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Abstract—Recently, a number of mostly -norm regularized

least-squares-type deterministic algorithms have been proposed
to address the problem of sparse adaptive signal estimation and

system identification. From a Bayesian perspective, this task is

equivalent to maximum a posteriori probability estimation under
a sparsity promoting heavy-tailed prior for the parameters of

interest. Following a different approach, this paper develops

a unifying framework of sparse variational Bayes algorithms
that employ heavy-tailed priors in conjugate hierarchical form

to facilitate posterior inference. The resulting fully automated

variational schemes are first presented in a batch iterative form.
Then, it is shown that by properly exploiting the structure of

the batch estimation task, new sparse adaptive variational Bayes

algorithms can be derived, which have the ability to impose and
track sparsity during real-time processing in a time-varying envi-

ronment. The most important feature of the proposed algorithms

is that they completely eliminate the need for computationally
costly parameter fine-tuning, a necessary ingredient of sparse

adaptive deterministic algorithms. Extensive simulation results

are provided to demonstrate the effectiveness of the new sparse
adaptive variational Bayes algorithms against state-of-the-art

deterministic techniques for adaptive channel estimation. The

results show that the proposed algorithms are numerically robust

and exhibit in general superior estimation performance compared

to their deterministic counterparts.

Index Terms—Sparse adaptive estimation, online variational

Bayes, Bayesian models, sparse Bayesian learning, Student-t

distribution, Laplace distribution, generalized inverse Gaussian
distribution, Bayesian inference.

I. INTRODUCTION

A DAPTIVE estimation of time-varying signals and sys-

tems is a research field that has attracted tremendous

attention in the statistical signal processing literature, has

triggered extensive research, and has had a great impact in a

plethora of applications [1], [2]. A large number of adaptive es-

timation techniques have been developed and analyzed during
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the past decades, which have the ability to process streaming

data and provide real-time estimates of the parameters of

interest in an online fashion. It has long ago been recognized

that apart from being time-varying, most signals and systems,

both natural and man-made, also admit a parsimonious or

so-called sparse representation in a certain domain. This fact

has nowadays sparked new interest in the area of adaptive

estimation, as the recent advances and tools developed in the

compressive sensing (CS) field [3], [4], provide the means to

effectively exploit sparsity in a time-varying environment. It

has been anticipated that by suitably exploiting signal sparsity,

significant improvements in convergence rate and estimation

performance of adaptive techniques could be achieved. It

should be noted that conventional CS deals with the problem

of estimating a time-invariant sparse signal using less measure-

ments than the size of the signal. On the other hand, in sparse

adaptive estimation, a sparse time-varying signal is estimated

time-recursively, by exploiting its sparsity as new measurement

data become available.

It is not surprising that the majority of sparsity aware adap-

tive estimation methods developed so far, stem from a determin-

istic framework. Capitalizing on the celebrated least absolute

shrinkage and selection operator (lasso) [5], an regulariza-

tion term is introduced in the cost function of these methods. In

this context, by incorporating an (or a log-sum) penalty term

in the cost function of the standard least mean square (LMS) al-

gorithm, adaptive LMS algorithms that are able to recursively

identify sparse systems are derived in [6]. Inclusion of an

regularization factor or a more general regularizing term in the

least squares (LS) cost function has also been proposed in [7]

and [8], respectively. In [7] adaptive coordinate-descent type

algorithms are developed with sparsity being imposed via soft-

thresholding, while in [8] recursive LS (RLS) type schemes are

designed. An regularized RLS type algorithm that utilizes the

expectation maximization (EM) algorithm as a low-complexity

solver is described in [9]. In addition, adaptive identification of

sparse nonlinear Volterra-type systems is presented in [10], by

suitably combining EMwith Kalman filtering. From such a gen-

eral setting, several sparse variants, including RLS, LMS and

fast RLS schemes are then derived. In a different spirit, a sub-

gradient projection-based adaptive algorithm that induces spar-

sity using projections on weighted balls is developed and an-

alyzed in [11]. Adaptive greedy variable selection schemes have

been also recently reported, e.g., [12]. However, these algo-

rithms require, at least, a rough knowledge of the signal sparsity

level and work effectively for sufficiently high signal sparsity.

In this paper, we depart from the deterministic setting adopted

so far in previous works and deal with the sparse adaptive esti-

mation problem within a Bayesian framework. In such a frame-
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work, a Bayesian model is first defined comprising, a) a likeli-

hood function specified by the assumed measurement data gen-

eration process and b) prior distributions for all model parame-

ters, (which are thus considered as random variables), properly

chosen to adhere to the constraints of the problem. In partic-

ular, to induce sparsity, suitable heavy-tailed sparsity promoting

priors are assigned to the weight parameters of interest. Then

a variational Bayesian inference method is utilized to approx-

imate the joint posterior distribution of all model parameters,

from which estimates of the sought parameters can be obtained

via suitably defined iterative algorithms. It should be empha-

sized though that the various Bayesian inference methods are

designed to solve the batch estimation problem, i.e., they pro-

vide the parameter estimates based on a given fixed size block

of data and observations.

In the context described above, the contribution of this work

is twofold. First, we provide a unified derivation of a family of

Bayesian batch estimation techniques. Such a derivation passes

through a) the selection of a generalized prior distribution for

the sparsity inducing parameters of the model and b) the adop-

tion of the mean-field variational approach [13]–[15] to perform

Bayesian inference. The adopted fully factorized variational ap-

proximation method relies on an independence assumption on

the joint posterior of all involved model parameters and leads

to simple sparsity aware iterative batch estimation schemes with

proven convergence. The derivation of the above batch estima-

tion algorithms constitutes the prerequisite step that paves the

way for the deduction of the novel adaptive variational Bayes

algorithms, which marks the second contribution and main ob-

jective of this work. The proposed adaptive algorithms con-

sist of two parts, namely, a common part encompassing time

update formulas of the basic model parameters and a sparsity

enforcing mechanism, which depends on the various Bayesian

model priors assumed. The algorithms are numerically robust

and are based on second order statistics having a computational

complexity similar to that of other related sparsity aware deter-

ministic schemes. Moreover, extensive simulations under var-

ious time-varying conditions show that they converge faster to

sparse solutions and offer, in principle, lower steady-state esti-

mation error compared to existing algorithms. The major advan-

tage, though, of the proposed algorithms is that thanks to their

Bayesian origin, they are fully automated (after certain hyper-

parameters at the highest level of the model are fixed to values

close to zero, as is typically done in sparse Bayesian learning).

Hence, while related sparse deterministic algorithms (in order to

achieve optimum performance) involve application- and condi-

tions-dependent regularization parameters that need to be pre-

determined via exhaustive fine-tuning, the Bayesian algorithms

presented in this paper directly infer all model parameters from

the data, and hence, the need for parameter fine-tuning is en-

tirely eliminated. This, combined with their robust sparsity in-

ducing properties, makes them particularly attractive for use in

practice1 (Preliminary versions of parts of this work have been

presented in [17], [18]).

The rest of the paper is organized as follows. Section II de-

fines the mathematical formulation of the adaptive estimation

1Note that a Bayesian approach to adaptive filtering has been previously pro-

posed in [16]. However, in [16] a type-II maximum likelihood inference method

is adopted that leads to a regularized RLS-type scheme. This is completely dif-

ferent from the approach and algorithms described in this work.

problem from a LS point of view. In Section III the adopted hi-

erarchical Bayesian model is described. A family of batch vari-

ational Bayes iterative schemes is presented in Section IV. The

new sparse adaptive variational Bayes algorithms are developed

in Section V. In Section VI an analysis of the proposed algo-

rithms is presented and their relation to other known algorithms

is established. Extensive experimental results are provided in

Section VII and concluding remarks are given in Section VIII.

Notation: Column vectors are represented as boldface low-

ercase letters, e.g., , and matrices as boldface uppercase let-

ters, e.g., , while the -th component of vector is denoted by

and the -th element of matrix by . Moreover,

denotes transposition, stands for the -norm, stands

for the standard -norm, denotes the determinant of a ma-

trix or absolute value in case of a scalar, is the Gaussian

distribution, is the Gamma distribution, is the in-

verse Gamma distribution, is the generalized inverse

Gaussian distribution, is the Gamma function, is the

expectation operator, denotes a diagonal matrix whose

diagonal entries are the elements of , and is a column

vector containing the main diagonal elements of a square ma-

trix . Finally, we use the semicolon and the vertical bar

characters to express the dependence of a random variable on

parameters and other random variables, respectively.

II. PROBLEM STATEMENT

Let denote a

sparse time-varying weight vector having non-zero

elements, where is the time index. We wish to estimate and

track in time by observing a stream of sequential data

which are assumed to obey to the following linear regression

model,

(1)

where is a known

regression vector, and denotes the uncorrelated with

added Gaussian noise of zero mean and variance (or preci-

sion ), i.e., . The linear data generation

model given in (1) fits very well or, at least, approximates ade-

quately the hidden mechanisms in many signal processing tasks.

Let

(2)

and

(3)

be the vector of observations and the input data ma-

trix respectively, up to time . Then, the unknown weight vector

can be estimated by minimizing with respect to (w.r.t.)

the following exponentially weighted LS cost function2,

(4)

The parameter , is commonly referred

to as the forgetting factor (because it weights more

heavily recent data and ‘forgets’ gradually old data), and

2Note that a fixed size sliding in time data window could be also used.
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. It is well-known that the

vector that minimizes is given by the solution of

the celebrated normal equations, [1]. In an adaptive estimation

setting, the cost function in (4) can be optimized recursively

in time by utilizing the RLS algorithm. The RLS algorithm, a)

reduces the computational complexity from , which is

required for solving the normal equations per time iteration, to

, b) has constant memory requirements despite the fact

that the size of the data grows with , and, c) has the ability of

tracking possible variations of as increases.

However, the RLS algorithm does not specifically exploit the

inherent sparsity of the parameter vector , so as to improve

its initial convergence rate and estimation performance. To deal

with this issue, a number of adaptive deterministic LS-type al-

gorithms have been recently proposed, e.g., [7]–[10]. In all these

schemes, the LS cost function is supplemented with a regular-

ization term that penalizes the -norm of the unknown weight

vector, i.e.,

(5)

where is a regularization parameter controlling the spar-

sity of , that should be properly selected. Regularization

with the -norm has its origin in the widely known lasso oper-

ator, [5], and is known to promote sparse solutions.

In this paper, in contrast to previous studies, we provide

an analysis of the sparse adaptive estimation problem from

a Bayesian perspective. To this end, we derive a class of

variational Bayes estimators that are built upon hierarchical

Bayesian models featuring heavy-tailed priors. A basic charac-

teristic of heavy-tailed priors is their sparsity inducing nature.

These prior distributions are known to improve robustness of

regression and classification tasks to outliers and have been

widely used in variable selection problems, [19], [20]. The

variational Bayesian inference approach adopted in this paper,

a) exhibits low computational complexity compared to (the

possible alternative) Markov Chain Monte Carlo (MCMC)

sampling methods, [15], and b) performs inference for all

model parameters, including the sparsity promoting parameter

, as opposed to deterministic methods. In the following, we

analyze a general hierarchical Bayesian model for the batch

estimation problem first (i.e., when is considered fixed), and

then we show how the proposed variational Bayes inference

method can be extended in an adaptive estimation setting3.

III. BAYESIAN MODELING

To simplify the description of the hierarchical Bayesian

model we temporarily drop the dependence of all model

quantities from the time indicator . Time dependency will

be re-introduced in Section V, where the proposed adaptive

variational schemes are presented. To consider the estimation

problem at hand from a Bayesian point of view, we first define

a likelihood function based on the given data generation model

and then we introduce sparsity to our estimate by assigning

a suitable heavy-tailed prior distribution over the parameter

vector . In order to account for the exponentially weighted

3Departing from sparse adaptive estimation, an online variational Bayes al-

gorithm for model selection has been presented in [21]. This is the first work to

deploy variational Bayes in a “non-batch” setting.

data windowing used in (4), the following observation model

is considered

(6)

where . From this observation model and

the statistics of the noise vector , it turns out that the corre-

sponding likelihood function is

(7)

Notice that the maximum likelihood estimator of (7) coincides

with the LS estimator that minimizes (4). However, as men-

tioned previously, our estimator should be further constrained

to be sparse. To this end, the likelihood is complemented by

suitable conjugate priors w.r.t. (7) over the parameters and

, [22], [23]. The prior for the noise precision is selected to

be a Gamma distribution with parameters and , i.e.,

(8)

Next, a hierarchical heavy-tailed prior is selected for the param-

eter vector , that reflects our knowledge that many of its com-

ponents are zero or nearly zero. In the first level of hierarchy, a

Gaussian prior is attached on , i.e.,

(9)

where is the vector of the precision

parameters of the ’s, and the ’s have been

assumed a priori independent. Now, depending on the choice

of the prior distribution for the precision parameters in at

the second level of hierarchy, various heavy-tailed distributions

may arise for , such as the Student-t or the Laplace distri-

bution. To provide a unification of all these distributions in a

single model, we assume that the sparsity enforcing parameters

follow a generalized inverse Gaussian (GIG) distribution, ex-

pressed as4

(10)

where and is the modified Bessel func-

tion of the second kind. In this paper, hypersparametes and

’s in (10) are selected so as to formulate the widely used spar-

sity promoting heavy-tailed Student-t and Laplace priors, e.g.,

[22], [25], [26]. In particular, in order to infer the sparsity reg-

ularizing parameters ’s from the data, these are assumed to

follow a Gamma distribution with parameters and , i.e.,

(11)

A directed acyclic graph (DAG) of the proposed hi-

erarchical Bayesian model is shown in Fig. 1, where

. Note that the hyperparameters ,

and at the highest level are set close to zero so as to create

4More general models are reported in [24].
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Fig. 1. DAG of the proposed Bayesian model.

(almost) non-informative Jeffreys priors for

and ’s, [22], [27]. This distribution expresses prior ignorance

and allows for the parameter-free estimation of and ’s di-

rectly from the data. Notice also in Fig. 1 the dependence of

on , which is due to the normalization by of the variances of

’s in (9). It can be shown that this normalization ensures the

unimodality of the posterior joint distribution, [23], and leads

to simpler and more compact parameter update expressions, as

will be seen later.

IV. MEAN-FIELD VARIATIONAL BAYESIAN INFERENCE

So far we have presented a generative model for the observa-

tions data (6) and a hierarchical Bayesian model (8), (9), (10),

(11) treating the model parameters as random variables. To pro-

ceed with Bayesian inference, the computation of the joint pos-

terior distribution over the model parameters is required5. Using

Bayes’ law, this distribution is expressed as

(12)

However, due to the complexity of themodel, we cannot directly

compute the posterior of interest, since the integral in (12) can

not be expressed in closed form. Thus, we resort to approxima-

tions. In this paper, we adopt the variational framework, [13],

[14], [29]–[31], to approximate the posterior in (12) with a sim-

pler, variational distribution . From an optimiza-

tion point of view, the parameters of are selected

so as to minimize the Kullback-Leibler divergence metric be-

tween the true posterior and the variational dis-

tribution , [30]. This minimization is equivalent

to maximizing the evidence lower bound (ELBO) (which is a

lower bound on the logarithm of the data marginal likelihood

) w.r.t. the variational distribution , [31].

Based on the mean-field theory from statistical physics, [32],

we constrain to the family of distributions, which

are fully factorized w.r.t. their parameters yielding

(13)

5An alternative approach is the solution of the MAP problem defined by the

presented Bayesian model. For such a problem, exact solvers exist, e.g., the

iterative re-weighted least squares method, as explained in [28].

i.e., all model parameters are assumed to be a posteriori inde-

pendent. This fully factorized form of the approximating distri-

bution turns out to be very convenient, mainly be-

cause it results to an optimization problem that is computation-

ally tractable. In fact, if we let denote the -th component of

the vector

containing the parameters of the Bayesian hierarchical model,

maximization of the ELBO results in the following expression

for , [15],

(14)

where denotes the expectation w.r.t. . Note

that this is not a closed form solution, since every factor

depends on the remaining factors , for . However,

the interdependence between the factors gives rise to a

cyclic optimization scheme, where the factors are initialized ap-

propriately, and each one is then iteratively updated via (14), by

holding the remaining factors fixed. Each update cycle is known

to increase the ELBO until convergence, [31].

Applying (14) to the proposed model (exact computations

are reported in Appendix A), the approximating distribution for

each coordinate , is found to be Gaussian,

(15)

with parameters and given by

(16)

(17)

In (17), results from the data matrix after removing its

-th column is the posterior mean value of re-

sults from after the exclusion of its

-th element, and expectation is w.r.t. the variational distri-

butions of the parameters appearing within each pair of

brackets. Notice that, since each element of is treated sep-

arately, constitutes an individual factor in the right hand

side (RHS) of (13), as opposed to having a single compact factor

for the whole vector , as e.g., in [33]; this is beneficial

for the development of the adaptive schemes that will be pre-

sented in the next Section. Working in a similar manner for the

noise precision , we get that is a Gamma distribution ex-

pressed as

(18)

with and

. Thus, the mean value of w.r.t. (18) is expressed

as

(19)

In addition, since , it can be easily shown that the

middle term in the denominator of the RHS of (19) is evaluated

as

(20)
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The variational distribution of the precision parameters ’s

also turns out to be a generalized inverse Gaussian distribution

given by,

(21)

for . Finally, the variational distribution of the

sparsity regularizing parameters ’s can be expressed as

(22)

for . Since our intention here is the develop-

ment of sparse estimation schemes, in the following subsec-

tions, three special cases of the previously described general

model are presented, that are based on the sparsity promoting

Student-t and Laplace priors.

A. Batch Variational Bayes With a Student-t Prior

As mentioned in Section III, various sparsity inducing prior

distributions may arise for by exploiting the flexibility of the

GIG prior for the precision parameters ’s in (10). One such

prior is obtained by selecting the limit case where the rate hy-

perparameter , which implies that , and . A

Gamma distribution then arises with scale parameter and rate

parameter , i.e.,

(23)

for . If we integrate out the precision parameter

from (9) using (23), it is easily verified that the two-level hier-

archical prior defined by (9) and (23) is equivalent to assigning

a Student-t distribution over the parameter vector , which de-

pends only on the hyperparameters and , [25], [26]. Under

this hierarchical prior, the variational posterior distributions for

and are the same as in (15) and (18), while for the precision

parameters ’s the following Gamma distribution is now com-

puted (the same distribution can also be derived by substituting

and in (21))

(24)

with and for . More-

over, the mean of (24) is expressed as

(25)

Note that owing to the conjugacy of our hierarchical Bayesian

model, the variational distributions in (15), (18), and (21) are

expressed in a standard exponential form. Notice also that the

parameters of all variational distributions are expressed in terms

of expectations of expressions of the other parameters. This

gives rise to a variational iterative scheme, which involves up-

dating (16), (17), for , (19) and (25), for

, in a sequential manner. Due to the convexity of the

factors , and , the variational Bayes algorithm

converges to a sparse solution in a few cycles, [15]. The varia-

tional algorithm solves the batch estimation problem defined in

(4), providing the mean of the approximating posterior

as the final estimate of the sparse vector .

A summary of the sparse variational Bayes procedure is

shown in Table I. The Table includes a description of the

Bayesian model, the resulting variational distributions and

the corresponding sparse variational Bayes Student-t based

(SVB-S) iterative scheme. In SVB-S, besides , hyperparam-

eters at the highest level of the hierarchy are also fixed to

values close to zero, thus giving rise to almost non-informative

priors for ’s, but retaining the sparsity promoting Student-t

distribution for ’s.

B. Batch Variational Bayes With Laplace Priors

Next, we adjust the model parameters of the GIG prior in (10)

to create a sparsity inducing Laplace prior for the weights .

This prior results by setting the hyperparameters and

and by selecting a single variable to re-

place all ’s in (10). In this case, the following inverse Gamma

distribution is obtained as a prior for the precision parameters

’s,

(26)

for . As shown in Appendix B, if we inte-

grate out from the hierarchical prior of defined by (9)

and (26), a sparsity promoting multivariate Laplace distribu-

tion arises for . In addition, it can be shown that the resulting

Bayesian model preserves an equivalence relation with the lasso

[5] in that its maximum a posteriori probability (MAP) esti-

mator coincides with the vector that minimizes the lasso crite-

rion [22], [34]6. A summary of this alternative model accompa-

nied by a description of the resulting sparse variational Bayes

iterative scheme based on a Laplace prior (SVB-L), is shown

in Table I. Note from (21) and (22) that the variational distribu-

tions , and now become

(27)

(28)

Moreover, the expressions of the means of and used in the

variational updates are computed as

(29)

(30)

while the mean w.r.t. given in (27) is expressed as

(31)

As noted in [35], the single shrinkage parameter of the

Laplace prior penalizes both zero and non-zero coefficients

equally and it is not flexible enough to express the variability

of sparsity among the unknown weight coefficients. In many

circumstances, this leads to limited posterior inference and,

evidently, to poor estimation performance. Hence, utilizing the

full parameter vector and setting hyperparameters and

6Note, however, that in [22], [34] a different, (in terms of the parameters that

impose sparsity), model is described. Specifically, instead of the precisions ’s

of ’s, their variances ’s are used, with , on which Gamma priors

of the form are assigned.
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TABLE I

THE SVB-S, SVB-L AND SVB-MPL SCHEMES

in (10) as before, the following inverse Gamma prior

is obtained for the precision parameters ’s,

(32)

for . Working as in Appendix B, it can be easily

shown that for such a prior for ’s, the resulting prior for is a

multivariate,multi-parameter Laplace distribution (each cor-

responds to a single ). Furthermore, the MAP estimator for

this model is identical to the vector that minimizes the so-called

adaptive (or weighted) lasso cost function [36]–[38]. A sum-

mary of the above sparse variational Bayes scheme, which is

based on a multiparameter Laplace prior (SVB-mpL) is also

shown in Table I.

By inspecting Table I we see that SVB-S, SVB-L and

SVB-mpL share common rules concerning the computation of

the “low in the hierarchy” model parameters , while they

differ in the way the sparsity imposing precision parameters

are computed. To the best of our knowledge, it is the first

time that these three schemes are derived via a mean-field

fully factorized variational Bayes inference approach, under

a unified framework. Such a presentation not only highlights

their common features and differences, but it also facilitates

a unified derivation of the corresponding adaptive algorithms

that will be described in the next Section.

V. SPARSE VARIATIONAL BAYES ADAPTIVE ESTIMATION

The variational schemes presented in Table I deal with the

batch estimation problem associated with (4), that is, given the

data matrix and the vector of observations

, they provide a sparse estimate of after a few

iterations. However, in an adaptive estimation setting, solving

the size-increasing (by ) batch problem in each time iteration

is computationally prohibitive. Therefore, SVB-S, SVB-L and

SVB-mpL should be properly modified and adjusted in order

to perform adaptive processing in a computationally efficient

manner, giving rise to ASVB-S, ASVB-L and ASVB-mpL re-

spectively. In this regard, the time index is reestablished here

and the expectation operator is removed from the respective

parameters, keeping in mind that henceforth these will refer to

posterior distribution parameters. By carefully inspecting (16),

(17), (19), and (25) (which are common for all three schemes)

we reveal the following time-dependent quantities that are com-

monly met in LS estimation tasks,

(33)

(34)

(35)

Note that in (33) a time-delayed regularization term is

considered. This is related to the update ordering of the various
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algorithmic quantities and does affect the derivation and per-

formance of the new algorithms. From the definitions of

and in (2) and (3) and that of , it is easily shown that

and can be efficiently time-updated as follows:

(36)

(37)

(38)

It is readily recognized that is the exponentially weighted

sample autocorrelation matrix of regularized by the diag-

onal matrix is the exponentially weighted cross-

correlation vector between and , and is the ex-

ponentially weighted energy of the observation vector . By

substituting (16) in (17) (with the time index now included)

and using (33) and (34), it is straightforward to show that the

adaptive weights can be efficiently computed

in time for , as follows

(39)

In the last equation, is the -th ele-

ment of is the

-th diagonal element of

is the -th row of after removing its -th element ,

and

(40)

From (39) and (40) it is easily noticed that each weight esti-

mate depends on the most recent estimates in time of the

other weights. This is in full agreement with the spirit

of the variational Bayes approach and the batch SVB schemes

presented in the previous Section, where each model parameter

is computed based on the most recent values of the remaining

parameters. As far as the noise precision parameter is con-

cerned, despite its relatively complex expression given in (19),

it is shown in Appendix C that it can be approximated in

operations per time iteration as follows

(41)

In (41), the term represents the

active time window size in an exponentially

weighted LS setting, and

is the vector of posterior weight variances at time with

(42)

according to (16). Note that (39) and (41) are common in all

adaptive schemes described in this paper. What differentiates

the algorithms is the way their sparsity enforcing precision pa-

rameters are computed in time. More specifically, from

(25), (16) and the fact that , we get for ASVB-S,

(43)

TABLE II

THE PROPOSED ASVB-S, ASVB-L, AND ASVB-MPL ALGORITHMS

Concerning ASVB-L, from Table I we obtain the following time

update recursions,

(44)

(45)

(46)

Finally, for ASVB-mpL we get expressions similar to (44) and

(45) with being replaced by , while is

now expressed as

(47)

The main steps of the proposed adaptive sparse variational

Bayes algorithms are given in Table II. Here again, the hyper-

parameters and are set equal to very small values

(of the order of ) as explained in the previous section. All

three algorithms have robust performance, which could be at-

tributed to the absence of matrix inversions or other numeri-

cally sensitive computation steps. The algorithms are based on

second-order statistics and have an complexity, similar

to that of the classical RLS and other recently proposed sparse

adaptive schemes, [7], [9]. This is shown in Table III, where

complexity is expressed in terms of the number of multiplica-

tions per time iteration. The most computationally costly steps

of the proposed algorithms, which require operations,

are those related to the updates of and . Note, though,

that in an adaptive filtering setting, this complexity can be dra-

matically reduced (and become practically ) by taking ad-
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TABLE III

COMPUTATIONAL COMPLEXITY OF SPARSE ADAPTIVE ESTIMATION

ALGORITHMS. DENOTES THE SUPPORT OF

vantage of the underlying shift invariance property of the data

vector [7]. As shown in the simulations of Section VII,

the algorithms converge very fast to sparse estimates for

and in the case of ASVB-S and ASVB-mpL, offer lower steady-

state estimation error compared to other competing determin-

istic sparse adaptive schemes. Additionally, while the latter re-

quire knowledge of the noise variance beforehand7, this vari-

ance is naturally estimated in time as during the execu-

tion of the new algorithms.

Most recently reported deterministic sparse adaptive estima-

tion algorithms are sequential variants of the lasso estimator,

performing variable selection via soft-thresholding, e.g., the

algorithms developed in [7]. To achieve their best possible

performances though, such approaches necessitate the use of

suitably selected regularization parameters, whose values, in

most cases, are determined via time-demanding cross-vali-

dation and fine-tuning. Moreover, this procedure should be

repeated depending on the application and the application

conditions. Unlike the approach followed in deterministic

schemes, a completely different sparsity inducing mechanism

is used in the proposed algorithms. More specifically, as the

algorithms progress in time, many of the exponentially dis-

tributed precision parameters ’s are automatically

driven to very large values, forcing also the corresponding

diagonal elements of to become excessively large

(33). As a result, according to (39), many weight parameters

are forced to become almost zero, thus imposing sparsity. No-

tably, this sparsity inducing mechanism alleviates the need for

fine-tuning or cross-validating of any parameters, which makes

the proposed schemes fully automated, and thus, particularly

attractive from a practical point of view.

VI. DISCUSSION ON THE PROPOSED ALGORITHMS

Let us now concentrate on the weight updating mechanism

given in (39), which is common in all proposed schemes, and

attempt to get some further insight on this. To this end, we define

the following regularized LS cost function,

(48)

where the diagonalmatrix has positive diagonal entries

and is assumed known, (i.e., for the moment we ignore the pro-

cedure that produces ). As it is well-known, the vector

that minimizes is the solution of the following

system of equations,

(49)

7With the exception of the algorithms reported in [10], where the noise pa-

rameters are adaptively estimated using a smoothing/EM procedure.

where and are given in (33) and (34), respectively.

Let us now decompose as,

(50)

where is the strictly lower triangular component of

its diagonal component and its strictly upper

triangular component. This matrix decomposition is the basis of

the Gauss-Seidel method [39], and, if substituted in (49), leads

to the following iterative scheme for obtaining the optimum

,

(51)

where is the iterations index for a given time index . From

the last equation, it is easily verified that by using forward sub-

stitution, the elements of can be computed sequentially

as follows for ,

(52)

Since the regularized autocorrelation matrix is symmetric

and positive definite, the Gauss-Seidel scheme in (51) converges

(for fixed) after a few iterations to the solution of (49), ir-

respective of the initial choice for [39]. Therefore, in

an adaptive estimation setting, optimization is achieved by ex-

ecuting a sufficiently high number of Gauss-Seidel iterations

in each time step . An alternative, more computationally ef-

ficient approach though, is to match the iteration and time in-

dices, and in (52); i.e., to consider that a single time iter-

ation of the adaptive algorithm entails just a single iteration

of the Gauss-Seidel procedure over each coordinate of .

By doing so, we end up with the weight updating formula given

previously in (39). Such a Gauss-Seidel adaptive algorithm has

been previously reported in [40], [41] for the conventional LS

cost function given in (4), without considering any reg-

ularization and/or sparsity issues. It has been termed as the Eu-

clidean direction set (EDS) algorithm. Relevant convergence re-

sults have been also presented in [42]. However, in that anal-

ysis the time-invariant limiting values of the autocorrelation

and cross-correlation quantities have been employed and thus,

the obtained convergence results are not valid for the adaptive

Gauss-Seidel algorithm described in [40], [41].

Apart from the Gauss-Seidel viewpoint presented above, a

different equivalent approach to arrive at the same weight up-

dating formula as in (39) is the following. We start with the cost

function in (48) and minimize it w.r.t. a single weight compo-

nent in a cyclic fashion. This leads to a cyclic coordinate descent

(CCD) algorithm [43] for minimizing for fixed.

If we now execute only one cycle of the CCD algorithm per

time iteration , we obtain an adaptive algorithm whose weight

updating formula is expressed as in (39). CCD algorithms for

sparse adaptive estimation have been recently proposed in [7].

These algorithms, however, are based on the minimization of

given in (5), which explicitly incorporates an pe-

nalizing term. In [7] the proposed algorithms have been sup-

ported theoretically by relevant convergence results. To the best
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of our knowledge, [7] is the only contribution where a proof of

convergence of CCD adaptive algorithms has been presented

and documented.

From the previous analysis, we conclude that the proposed

fully factorized variational methodology described in this paper

leads to adaptive estimation schemes where, a) the model

weights are adapted in time by using a Gauss-Seidel or CCD

type updating rule and b) explicit mechanisms (different for

each algorithm) are embedded for computing in time the reg-

ularization matrix that imposes sparsity to the adaptive

weights. The algorithms are fully automated, alleviating the

need for predetermining and/or fine-tuning of any penalizing or

other regularization parameters.

The convergence properties of the proposed algorithmic

family is undoubtedly of major importance. Such results have

already been derived for some deterministic sparse adaptive

algorithms. More specifically, by assuming that the input

sequence is persistently exciting, analytical results for the

convergence and the steady-state mean squared error (MSE)

of the SPARLS algorithm have been presented in [9]. A result

on convergence in the mean is also given in [10]. In a different

spirit, in [7] the following ergodicity assumptions are made as

a prerequisite for proving convergence,

and

(53)

(54)

where and in [7].

If these assumptions hold in our case (with defined as in

(33)) then the convergence analysis presented in [7] would be

also valid for the adaptive algorithms described in this paper,

with only slight modifications. For this to happen, matrix

should be either constant, or dependent solely on the data. This

is, however, not true owing to the nonlinear dependence of

’s on the corresponding weight components as shown in

(43) and (44). Such a nonlinear interrelation among the param-

eters of the adaptive algorithms renders the analysis of their

convergence an extremely difficult task. In any case, relevant

efforts have been undertaken and the problem is under current

investigation.

VII. EXPERIMENTAL RESULTS

In this section we present experimental results obtained from

applying the proposed variational algorithms to the estimation

of a time-varying sparse wireless channel. To assess the es-

timation performance of the proposed adaptive sparse varia-

tional Bayesian algorithms8, a comparison against a number of

state-of-the-art deterministic adaptive algorithms is made, such

as the sparsity agnostic RLS, [1], the sparse RLS (SPARLS),

[9], the time weighted lasso (TWL), [7], and the time and norm

weighted lasso (TNWL), [7]. Moreover, an RLS that operates

only on the a priori known support set of the channel coeffi-

cients, termed as the genie aided RLS (GARLS), is also included

in the experiments, in order to serve as a benchmark. To set a

fair comparison from a performance point of view, the optimal

8A Matlab implementation of the variational framework presented in this

paper is publicly available at http://members.noa.gr/themelis/lib/exe/fetch.

php?media=code:asvb_demo_code.zip.

Fig. 2. NMSE curves of adaptive algorithms applied to the estimation of a

sparse 64-length time-varying channel with 8 nonzero coefficients. The SNR

is set to 15 dB.

parameters of the deterministic algorithms are obtained via ex-

haustive cross-validation in order to acquire the best of their

performances.

We consider a wireless channel with 64 coefficients, which

are generated according to Jake’s model, [44]. Unless otherwise

stated, only 8 of these coefficients are nonzero, having arbitrary

positions (support set), and following a Rayleigh distribution

with normalized Doppler frequency . The for-

getting factor is set to . The channel’s input is a random

sequence of binary phase-shift keying (BPSK) symbols. The

symbols are organized in packets of length 1000 per transmis-

sion. Gaussian noise is added to the channel, whose variance is

adjusted according to the SNR level of each experiment. The

estimation performance of the algorithms is measured in terms

of the normalized mean square error (NMSE), which is defined

as

(55)

where is the estimate of the actual channel vector . All

performance curves are ensemble average of 200 transmission

packets, channels, and noise realizations.

The first experiment demonstrates the estimation perfor-

mance of the sparse adaptive estimation algorithms. Fig. 2

shows the NMSE curves of the RLS, GARLS, SPARLS, TWL,

TNWL, ASVB-S, ASVB-L, and ASVB-mpL versus time. The

SNR is set to 15 dB. Observe that all sparsity aware algorithms

perform better than the RLS algorithm, whose channel tap esti-

mates always take non-zero values, even if the actual channel

coefficients are zero. Interestingly, there is an improvement

margin of about 8 dB in the steady-state NMSE between the

RLS and the GARLS, which, as expected, achieves the overall

best performance. Moreover, the proposed ASVB-L algorithm

has better performance than RLS, but although it promotes

sparse estimates, it does not reach the performance level of

ASVB-S and ASVB-mpL. From Fig. 2 it is clear that both

ASVB-S and ASVB-mpL outperform TNWL, which, in turn,

has the best performance among the deterministic algorithms.
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TABLE IV

EMPIRICAL RUNTIME FOR THE CONSIDERED ADAPTIVE ALGORITHMS

The ASVB-mpL algorithm reaches an error floor that is closer

to the one of GARLS, and it provides an NMSE improvement

of 1 dB over TNWL and 3 dB over SPARLS and TWL. The

empirical runtime of all considered adaptive algorithms for

the first experiment is reported in Table IV. Simulations are

conducted on an Intel Core i7 machine at 2.20 Ghz and the

runtime needed for parameter cross-validation (required by

SPARLS, TWL and TNWL) is not included in Table IV.

At this point we grab the chance to shed some light on

the relationship between the estimation performance and the

complexity of the deterministic algorithms. In a nutshell, the

key objective of SPARLS, TWL and TNWL is to optimize

the regularized LS cost function given in (5) w.r.t.

and in a sequential manner. Their estimates, however, are

inherently sensitive to the selection of the sparsity imposing

parameter . The NMSE curves shown in Fig. 2 are obtained

after fine-tuning the values of the respective parameters of

SPARLS, TWL and TNWL through extensive experimentation.

Nonetheless, the thus obtained gain in estimation accuracy adds

to the computational complexity of the optimization task. On

the other hand, the proposed adaptive variational methods are

fully automatic, all parameters are directly inferred from the

data, and a single execution suffices to provide the depicted

experimental results.

Observe also in Fig. 2 that, as expected, all sparsity aware

algorithms converge faster than RLS, requiring an average of

approximately 100 fewer iterations in order to reach the NMSE

level of dB compared to RLS. Among the deterministic

algorithms, TNWL is the one with the fastest convergence

rate. In comparison, ASVB-mpL needs almost 10 iterations

more than TNWL to converge, but it converges to a lower

error floor. Again, the convergence speed of the GARLS is

unrivaled.

The next experiment explores the performance of the pro-

posed algorithms for a fast fading channel. The settings of the

first experiment are kept the same, with the difference that the

normalized Doppler frequency is now increased to

, that suits better to a high mobility application.

Specifically, this Doppler results for a system operating at a

carrier frequency equal to 1.8 GHz, with a sampling period

and a mobile user velocity 100 Km/h. To

account for fast channel variations, the forgetting factor is re-

duced to (except for ASVB-L, where is

used). Fig. 3 shows the resulting NMSE curves for all algo-

rithms versus the number of iterations. In comparison to Fig. 2,

we observe that the steady-state NMSE of all algorithms has an

expected increase. The algorithms’ relative performance is the

same, with the exception of ASVB-L, which has higher rela-

tive steady-state NMSE and is sensitive to . Nevertheless, the

Fig. 3. NMSE curves of adaptive algorithms applied to the estimation of a fast-

fading sparse 64-length time-varying channel with 8 nonzero coefficients. The

SNR is set to 15 dB.

Fig. 4. NMSE curves of adaptive algorithms applied to the estimation of a

sparse 64-length time-varying channel with 8 nonzero coefficients, with a non-

zero coefficient added at the 750th time mark. The SNR is set to 15 dB.

proposed ASVB-S and ASVB-mpL converge to a better error

floor compared to all deterministic algorithms and their NMSE

margin to TNWL is more perceptible now.

In the next simulation example, we investigate the tracking

performance of the proposed sparse variational algorithms. The

experimental settings are identical to those of Fig. 2, with the ex-

ception that the packet length is now increased to 1500 symbols,

and an extra non-zero Rayleigh fading coefficient is added to the

channel at the 750th time instant. Note that until the 750th time

mark all algorithms have converged to their steady state. The

resulting NMSE curves versus time are depicted in Fig. 4. The

abrupt change of the channel causes all algorithms to record a

sudden fluctuation in their NMSE curves. Nonetheless, the pro-

posed ASVB-S and ASVB-mpL respond faster than the other

algorithms to the sudden change and they successfully track the

channel coefficients until they converge to error floors that are

again closer to the benchmark GARLS.
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Fig. 5. Tracking of a time-varying channel coefficient.

Fig. 6. Estimation of the noise variance in time by the proposed algorithms.

To get a closer look, Fig. 5 depicts the variations in time of

the added channel coefficient and the respective estimates of

the proposed algorithms. Notice by Fig. 5 that after the first 100

iterations the ASVB-S and ASVB-mpL have converged to a

zero estimate for the specific channel coefficient, as opposed

to the ASVB-L algorithm, whose estimate is around zero but

with higher variations in time. When the value of the true signal

suddenly changes, all algorithms track the change after a few iter-

ations. TheASVB-S andASVB-mpLalgorithms converge faster

than AVSBL-L to the new signal values. In the sequel, all three

algorithms track the slowly fading coefficient, with the estimates

of ASVB-S and ASVB-mpL being closer to that of GARLS.

As mentioned previously in Section V, in contrast to all deter-

ministic algorithms the proposed variational algorithmic frame-

work offers the advantage of estimating not only the channel co-

efficients, but also the noise variance. This is a useful byproduct

that can be exploited in many applications, e.g., in the area of

wireless communications, where the noise variance estimate can

be used when performing minimummean square error (MMSE)

channel estimation and equalization. Fig. 6 depicts the estima-

tion of the noise variance offered by the Bayesian algorithms

Fig. 7. NMSE versus SNR for all adaptive algorithms applied to the estimation

of a sparse 64-length time-varying channel with 8 nonzero coefficients.

Fig. 8. NMSE versus the level of sparsity of the channel. The SNR is set to

15 dB.

ASVB-S, ASVB-L and ASVB-mpL across time. Observe that

ASVB-S and ASVB-mpL estimate accurately the true noise

variance, as opposed to ASVB-L which constantly overesti-

mates it. This is probably the reasonwhyASVB-L has in general

inferior performance compared to ASVB-S and ASVB-mpL. It

is worth mentioning that another useful byproduct of the varia-

tional framework is the variance of the estimates , given in

(16). These variances can be used to build confidence intervals

for the weight estimate .

The next experiments evaluate the performance of the pro-

posed algorithms as a function of the SNR and the level of

sparsity using the general settings of the first experiment. The

corresponding simulation results are summarized in Figs. 7 and

8. It can be seen in Fig. 7 that both ASVB-S and ASVB-mpL

outperform all deterministic algorithms for all SNR levels.

Specifically, ASVB-mpL achieves an NMSE improvement in

all SNR levels of approximately 1 dB over TNWL and 3 dB

over SPARLS and TWL, as noted earlier. Moreover, in Fig. 8

the curves affirm the natural increase in the NMSE of the spar-

sity inducing algorithms as the level of sparsity decreases. The
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Fig. 9. NMSE curves of adaptive algorithms applied to the estimation of a

sparse 64-length time-varying channel with 8 nonzero coefficients. The channel

input sequence is colored using a low pass filter. The SNR is set to 15 dB.

simulation results suggest that the performance of the proposed

ASVB-S and ASVB-mpL is closest to the optimal performance

of GARLS, for all sparsity levels. We should also comment that

only the sparsity agnostic RLS algorithm is not affected by the

increase of the number of the channel’s nonzero components.

As a final experiment, we test the performance of the sparse

adaptive algorithms for a colored input signal. To produce a col-

ored input sequence, a Gaussian sequence of zero mean and unit

variance is lowpass filtered. For our purposes, a 5th order But-

terworth filter is used with a cut-off frequency 1/4 the sampling

rate. The remaining settings of our experiment are the same as

in the first experiment. Fig. 9 depicts the corresponding NMSE

curves for all adaptive algorithms considered in this Section. It

is clear from the figure that all algorithms’ NMSE performance

degrades, owning to the worse conditioning of the autocorrela-

tion matrix . The convergence speed of all algorithms is

also slower than in Fig. 2. Interestingly, RLS and SPARLS di-

verge. In addition, the poor performance of RLS has a direct im-

pact on TNWL, since, by construction, the inverses of the RLS

coefficient estimates are used to weight the -norm in TNWL’s

cost function. In contrast, both ASVB-S and ASVB-mpL are ro-

bust, exhibiting immunity to the coloring of the input sequence.

VIII. CONCLUDING REMARKS

In this paper a unifying variational Bayes framework fea-

turing heavy-tailed priors is presented for the estimation of

sparse signals and systems. Both batch and adaptive coordi-

nate-descent type estimation algorithms with versatile sparsity

promoting capabilities are described with the emphasis placed

on the latter, which, to the best of our knowledge, are reported

for the first time within a variational Bayesian setting. As op-

posed to state-of-the-art deterministic techniques, the proposed

adaptive schemes are fully automated and, in addition, they

naturally provide useful by-products, such as the estimate of

the noise variance in time and the variance in the estimate of

the parameters, that may provide confidence intervals. Exper-

imental results have shown that the new Bayesian algorithms

are robust under various scenarios and in general perform

better than their deterministic counterparts in terms of NMSE.

Extension of the proposed schemes for complex signals can

be made in a straightforward manner. Further developments

concerning analytical convergence results and faster versions of

the algorithms that update only the non-zero weights (support

set) in each time iteration are currently under investigation.

APPENDIX A

DERIVATION OF THE VARIATIONAL DISTRIBUTION

Starting from (14), the variational distribution is com-

puted as in

(56)

where and are given in (17) and (16) respectively,

APPENDIX B

HIERARCHICAL LAPLACE PRIOR

From (9) and (26) we can write,

(57)

From the definition of the GIG distribution

(cf. (10)) the integral in the last

equation can be computed, and (57) is then rewritten as

(58)
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In addition,

(59)

Utilizing (59) in (58) and after some straightforward simplifica-

tions, we get the multivariate Laplace distribution with param-

eter ,

(60)

which proves our statement.

APPENDIX C

UPDATE EQUATION FOR

By substituting (20) in (19), removing and replacing

with yields,

(61)

Since exponential data weighting is used, the actual time

window size should be replaced by the effective time window

size and (61) is rewritten as

(62)

(63)

This is an exact expression for estimating the posterior noise

precision , which can be used in the proposed algorithms.

However, in order to avoid the computation of , which

entails operations, we set in (63), that is we

assume that in each time iteration, attains its optimum value

according to (49)9. Then (63) is expressed as,

(64)

Based on the update ordering of the various parameters of the al-

gorithms in time, the respective quantities in (64) are expressed

in terms of either or , leading to (41).

9Note that this would be accurate if we let the Gauss-Seidel scheme iterate

a few times for each . On the contrary, as mentioned in Section VI, in the

proposed adaptive algorithms a signle Gauss-Seidel iteration takes place per

time iteration .
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