bonferroni correction, V-Bay

can on average double the number of associations found

by single-marker analysis and can explain 20% more of

the variance in phenotype under the most favorable

conditions simulated. The reason for this increase in

performance is that V-Bay has greater power to detect

weaker (true) associations by accounting for the effects

of multiple loci.

Whether small associations are identified by V-Bay

depends on the interplay between the sample size of the

GWA study and the percentage of variation explained by

the individual marker associations. For example, Figure 2a

and 2b present the Receiver Operator Characteristic

(ROC) curves comparing the performance of V-Bay and

single-marker analyses for 10 replicate simulations, with 4

or 32 loci affecting a phenotype, total heritability of 0.9,

and sample sizes of 200 or 1000, respectively (note that we

use these high heritability cases for exploratory purposes;

we also consider a total heritability of 0.5 in other simula-

tions). With a sample size of 200 (Figure 2a), V-Bay out-

performs single-marker analysis for the 4 loci simulations,

and is about the same for the 32 loci simulations. The rea-

son for the relative decrease in performance of V-Bay in

this latter case is the average individual heritability asso-

ciated with each associated marker is lower. Most of the

true associations are therefore too small to detect even

when controlling for the largest effects with a multiple

locus method like V-Bay (Figure 2c). With a larger sample

size however, V-Bay is able to detect a much larger pro-

portion of the weaker associations in the case of 32 contri-

buting loci (Figure 2d). Also, since there are more loci to

detect with 32 loci, V-Bay has far better performance than

single-marker analysis overall at a highly conservative false
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positive rate (< 10-7). Further simulations indicated that

even for a uniform distribution of individual heritabilities

(i.e. constant minor allele frequency and effect size), V-Bay

performs better for similar sample sizes and individual

heritabilities. For example, for 32 loci with a sample size of

1000, and false-discovery rate of 5.0% the average power

of V-Bay was 93%. This is greater than the corresponding

power of 72% for single-marker analysis with the same

false-discovery rate. In general, regardless of sample size, if

there are enough loci with associations that are not too

weak, then V-Bay outperforms single-marker analysis.

V-Bay performance is a direct function of the indivi-

dual heritabilities, and not the total heritability of the

phenotype. The individual heritability is defined by both

the minor allele frequency and the effect size (see

Methods). Therefore loci with large effects may still

have low individual heritabilities if the minor allele fre-

quencies of the true loci are low (or vice versa). For

example, for our simulations where the total heritability

was controlled to be 0.5, and the individual heritabilities

were shifted to be smaller overall, V-Bay performance

was far closer to single-marker analysis. When we

increased the individual heritabilities associated with

associations in these simulations, while holding the total

heritability at 0.5, V-Bay can outperform single-marker

analysis. For all simulations, when an individual herit-

ability falls below a certain threshold, neither approach

could detect the association. There exists a limit to how

weak an association can be and still be detected by

V-Bay, given the sample size of the GWA study. Even in

Figure 1 Manhattan plots of the results of a single-marker (left) and V-Bay analysis (right) of a simulated GWA data set. Data were

simulated with a sample size of 200, one million markers, 8 loci with phenotype associations, and a total phenotype heritability of 0.9. The

locations of the loci with phenotype associations are represented by the black squares. Each dot reflects the -log10 p-value resulting from single-

marker analysis (left) and the -log10 p-vbay output of V-Bay (right), where non-significant associations are represented as blue dots. The markers

above the red line for the single-marker analysis are significant when using a Bonferroni correction. The markers in red for the V-Bay analysis

(connected by a black line) are significant using a conservative control of the false positive rate equal to a Bonferroni correction. In this case, the

single-marker analysis correctly identifies two of the true associations, while V-Bay identifies 7 of the 8 true associations. This result was typical for

our simulation analyses.
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the worst case scenarios simulated, with many loci with

small individual heritabilities and a small sample size,

the performance of V-Bay was not significantly different

from single-marker analysis across simulations. This

result suggests that even if the number of loci were

increased (i.e. the average individual heritability was

decreased), the performance of V-Bay would at worst be

the same as single-marker analysis.

The inset in Figure 3 illustrates another appealing

property of V-Bay. In contrast to a single-marker analy-

sis, where each marker in a linkage disequilibrium block

containing a true association will have an inflated -log10
p-value, V-Bay identifies only a single marker as signifi-

cant, which is in high linkage disequilibrium with the

true association. We found in our single population

simulations that, while the specific marker assigned

depends on the update order of the algorithm, the cor-

relation between the marker and the causative allele

averages r2 = 0.75, with 28% of hits on markers in per-

fect linkage disequilibrium, and 52% of markers with

r2 ≥ 0.9. V-Bay can therefore provide high mapping

resolution within a linkage disequilibrium block.

Comparison to the Lasso

The V-Bay algorithm was compared to the lasso, one of

the only other currently proposed multiple locus meth-

ods that make use of a hierarchical regression model and

have similar scaling properties to V-Bay [14]. For com-

parison to V-Bay, we use a form that implements a lasso

type penalty [30], based on the algorithm presented in

Wu et al. [14], modified to allow continuous phenotypes.

Figure 4 presents the power of V-Bay, the lasso, and

single-marker analysis for simulations with one-hundred

thousand markers, 32 loci, and 1000 samples, when the

false-discovery rate is controlled to 0%. V-Bay, the lasso,

and single-marker analysis can all correctly detect a

high proportion of loci in the upper tail of the distribu-

tion, where the individual heritabilities of associations

are high. However, there is variability in the number of

smaller heritability loci detected, with multiple locus

methods performing better. The reason for this result is

when multiple locus methods correctly identify loci with

larger individual heritabilities, they directly account for

the effect of these loci in the statistical model. This

shrinks the estimate of the error term, which increases

the power to detect loci with even weaker associations.

For these simulations, V-Bay outperforms not only sin-

gle-marker analysis, but also the lasso. We found V-Bay

performed better than the lasso (and single-marker ana-

lysis) for additional architectures and sample sizes, when

controlling the false discovery rate to 5.0% (Table 3).

Genome-wide association analysis of HapMap gene

expression

To investigate the empirical properties of V-Bay, we

performed a GWA analysis on gene expression levels

measured in eternal lymphoblastoid cell lines, generated

from the 210 unrelated individuals of Phase II of the

International HapMap project [31]. Individuals in this

sample were genotyped for upwards of 3.1 million SNPs

and were derived from four populations: Caucasian with

European origin (CEU), Chinese from Beijing (CHB),

unrelated Japanese from Tokyo (JPT), and Yoruba indi-

viduals from Ibadan, Nigeria (YRI) [32]. In the original

GWA analysis of these data, Stranger et al. used a sin-

gle-marker testing approach, considering each popula-

tion independently, and limiting the analysis to SNPs in

the cis-regions of each gene to control the level of mul-

tiple test correction [31].

Using a version of V-Bay that accounts for population

structure and missing genotype data, we analyzed the

pooled data from these populations. We did not limit

the analysis to cis-regions, although we did limit our

analyses to SNPs with MAF > .10, leaving 1.03 million

Table 1 Components and range of values used to

simulate GWA data.

Component Values

sample 200 or 1000

markers 0.1 to 1.0 million

missing 0% or 2%

loci 4, 8, or 32

effects gamma(2,1) or fixed

heritability 0.5 or 0.9

populations one or four

Table 2 Comparison of V-Bay and single-marker GWA analysis of simulated data for 1 million markers.

sample loci hm
2 (min/max)a TP V-Bay min( )hm

b2
%h

c2 TP single-marker min( )hm
b2

%h
c2

200 4 0.24 (0.0032/0.75) 0.83 0.026 98.9 0.55 0.16 87.4

200 32 0.028 (6.7e-5/0.28) 0.053 0.033 26.9 0.072 0.050 35.3

1000 4 0.23 (0.0050/0.65) 1.00 0.0050 100 0.78 0.045 98.7

1000 32 0.028 (8.3e-5/0.30) 0.61 0.0037 95.6 0.32 0.0099 78.2

Phenotypes were simulated with a fixed total heritability of 0.9. The false positive rate was controlled to be < 10-7 for both the V-Bay analysis and the single-

marker analysis. ( TP : average true positive rate)
aAverage, maximum, and minimum individual heritabilities of the individual loci.
bThe smallest individual heritability identified among the true positives.
cThe average total heritability accounted for by the true positives identified.
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markers genome-wide. To minimize computational cost,

we also limited our analysis to the 100 expression

probes Stranger et al. found to have the most significant

associations, and an additional 20 probes with the lar-

gest residual variance, after correcting for population

structure. For comparison, we also applied a single-mar-

ker analysis to these pooled data, for the 120 expression

probes, incorporating a covariate to account for popula-

tion structure.

On average, V-Bay was able to complete the GWA of

each of these expression phenotypes in 1.5 hours using a

dual-quad core Xeon 2.8 Ghz (16 Gb of memory). In 90%

of cases, where our single-marker analysis reproduced

the most significant cis-associations reported by Stranger

et al., V-Bay also identified the association. In addition, a

total of 72 out of the 100 previously reported cis-associa-

tions [31] were identified with V-Bay (Additional file 1,

Table S1). A typical result from these analyses is pre-

sented in Figure 5. These Manhattan plots are for the

HLA-DRB1 expression probe, which was not reported by

Stranger et al. as having a strong cis-association. For this

probe, V-Bay, the lasso, and our multiple population sin-

gle-marker analysis indicated a strong cis-association.

Since this association was also found with single-marker

analysis, identification was not due to V-Bay but to the

analysis of the pooled data from different populations (as

opposed to testing within populations as in Stranger et

al. [31]). Still, the increased sensitivity of V-Bay was sug-

gested in this case by trans-associations identified by

individual runs of V-Bay, which were not identified by

Figure 2 Comparison of V-Bay and single-marker analysis for simulated GWA data. The total heritability for the phenotype in each data

set was controlled to be 0.9. The Receiver Operator Characteristic (ROC) curves in the upper graphs reflect the average across 10 replicate data

sets that included (a) 200 samples and (b) 1000 samples. The lower graphs plot the distribution of individual heritabilities for the 32 loci

simulations for the data sets that included (c) 200 samples and (d) 1000 samples, where the proportion of correctly identified loci for V-Bay are

plotted in red and for single-marker analysis in blue when controlling the false positive rate at < 10-7.
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Figure 3 Quantile-Quantile plot of the genome-wide p-values obtained in the single marker analysis of the data presented in Figure

1. The seven associations correctly identified by V-Bay are circled in red. The locations of the loci with phenotype associations (black squares)

and the results of the V-Bay analysis (red circles) are depicted with respect to their observed and expected quantiles from the single-marker

analysis (blue circles). In this analysis, V-Bay is able to detect true associations that are undetectable with the single-marker analysis. The inset

plot shows one of the hits from V-Bay that does not lie exactly on the marker in tightest linkage disequilibrium with the associated locus but is

six SNPs away.

Figure 4 Histograms of loci identified by V-Bay, the lasso, and single-marker analysis as a function of individual heritability. The false-

discovery rate is controlled to 0.0%. These graphs summarize the results of ten replicate simulated data-sets with 100,000 markers, 32 loci with

associations, a sample size of 1000, and a total phenotype heritability of 0.9. The power for each method at 0.0% false-discovery rate is shown in

the legend.

Logsdon et al. BMC Bioinformatics 2010, 11:58

http://www.biomedcentral.com/1471-2105/11/58

Page 7 of 13



the single-marker analysis or the lasso. However, we

imposed the restrictive criteria that an association identi-

fied by V-Bay would only be considered significant if it

was robust to missing data resampling and marker reor-

dering runs. Using this conservative strategy, none of the

putative trans-associations were robust enough to report.

With an increased sample size, we believe that these

trans-associations could be confidently assigned as true

hits.

Conclusions
V-Bay addresses computational efficiency and perfor-

mance concerns associated with many multiple locus

GWA algorithms. While V-Bay currently utilizes a hier-

archical partitioning model, the same approach could be

used to implement scalable algorithms for a wide range

of models. For example, different shrinkage or penaliza-

tion models such as the lasso [11,14], ridge regression

[24], or a normal exponential gamma distribution pen-

alty [4] are easily implemented by removing the parti-

tioning and substituting the appropriate prior

distribution. Further, the variational Bayes method used

for computation does not require specific closed form

integrals arising from hyperparameter distributions,

which characterize many of the proposed algorithms for

full penalized-likelihood or Bayesian GWA analysis

[4,11,24]. There is therefore the potential for developing

an entire class of scalable multiple locus algorithms for

GWA analysis that could be tuned for different genetic

and experimental conditions within the V-Bay

framework.

Methods
V-Bay Algorithm

The V-Bay algorithm consists of two components, a

hierarchical regression model with marker class parti-

tioning and a variational Bayes computational algorithm.

The hierarchical regression is adapted directly from

Zhang et al. [13] with minor alterations. The first level

of the hierarchical regression model for a sample of n

individuals with m markers is a standard multiple

regression model:

y x ei ij j i

j

m

  

 

1

, (1)

where yi is the phenotype of the ith individual, μ is the

sample mean, xij is the genotype of the jth marker of the

ith individual, bj is the effect of the jth marker, and ei

~ N ( , )0 2 e
. While we limit the current presentation of

the model to continuous traits with normal error, more

complex error structures and extensions to discrete

traits is straightforward. Because (1) is a linear model, it

can be easily expanded to test for dominance or epista-

sis using a standard mapping approach. In addition,

confounding factors such as population structure can be

accounted for by the addition of covariates. The effects

of these additional covariates can be modeled within the

hierarchical regression framework or can be treated sim-

ply as nuisance parameters and given uninformative

priors. We used an uninformative prior 1
2 e









 for the

error parameter,  e
2 , and a constant (improper) prior

for the mean parameter μ.

The second level of the hierarchical model consists of

a partitioning of markers into positive, negative, and

zero effect classes and the prior control over the distri-

butions of these classes. The partitioning is accom-

plished by modeling each of the regression coefficients

using mixture prior distributions:
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where I{ } j 0 is an indicator function for bj with a

value of zero, and N+ and N- are positive and negative

truncated distributions [13]. The priors on the popula-

tion distribution of positive and negative effect probabil-

ity hyperparameters ( p and p ) are:

( , , ) ~ ( , , ).p p p p        
   

 1 Dirichlet (3)

In our analyses we chose an uninformative Dirichlet

prior by setting the parameters θb, jb, ψb all to one. The

hyperparameters p and p reflect the partitioning

aspect of the model. Within the positive and negative par-

titions, the population variance parameters ( 

2 and

 

2 ) have 1
2 priors. This choice of prior for the regres-

sion coefficients in the positive and negative effect classes

increases the robustness to outliers. Assuming the number

of markers in the GWA data set, m, is greater than the

sample size, n, we truncate the Dirichlet distribution such

that p p n m  
  / , where the truncation puts a

Table 3 Power comparison for V-Bay, the lasso, and

single-marker GWA analysis from simulated data with

100,000 markers.

sample loci V-Bay the lasso single-marker

200 4 90.0% 87.5% 47.5%

200 32 14.1% 4.69% 7.19%

1000 4 97.5% 77.5% 60.0%

1000 32 80.6% 65.0% 33.1%

Phenotypes were simulated with a fixed total heritability of 0.9. The false

discovery rate was controlled to 5% for all three analyses.
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lower bound on the harshness of shrinkage [8]. We found

this truncation very important when considering data sets

with large numbers of markers. Without truncation, the

evidence in the data is too weak to enforce harsh enough

shrinkage for desirable model selection.

The variational Bayes component of V-Bay is con-

structed by approximating the joint posterior density of

the hierarchical model:

p p pm e( , , , , , , , , , | , )         1 2
2 2 2

   
y x (4)

in terms of a factorized form:

q q q p p q q q qm e( ) ( ) ( , ) ( ) ( ) ( ) ( )        1
2 2 2

   
(5)

and then minimizing the KL-divergence between the

factorized and full form. Equation (5) is a natural factor-

ization for the V-Bay hierarchical model since most of

the priors are conjugate. The posterior factorized

distributions all have closed form expressions and each

parameter is completely characterized by an expected

sufficient statistic [27] (Additional file 1, Methods). The

algorithm is therefore equivalent to updating these

expected sufficient statistics.

Minimizing the KL-divergence between each marginal

distribution (e.g. q(bj)) and the full joint distribution is per-

formed by considering the expectation of the full log joint

distribution with respect to each parameter. For a generic

parameter θ, the expectation step is equivalent to setting:

log{ ( )}
[log{ ( , , , , ,

, , , , | ,
q

p p

p

m

e


  

   

 

  


 

  

E 1 2

2 2 2



y x))}]  C
(6)

with C some normalizing constant, and E-θ indicating

expectation of the log of equation (4) with respect to

every other parameter’s factorized distribution, except q

(θ). This defines a system of equations which can be

Figure 5 Manhattan plots of the results of a single-marker (left) and V-Bay GWA analysis (right) of the gene expression product HLA-

DRB1 for individuals in HapMap. Each dot reflects the -log10 p-value resulting from the single-marker analysis (left) and the -log10 p-vbay

output of V-Bay (right), where non-significant associations are represented as blue dots (alternating shades are used to distinguish

chromosomes). The markers above the red line for the single-marker analysis are significant when using a Bonferroni correction. The marker in

red for the V-Bay analysis (in the black line) is significant at an equivalently conservative false positive control. Note that the lasso was also able

to identify this association. We did not incorporate the SNPs on the X and Y chromosomes in our analyses.
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iterated through until convergence [23,27]. With the fac-

torized form, it is a simple matter to demonstrate the

time complexity of V-Bay is  (nm) per iteration (Addi-

tional file 1, Methods).

V-Bay Convergence

The factorization of equation (4) is used to define a func-

tion L(θ) which lower bounds the log posterior probabil-

ity of the data (i.e. the probability of the observed data

after integrating out all parameters in the model). The

lower bound L(θ) is defined as the expectation of the log

of equation (4) with respect to every factorized distribu-

tion plus the entropy of each factorized distribution. In

the full form, the convergence of V-Bay to a local maxi-

mum of the lower bound L(θ) is guaranteed because of

the convexity of L(θ) with respect to each parameter’s

approximate posterior distribution [33]. In the described

implementation we used an approximation for some

higher order expectation terms that we found increased

computational efficiency (Additional file 1, Methods).

Given that global convergence to a single stationary

point is not guaranteed [26], the standard practice is to

use multiple parameter initializations. We found that

with random initializations of expectations of bj, V-Bay

finds local modes that correspond to over-fit (under-

determined) models, while with initializations of only a

few non-zero expectations of bj’s, V-Bay tends to update

these values close to zero before converging. We there-

fore use the approach of setting all expectations of bj
parameters equal to zero as a starting point for all runs

of V-Bay, an approach that has precedent in simulta-

neous marker analysis [4]. This also corresponds to

appropriate starting estimates given our prior assump-

tion that not too many markers are associated with a

phenotype.

We have found that the order in which the parameters

are updated can affect local convergence, particularly

when there is missing genetic data. In general, the dif-

ferent association models we found using different

orderings were not widely different from one another,

often differing in whether they included one or two spe-

cific associations. For cases where we found ordering

did make a difference, we ran V-Bay with multiple ran-

dom orderings and used the conservative criteria of con-

sidering only associations found to be significant in at

least 80% of the cases to be true positives for all simula-

tions and data analyses compared to single-marker ana-

lysis. The cutoff of 80% corresponds directly to a false

discovery rate of 0%. We also considered a less stringent

cutoff and an observed false discovery rate of 5% in the

comparison to the lasso.

V-Bay Software

An implementation of V-Bay is available at http://

mezeylab.cb.bscb.cornell.edu/Software.aspx. The soft-

ware has basic control parameters available to the user

and only requires tab delimited genotype and phenotype

files as input. The algorithm itself consists of the follow-

ing steps: 1) randomize marker ordering, 2) initialize the

expected sufficient statistics and expectations of para-

meters, 3) update the expected sufficient statistics for a

particular parameter, given the expectations of all the

other parameters, 4) update the expectations of a parti-

cular parameter given the expectations of all the other

parameters, 5) repeat steps 3 and 4 for all the para-

meters in the model, 6) check convergence based on the

current estimate of the lower bound, L(θ). Further func-

tional details are presented in Additional file 1, Tables

S3-S9. The main output from the algorithm is the -log10
of p-vbay = pj+ + pj- statistic for each marker, which can

be used to assess significance of a marker association.

The Lasso

Originally proposed by Tibshirani [34], recently applied

to GWA data by Wu et al. [14] and modified by Hog-

gart et al. [4], the lasso is a form of hierarchical regres-

sion that imposes a double exponential prior on the

coefficients of each marker. Although expressed in a

Bayesian context, maximum a posteriori (MAP) esti-

mates are obtained by maximizing the following pena-

lized log-likelihood:

 



( | , ) ( | ) log ( | )

( | ) | |

    

  

Y Y p

Y j

j

m

 

 



1

(7)

where ℓ(b|Y) is the log-likelihood for the relevant gen-

eralized linear model. By penalizing the magnitude of

each bj coefficient, MAP estimates shrink the coefficient

values compared to the estimates under the unpenalized

model. This shrinkage causes most coefficients to be

exactly zero, so that only very few markers are selected

to be nonzero for a single value of l. This penalty pro-

duces a convex log-likelihood surface with a single max-

imum even for underdetermined systems (i.e. when

there are more markers than samples). Therefore, the

lasso can jointly consider all markers in a single model

and simultaneously account for variance in the response

caused by multiple markers. The lasso model is fit for

multiple values of l and a single subset of coefficients is

selected to be nonzero by 10-fold cross-validation. Con-

fidence scores are obtained for each selected marker by

comparing an unpenalized model with all selected mar-

kers to a model that omits each marker in turn. An F-

test is performed for each marker, but note that these

confidence scores cannot be interpreted as typical p-

values since they are obtained from a two step proce-

dure. Algorithmic details for fitting the LASSO model

for the linear-Gaussian case are provided by [35,36].
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Simulation Study

GWA data were simulated under the set of conditions

listed in Table 1. The genomic marker data were gener-

ated using MaCS [29], a scalable approximate coalescent

simulator, using the default approximation tree width.

For the comparison to single-marker analysis, three

basic types of genotype data sets were simulated. For

the first and second type, 0.5 Gb of DNA was simulated

from a single diploid population with Ne = 10000, the

population scaled mutation rate 4Neμ = θ = 0.001, and

the genome-wide population scaled recombination rate

4Ne� = r = .00045, values taken from Voight et al. [37].

Samples of 200 and 1000 were sampled screening the

minor allele frequency (MAF) to be 0.10, leaving more

than one-million markers for analysis. For the third

type, 200 diploid samples of 0.5 Gb were simulated

from a simple four population migration model. The

approximation Fst NeM
 

1
4 1( ) , as observed in the over-

all Phase I HapMap analysis [38], was used to determine

the population per generation migration rate for a sim-

ple symmetric island migration model, with populations

of equal size. After screening MAF to be > 0.10, this left

over 660 thousand markers for analysis. The final data

included the addition of 2% missing data.

Given the simulated genotypic data, phenotypic data

were produced with a simple additive linear model as

shown in equation (1). The genotypes were represented

in the linear model with a consistent dummy variable

encoding of {0, 1, 2} across loci. The additive effects

were drawn independently from a Γ(2, 1) distribution or

from a model with fixed effects. The locations for loci

were randomly sampled throughout the genome. For

each genomic data set, 4, 8, or 32 loci with phenotype

associations were simulated. The total heritability of the

phenotype was fixed at either 0.5 or 0.9. The MAF is

computed for each sampled locus in the genetic model

since each locus is chosen from the SNPs generated by

MaCS. By combining the MAF with the effects sampled

for each locus in the genetic model, it is possible to

determine the proportion of observed variation contrib-

uted by each locus. This individual heritability for each

locus is defined as follows:

h
f j f j j

p
j
2

2 1 2

2


( )


(8)

where fj is the MAF of locus j, bj is the additive effect

of the locus j, and  p
2 is the total phenotypic variance

of the trait.

GWA analysis of the simulated data were performed

using both V-Bay and a linear regression single-marker

analysis. When population structure was incorporated,

the linear model (1) becomes a fixed effect ANOVA

model, for both V-Bay and the single-marker analysis.

The population means in V-Bay were treated as having

normal priors centered on zero with a very large var-

iance (τ = 1000), and were updated in a similar fashion

as the other parameters in the V-Bay algorithm. The V-

Bay algorithm was run until the tolerance for the likeli-

hood portion of the lower bound L(θ) was < 10-9. For

the simulations with missing data, the minor allele fre-

quency across loci (fj ∀j) was estimated given the

observed genotype data, and then the missing data

points were sampled from a Bin(n = 2, fj), i.e. assuming

Hardy-Weinberg equilibrium, for both V-Bay and sin-

gle-marker analysis. We did random re-sampling of

missing data to test the robustness of the output of V-

Bay and the single-marker analysis (Additional file 1,

Methods).

The false positive and true positive rates were calcu-

lated for each set of replicate simulations. Care was

taken to account for the effect of linkage disequilibrium

on the test statistics, for both V-Bay and single-marker

analysis. A simple window was computed around each

marker to determine when the r2 decayed to 0.4. The

cutoff of 0.4 was used to be as generous to single-mar-

ker analysis as possible. Any marker in this window was

considered a true positive. In the case where multiple

recombination events occurred recently between differ-

ent ancestral lineages, multiple blocks of markers in

linkage disequilibrium were generated, that were sepa-

rated by markers in low linkage disequilibrium. In these

cases, a conservative rule for evaluating a true positive

was implemented. If a marker had a p-vbay> 0.99, or

-log10 p-value for the single-marker analysis in excess of

the Bonferroni correction, and the r2 between the signif-

icant genetic marker and the true location was greater

than 0.4, then the marker was considered a true positive.

For the comparison between V-Bay, the lasso, and sin-

gle marker analyses, one-hundred thousand markers and

samples sizes of 200 or 1000 for a single population

were simulated (the reduced number of markers for

these simulations was used to conserve CPU cycles).

The genetic architectures were simulated as with the

larger scale simulations, but with only 4 or 32 loci being

sampled randomly from the one-hundred thousand mar-

kers, and effects sampled from a Γ(2, 1) distributions for

10 replicated data sets. Eight random reorderings of the

markers were used with the V-Bay analysis, and the

false discovery rate for V-Bay was controlled based on

the consensus of associations found across reorderings

with p-vbay> 0.99 (e.g. a false discovery rate of 5% cor-

responded to an association being found in at least 3

out of the 8 reorderings). The false discovery rate for

the lasso (using F-statistics) and single-marker analysis

were controlled based on the p-values computed for

each method respectively.
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Data Analysis

We performed a GWA analysis for gene expression

levels measured in the eternal lymphoblastoid cell lines

that were generated for the 210 unrelated individuals of

Phase II of the International HapMap project [31]. This

sample included 60 individuals sampled from Utah of

European descent (CEU), 45 individuals sampled from

Han Chinese population (CHB), 45 individuals sampled

from Japanese population (JPT), and 60 individuals

sampled from the Yoruban population in Africa (YRI).

Expression data for these lines were available for 47,000

probes for (~17,000 genes) assayed with the Illumina

bead array. For our analyses, we screened for MAF >

0.10 in all populations which left 1.03 * 106 SNPs on

chromosomes 1 to 22. The X and Y chromosomes were

not analyzed by Stranger et al. and we ignored these

chromosomes in our analyses as well. Stranger et al.

[31] reported 879 gene expression probes with highly

significant cis-eQTL associations, found by testing

within populations, where every SNP in a 2 Mb window

around each gene was analyzed. We performed a GWA

analysis, with both V-Bay and a single-marker regres-

sion, for their top 100 most significant expression

probes. We combined genotypic data across populations,

where we accounted for the effect of population struc-

ture in each case by including appropriate covariates.

We also tested the top 20 probes, not in their associa-

tion list that had the largest residual variance after cor-

recting for population structure. Only 120 expression

probes were analyzed to conserve CPU cycles; all 879

could easily be analyzed in a future study. The total

missing data for this SNP set was 1.78%. We accounted

for missing data using the same approach as with our

simulated data analysis.

Availability and Requirements
Both binaries and source code for the V-Bay software

are available at the following URL: http://mezeylab.cb.

bscb.cornell.edu/Software.aspx. The source code is

released under the GNU General Public License http://

www.gnu.org/licenses/. The binary was compiled for 32-

bit architecture on Ubuntu 8.04 http://www.ubuntu.

com/ using the compiler gcc http://gcc.gnu.org/ and the

GNU scientific library http://www.gnu.org/software/gsl/.

To recompile from source both gcc and GSL are

required. Documentation describing how to use V-Bay

as well as example data sets are also available at http://

mezeylab.cb.bscb.cornell.edu/Software.aspx.

Additional file 1: Portable Document File (PDF) containing additional

results and methods that are referred to in the text.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-

58-S1.PDF ]
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V-Bay: Variational Bayes algorithm for genome-wide association analysis;

GWA(S): Genome-Wide Association (Study); MAF: Minor Allele Frequency;

eQTL: expression-Quantitative Trait Loci; ANOVA: Analysis of Variance; EM:

Expectation-Maximization algorithm; SNP: Single Nucleotide Polymorphism;
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