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AbstractÐCheckpointing is an effective fault-tolerant technique for improving system availability and reliability. However, a blind

checkpointing placement can result in either performance degradation or expensive recovery cost. By means of the calculus of

variations, we derive an explicit formula that links the optimal checkpointing frequency with a general failure rate, with the objective of

globally minimizing the total expected cost of checkpointing and recovery. Theoretical result shows that the optimal checkpointing

frequency is proportional to the square root of the failure rate and can be uniquely determined by the failure rate (time-varying or

constant) if the recovery function is strictly increasing and the failure rate is ��1� > 0. Bruno and Coffman [2] suggest that optimal

checkpointing by its nature is a function of system failure rate, i.e., the time-varying failure rate demands time-varying checkpointing in

order to meet the criteria of certain optimality. The results obtained in this paper agree with their viewpoint.

Index TermsÐAperiodic checkpointing, periodic checkpointing, system failure rate.

æ

1 INTRODUCTION

COMPUTER and database information systems are vulner-
able to system failures. The presence of software bugs

and hardware failures makes the computer inherently
unreliable. The rollback-recovery technique is a common
means of increasing the system reliability against various
types of failure. Checkpointing in rollback/recovery
schema is an operation that stores the correct state of a
process from time to time in a stable storage such that the
process can resume its normal computation from the
checkpointed state on recovery, avoiding expensive recom-
putation from scratch in case of a system failure. In addition
to fault-tolerant applications, checkpointing is also used as a
means of process migration or coarse-grained job-swapping
[18] and as a means of reducing the overall expected time of
completing a job [7]. The benefit of checkpointing, however,
comes at a price; as a result, excessive checkpointing would
result in performance degradation, while deficient check-
pointing would incur an expensive recovery overhead.
Therefore, a trade-off must be made.

A wealth of references in the literature is available to

cover a wide range of issues related to checkpointing and

recovery. The papers by Chandy [5] and Nicola [17] can

serve as an excellent overview of checkpointing and

recovery strategies in the literature. The primary objective

of using the checkpointing technique is to increase the

computational efficiency and enhance the reliability in a

faulty environment. The key problem is how to determine

strategies for checkpoint placement to meet the system

performance objective optimally. Various mathematical
models of checkpoint scheduling, with different objectives,
are formulated to address problems from different angles.
Guided by the principle of simplicity, the research direction
primarily focuses on efforts to relax restrictions imposed by
the assumptions in order to increase the scope of practical
application. In practice, the simplest one among the class of
optimal checkpointing strategies is most preferred by
system designers and administrators [17].

In this section, we will give a brief overview of existing
literature, with emphasis on our closely related work. Many
relevant references in the literature can be found in the
references section of this paper. In [8], a model with Poisson
failure is considered to determine the optimal number of
checkpoints which minimizes the overall expected execu-
tion time of a program, assuming that the execution time of
each program part with equal size is an independently and
identically distributed (i.i.d) random variable. Grassi et al.
[12] improve the same model and suggest that the optimal
number of checkpoints rely on the distribution of the
program execution time. In [4], a model is given to
optimally schedule checkpoint placement to maximize the
system availability, assuming that the recovery cost is
proportional to the time interval between the present failure
to the most recent checkpoint.

Tantawi and Ruschitzka [23] consider a model with
general failure distribution, allowing failures to occur
during checkpointing and recovery. As a result of the
generality, the evaluation of the model suggests the need for
computing an infinite number of embedded integrals, and
is basically mathematically intractable. A simplified ver-
sion, constrained by the restriction that prevents failures
from happening during checkpointing and recovery, is
proposed. However, its evaluation is still out of reach since
the evaluation needs to compute an infinite set of nonlinear
equations. To make the problem tractable, Tantawi and
Ruschitzka make a useful simplification by imposing
additional restrictions. The equidistant strategy assumes
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that the production time between two successive check-
points is constant and the equicost strategy assumes that the
expected reprocessing time equals the mean checkpointing
time. Under these conditions, a computational approach
(iteration algorithm) is derived to compute an approxima-
tion of the best equicost strategy. L'Ecuyer and Malenfant
[9] modify Tantawi and Ruschitzka's model by considering
the failure rate with a cyclical fashion and place the focus on
the computational approach. Dynamic programming is
introduced to improve the computational efficiency. In
[24], a stochastic dynamic programming approach is used
to determine the optimal checkpoint schedule between
tasks of given lengths in a program and the objective is to
minimize the total expected program execution time.

For age-dependent failure, Leung and Choo [14] propose
a computational procedure for determining the optimal
checkpoint placement. Sumita et al. [22] give an analysis of
effective service time under age-dependent interruption.
Coffman and Gilbert [6] formulate models for minimizing
the expected execution time or maximizing the probability
of completing a job. They make a useful simplification by
considering the checkpointing process as a renewal process,
assuming that the system is ªas-good-as-newº after each
checkpoint. Gelenbe and Hernandez [10] consider a model
with the age-dependent Poisson process, assuming that
each failure is a renewal point. Any deviation from the
assumption about the age-dependent Poisson distribution
might compromise the validity of the model in some way
[10]. For illustration purposes, the formula for the sensitiv-
ity evaluation is derived and the error sensitivity to a
Weibull distribution is calculated [10]. Boguslavsky et al. [1]
consider the optimization problems associated with the
save-and-check scheduling for the system whose failure is
not self-evident. The save schedule is for error recovery,
while the check schedule is for failure detection. Both
schedules are working in tandem according to the different
coupling strategies. General save-and-check scheduling
strategies with an exponential failure law are discussed
and analyzed and the example with the numerical
computation of the optimal checkpoint placement in the
program is given.

Checkpointing is extended to increase computational
fault-tolerance in a multiprocessor environment [2], [3].
Bruno and Coffman [2] derive a stochastic model for
determining the number of checkpoints and with the
objective to maximize the probability of completing a job
before all m processors fail. They give an elegant asymptotic
estimate of k (the number of checkpoints made within the
job of the given size) for m � 2 processors and an
exponential failure law for each processor. A computational
approach with m � 3 processors is given and the property
of the optimal completion probability is presented [2].
Bruno et al. [3] propose a model for improving computa-
tional reliability by using parallel processing and study the
policy of processor shadowing so as to maximize the
probability of completing a job. The mathematical relation
among the optimal time to commence shadowing, the
duration of the job, and the number of processors is
obtained. In addition to fault-tolerant application, Coffman
et al. [7] formulate a stochastic model for determining the

optimal checkpoint schedule that yields the minimum
expected cost of serving a sequence of requests for an
abstract moving-server system.

The equally spaced checkpointing is prevalent due to its
relatively simpler mathematical treatment. Practically, the
checkpoints are very likely to be placed unevenly [1], [7],
[17], [23]. For example, for software debugging, checkpoints
(breakpoints) are placed unevenly, depending to a large
extent on the structure of the program. Boguslavsky et al.
[1] suggest that, for certain criteria of optimality and
assumptions about the system, the optimal solution may
require an aperiodic checkpointing. The example is given in
[23] to show that, for a Weibull failure distribution, the
equicost checkpointing achieves higher system availability
than that for an equidistant strategy. In general, the best
equidistant strategy is not optimal [9], [10], [23]. It is
suggested in [17] that checkpointing should be performed
more frequently toward the end of the program. Bruno and
Coffman [2] state that ªthe checkpointing strategies depend
on the distribution of the time-to-failure random variable;
however, in many cases, including the exponential failure
law, optimal checkpointing is done at interval which are, for
the most part, uniformly spaced.º

The dependence of the optimal checkpointing upon the
failure rate suggested by [2], [4], [8], [9], [10], [17], [23]
implies that the optimal checkpointing frequency by its
nature is a function of the failure rate, i.e., a time-varying
failure rate demands the time-varying optimal checkpoint-
ing in order to meet the criteria of certain optimality.

In this paper, using the calculus of variations, we
formulate the optimal checkpoint scheduling to globally
minimize the overall expected cost and derive a closed form
equation that establishes the connection between the
optimal checkpointing frequency and a general failure rate.
The essential features of our approach are:

1. No particular assumption about the system failure
distribution is made except for a technical one
��1� > 0;

2. No assumption about checkpoint schedule (equally
spaced or unequally spaced) is made a priori;

3. The introduction of the continuous checkpointing
frequency function forms the basis of our approach,
leading to the problem solving by using a new
mathematical approach: the calculus of variations
(remark: the sequence of discrete checkpoints can be
uniquely determined when the checkpointing fre-
quency is given);

4. The global minimum total expected cost is guaran-
teed. We demonstrate that the optimal checkpoint-
ing frequency is proportional to the square root of
the system failure rate (time-varying or constant)
and that the optimal checkpointing becomes equally
spaced under Poisson failure distribution (constant
failure rate), which agrees with the results reported
in [2], [4], [5], [7], [8], [9], [10].

5. The computational efficiency is ensured due to the
closed-form expression for the optimal checkpoint-
ing frequency.

The remainder of the paper is organized as follows:
Section 2 delves in detail into the mathematical formalism
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of our approach; Section 3 gives an example to substantiate
theoretical results obtained in Section 2, the numerical gain
of the optimal aperiodical checkpointing over the optimal
periodic checkpointing is calculated, and the optimal
checkpoint placement for failure rate with a cyclical nature
is given. Finally, Section 4 concludes the paper and outlines
future research.

2 DESCRIPTION OF MATHEMATICAL MODEL

In this section, we first present a set of definitions and
assumptions relevant to our derivation of the mathematical
model. Since some symbols will be used frequently
throughout this paper, we summarize them in Table 1 for
brevity.

Let's begin with an introduction of the checkpointing
frequency function, followed by a discussion of its
mathematical constraints and physical implications, as well
as the relationship between a continuous checkpointing
frequency function and discrete checkpoint instants.

Two natural constraints on the checkpointing frequency
function n�t� are introduced in order to exclude unrealistic
cases from consideration:

1. The definite integral of n�t� on any finite time

interval is finite, that is,
R b
a n���d� <1 for any

0 � a � b <1;
2. When t!1, the limit of n�t� exists and is positive;

that is, n�1� � limt!1 n�t� > 0. Here, n�1� � 1 is
permitted.

The family of functions satisfying the above natural
constraints is denoted as @ throughout this paper. The
constraints have a sound physical basis: The first constraint
means that a finite number of checkpoints are performed in
a finite time interval. The second constraint means that
checkpointing is still required against unanticipated system
failures when the system has attained its steady state (the
time is sufficiently large). The constraints make the system
physically realizable.

Given the continuous checkpoint frequency function
n�t�, the sequence of discrete checkpoint time instants,
0 � t0 < t1 < � � � < tn, can be established via the following
equation: Z ti

tiÿ1

n���d� � 1; 8i � 1: �1�

The following definitions, in conjunction with some
examples, are given to distinguish two different types of
checkpointing:

Definition 1. A checkpoint schedule is said to be periodic if
ti ÿ tiÿ1 � tj ÿ tjÿ1 �i 6� j;8i; j � 1�.

Definition 2. A checkpoint schedule is said to be aperiodic if
there exists at least one pair of indices i and j �i 6� j� such that
ti ÿ tiÿ1 6� tj ÿ tjÿ1.

Example 1. Assume that n�t� � 1, then, using (1), we obtain
ti � i, i � 0.

Example 2. Assume that n�t� � t, then, using (1), we obtain
ti �

��������
2 � ip

, i � 0.

It is obvious that Example 1 is periodic checkpointing
(equally spaced checkpoints) and that Example 2 is
aperiodic checkpointing (unequally spaced checkpoints).

To derive the main theorem, we make the following
assumptions, which are widely used in the literature.

1. A system failure is self-evident, and can be
instantly detected [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [16], [17], [20], [21], [22],
[23], [24], [25].

2. The elapsed times for both checkpoint and recovery
are relatively negligible as compared with the
average failure time [1], [3], [4], [5], [6], [8], [10],
[11], [14], [16], [17], [20], [22].

3. Recovery cost is proportional to the time interval
between the last checkpoint and the present failure
[2], [3], [7], [9], [10], [12], [13], [14], [17], [24].

4. No failure occurs during checkpointing and recov-
ery processes [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [14], [16], [17], [20], [22], [23].

Remark. Assumption 2 becomes a reality thanks to the
rapid advancement of technology. For example, the
diskless checkpointing technique [18] removes the stable
storage from checkpointing, thereby eliminating the
main source of overhead in checkpointing. In addition,
the wide adoption of (QMO) quality method operation in
system design and implementation (hardware/software)
makes the system reliable. All these factors combined
make Assumption 2 realistic. A close examination
reveals that Assumptions 2 and 4 are somewhat
correlated since if Assumption 2 holds, then the
probability of a failure occurring during checkpointing
and recovery is very small and thus can be reasonably
ignored for mathematical tractability.

In Fig. 1, Trecovery is the recovery time, and Tcheckpoint is the
elapsed time spent on a checkpoint setup, and Yi is the
elapsed time between two consecutive failures.

Under these assumptions, we consider the sequence of

fYi; i � 1g as a renewal process [1], [6], [9], [10], [11], [14],

[15], [16], [18], [21]. Because of
Trecovery

Yi
<< 1, by Assumption 2,

the ith cycle denotes the time interval �Piÿ1
0 Yk;

Pi
0 Yk� with

Y0 � 0 and the length of the ith cycle equals the ith system

lifetime Yi; �i � 1�. Our primary goal is to determine the
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optimal sequence of checkpoint instants by minimizing the

total expected cost associated with the renewal process

fYi; i � 1g. Notice that the variable t used in the checkpoint

frequency function n�t� represents the elapsed time

measured from the beginning of each cycle.
The recovery time can be expressed as Trecovery / y, based

on Assumption 3, where y is illustrated in Fig. 2. With these

assumptions in mind, we can claim that, the recovery time,

Trecovery, can be approximately expressed as a function of the

reciprocal of n�Yi�. The justification is given as follows:
Suppose that 0 � t1 < t2 < � � � are checkpoint time

instants starting from the beginning of the ith cycle and a

system failure will occur in the time interval �tk; tk�1�, that is,

tk < Yi � tk�1 for a k � 0. Then, y � Yi ÿ tk is the elapsed

time starting from the last checkpoint tk and has conditional

probability distribution function:

P �Yi ÿ tk < y j tk < Yi � tk�1� � P �Yi � y� tk; tk < Yi � tk�1�
P �tk < Yi � tk�1�

�
0; y � 0

P �tk<Yi�y�tk�
P �tk<Yi�tk�1� ; 0 < y � tk�1 ÿ tk;

1; tk�1 ÿ tk < y:

8><>:
That is, for 0 < y � tk�1 ÿ tk,

P �Yi ÿ tk > y j tk < Yi � tk�1� � F �y� tk� ÿ F �tk�
F �tk�1� ÿ F �tk�

� F �y� tk� ÿ F �tk�1�
F �tk� ÿ F �tk�1�

;

where F �x� and F �x� � 1ÿ F �x� are the distribution and

survival functions of Yi, respectively. The first order of

Taylor expansion could be expressed as:

F �y� tk� ÿ F �tk�1� � f�tk�1��tk�1 ÿ tk ÿ y�
and

F �tk� ÿ F �tk�1� � f�tk�1��tk�1 ÿ tk�;
where f�y� is the probability density function of y. The

expected time from the last checkpoint to the end of the

ith cycle is given as:

E�Yi ÿ tk j tk < Yi < tk�1�

�
Z tk�1ÿtk

0

P �Yi ÿ tk > y j tk < Yi < tk�1�dy

�
Z tk�1ÿtk

o

f�tk�1��tk�1 ÿ tk ÿ y�
f�tk�1��tk�1 ÿ tk� dy � 1

2
�tk�1 ÿ tk�:

�2�

On the other hand, by the Mean-Value Theorem, from (1),

we have: Z tk�1

tk

n���d� � 1 � �tk�1 ÿ tk� � n�Yi�;

where tk � Yi < tk�1. Namely,

tk�1 ÿ tk � 1=n�Yi�: �3�
Combining (3) and (2) we have:

E�Yi ÿ tk j tk < Yi � tk�1� � 1

2 � n�Yi� ;

and, thus, the expected recovery cost during a cycle / 1
n�Yi� ,

which can be approximately expressed by a linear function

of 1
n�Yi� . If we use the second order of Taylor expansion

F �y� tk� ÿ F �tk�1� �

f�tk�1��tk�1 ÿ tk ÿ y� � f 0�tk�1� �tk�1 ÿ tk ÿ y�2
2

;

where 0 < y < tk�1 ÿ tk. In a similar approach, it can be seen

that the mean elapsed time from the last checkpoint to the

end of the ith cycle can be approximately expressed as:

1

2 � n�Yi� �
f 0�tk�1�

6 � f�tk�1� �
1

n2�Yi� :

From the above, we can see that mean recovery cost

associated with the ith cycle can be approximately

expressed by L�1=n�Yi��; i � 1, where L�z� is a recovery

function defined on �0;1�.
We now proceed to derive the main result. The total

expected cost within a cycle consists of 1) the cost of

checkpoint setup accumulated during the cycle, 2) a

recovery cost. Hence, the random cost associated with the

first cycle is given as:

R1 � c0

Z Y1

0

n���d� � L 1

n�Y1�
� �

: �4�

Similarly, the random cost associated with the ith cycle is

given by:

Ri � c0

Z Y1

0

n���d� � L 1

n�Yi�
� �

:

Obviously Ri, i � 1, are independently and identically

distributed (i.i.d) since Yi; i � 1 are (i.i.d). For any given

t � 0, let N�t� be the number of system failures in the
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interval [0, t]. If we consider the mean cost in this interval,
that is,

E
PN�t�

i�1 Ri

� �
t

;

then, by the renewal reward process [18], we have:

lim
t!1

E
PN�t�

i�1 Ri

� �
t

� E�R1�
E�Y � : �5�

Equation (5) means that a cycle is completed every time
the system is recovered from a failure and that the long-run
expected cost is just the expected cost incurred during a
cycle divided by the expected time of a cycle (the expected
interfailure time). It is easy to see that, to minimize the
expected long-run average cost, it suffices to minimize
E�R1� since the expected E�Y � is fixed. Let the probability
density function for a system failure time be f�t�, then the
probability for system failure within �t; t� dt� is f�t� � dt. By
conditioning on the system failure time, the expected cost
E�R1� during a cycle is written by the integral:

C�n���� � E�R1� �
Z 1

0

Z t

0

c0 � n���d� � L�1=n�t��
� �

� f�t�dt;

�6�
where C�n���� is a functional defined on the family @. The
following theorem illustrates how to determine an optimal
function n��t� that minimizes C�n���� in the family of
functions @, i.e.,

C�n � ���� � C�n���� 8n��� 2 @:
It is well-known that system failure rate is defined as

��t� � f�t�
1ÿF �t� [19], where F �t� is the probability distribution

of system failure time.

Definition 3. A system is said to be physically realizable if and
only if its failure rate satisfies ��1� > 0. A system is said to
be physically unrealizable if and only if ��1� � 0.

Remark. Such a system being free of failure when time is
sufficiently large contradicts our observation.

Example 3. A system having Poisson failure distribution
(exponential failure law) is physically realizable.

Example 4. A system having Weibull distribution with
shape parameter � � 0:5 implies that it is eventually free
of failure (limt!1 ��t� � 0). By Definition 3, the system is
physically unrealizable.

Theorem 1. Suppose that f�1� � limt!1 f�t� exists and
��1� > 0. Then, the optimal function n��t� that minimizes
the overall expected cost C�n���� involved in the checkpointing
process is the unique solution of the following equation:

n��t� �

�����������������������������
L0 1

n��t�
� �

� f�t�
c0 � �1ÿ F �t��

vuut �

������������������
L0 1

n��t�
� �
c0

vuut �
���������
��t�

p
:

To derive the above main result, we need the following
auxiliary result, which guarantees the existence and
uniqueness of the optimal solution n��t�.

Lemma 1. Suppose 0 < L�z� is a strictly increasing convex

function on �0;1� with L0�0� > 0. Then, for any positive

number u, the equation

y2

L0 1
y

� � � u; 0 < y <1 �7�

has a unique solution. If we denote the solution by y � y�u�,
then y is an increasing function of u.

Proof of Lemma 1. Let

'�y� � y2

L0 1
y

� � :
Since L�z� is convex and strictly increasing, the first

derivative L0�z� > 0 is increasing. Hence, L0�1� > 0. This

gives '�0�� � 0. The condition L0�0� > 0 implies

limy!1 '�y� � 1. The function '�y� is obviously con-

tinuous on �0;1�. From '�0�� � 0, we conclude that the

range of '�y� is �0;1�. Thus, for any given u

�0 < u <1�, (7) has at least one solution. It is easy to

see that L0�1y� decreases in y > 0 since L is convex and,

thus, L0 is increasing. Since L0 > 0, it follows that '�y� is

increasing in y > 0. The monotonicity of y�u� immedi-

ately follows from the fact that '�y� is increasing in y > 0.

Therefore, for any positive u, the equation has a unique

solution, say, y � y�u�. tu
Now, we are in a position to derive our main result.

Proof of Theorem 1. Let x�t� � R t0 n���d� . Then, (6) becomes

C�n���� �
Z 1

0

co � x�t� � L 1

x0�t�
� �� �

� f�t�dt:

Let 	�t; x; x0� � �c0 � x�t� � L� 1
x0�t��� � f�t�. The extreme

value can be obtained by Euler's theorem:

@	

@x
ÿ d

dt

@	

@x0
� 0:

Taking the partial derivative of 	 with respect to x and

x0, respectively, we obtain

@	

@x
� co � f�t�

and

@	

@x0
� L0 1

x0�t�
� �

� ÿ1

�x0�t��2
 !

� f�t�:

Substituting the above equations into (8), we have:

c0 � f�t� � d

dt
�
L0 1

x0�t�
� �

� f�t�
�x0�t��2 � 0: �9�

Integrating (9) on both sides, we have:
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c0 � F �t� �
L0 1

x0�t�
� �

� f�t�
�x0�t��2 � K;

c0F �t� � L
0�1=n�t�� � f�t�
�n�t��2 � K;

�10�

for a constant K. Note that n��� 2 @ implies n�1� > 0.

Since the recovery function L��� is convex, L0 must be

bounded on any finite interval. The condition x�0� � 0 is

automatically satisfied since x�t� � R t0 n���d� . The natural

boundary of Euler's equation limt!1 @	
@x0 � 0 is met

(notice that the probability density f�1� � 0 follows

directly the existence of limt!1 f�t� [19]) since

lim
t!1

@	

@x0
� lim

t!1

L0 1
x0�t�
� �

� f�t�
�x0�t��2 � 0: �11�

Applying (11) to (10), we obtain K � c0. Hence, (10)

becomes

n��t� �

�����������������������������
L0 1

n��t�
� �

� f�t�
c0 � �1ÿ F �t��

vuut �

������������������
L0 1

n��t�
� �
c0

vuut �
���������
��t�

p
: �12�

Equation (12) is equivalent to:

n2�t�
L0 1

n�t�
� � � ��t�

c0

for each fixed t � 0. Let u � ��t�
c0

. By Lemma 1, the

checkpointing frequency function n�t� can be uniquely

determined by ��t�
c0

and, as a matter of fact, n�t� can be

expressed as n�t� � g���t�� for certain increasing func-

tion g���. The optimal checkpointing frequency function

n��t�, which is determined by (12), belongs to the family

of functions @ because ��1� > 0. The proof is thus

completed. tu
We can see from Theorem 1 that 1) the optimal

checkpointing frequency n���� is directly proportional to

the square root of the failure rate ��t�; 2) the optimal

checkpointing frequency n���� is proportional to the

derivative of recovery function L���; and 3) a decrease in

the checkpoint setup results in an increase in the optimal

checkpointing frequency.
The qualitative description of Theorem 1 is in line with

our intuition and observation. Moreover, the theorem

provides us with a quantitative account of intrinsic

mathematical association among the optimal checkpointing

frequency, recovery cost, and failure rate, illustrating that

the optimal checkpointing frequency by its nature is a

function of failure rate. The following corollary, which

shows the mathematical equivalence of the Poisson failure

rate and constant checkpointing, is a special case of

Theorem 1. Its proof is straightforward and thus is omitted.

Corollary 1. Let the recovery cost function L be linear with the

proportional constant c1 and let the cost for a checkpoint setup

c0 be a constant. The optimal checkpointing is equally spaced if

and only if the system failure time is exponentially distributed

(failure rate �). In mathematical terms this means:

n� �
����
c1

c0

r
�
���
�
p

:

It is worth mentioning that the conclusion stated in the
corollary agrees with the results reported in [3], [4], [9], [10],
[22], [25], although different criteria of optimality are used.

3 SUBOPTIMAL CHECKPOINTING VS. OPTIMAL

CHECKPOINTING

In this section, we use an example to illustrate that, with the
objective of minimizing the expected overall cost, periodic
checkpointing fails to yield the optimal solution when the
system follows a non-Poisson failure distribution. The
example is described as follows.

Example 3.1. Suppose system failure follows a Weibull

distribution with shape parameter � � 1:5 and a mean of

60 hours. The corresponding failure rate is calculated as

��t� � 1:5 � ÿ�5=3�
60

� �1:5
�t1=2 with ��1� � 1, where ÿ��� is

the Gamma function. The checkpoint setup is assumed to

be constant as 1 minute, i.e., c0 � 1
60 hour. The recovery

function L��� is of the form: L�z� � 0:5 � z� 0:1, i.e.,

c1 � 0:5. Thus, the probability density function is written

as f�t� � 1:5 � �ÿ�5=3�60 �1:5t0:5 � exp�ÿ�ÿ�5=3�
60 � t�1:5� by the well-

known mathematical relationship [18] between failure

rate ��t� and probability density f�t�.

f�t� � exp ÿ
Z t

0

����d�
� �

� ��t�:

Based on Theorem 1, the optimal checkpointing fre-
quency n��t� such that C�n����� � minn���2@ C�n���� is
given by:

n��t� �
����������������
c1

c0
� ��t�

r
�

�����
45
p

� ÿ�5=3�
60

� �3
4

t
1
4: �13�

Then, the sequence of checkpoint instants is determined
by (1) as:

ti � �i�4=5 � 5

4

� �4=5

� 1

�45�2=5
� 60

ÿ�5=3�
� �3=5

; i � 1; 2; � � � ;

with t0 � 0. It is clear that it is an aperiodic checkpoint-
ing by Definition 2. The total expected cost (elapse time)
of the optimal aperiodic checkpointing is:

C�n����� �
Z 1

0

Z t

0

n����
60

d� � 0:5

n��t� � 0:1

� �
� f�t�dt

� 2 � ÿ�5=6���������������������
3 � ÿ�5=3�p � 0:1:

We will compare the total expected cost of the optimal
aperiodic checkpointing with that of the best periodic
checkpointing with the same mean failure rate. We
define @c � fn��t� � �; � > 0; t > 0g to represent the
family of all constant checkpoint frequency functions.
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It is clear that @c is a subfamily of @. Then, the total

expected cost of the best periodic checkpointing is
given by:

C�n����� �
Z 1

0

Z t

0

n����
60

d� � 0:5

n��t� � 0:1

� �
f�t�dt

� �

60
� �� 0:5

�
� 0:1;

where � is the mean failure time, which is defined as:

� �
Z 1

0

� � f���d�:

Within the family @c, let's choose �� such that
C�n�� ���� � minn����2@c C�n�����. For this purpose, we take
the derivative of C�n����� with respect to � and obtain:

d

d�
C�n����� � � � c0 ÿ c1

�2
� �

60
ÿ 0:5

�2

and

d2

d�2
C�n��t�� � 1

�3
> 0:

Hence, minn����2@c C�n����� exists and is obtained at ��,
satisfying

�� �
�����
30

�

s
�

���
1

2

r
:

Using (1), we obtain the sequence of checkpoint instants
as ti � i �

���
2
p

; i � 1; 2; � � � , with t0 � 0. That is, the best

periodic checkpoint interval is
���
2
p � �iÿ �iÿ 1�� � 1:414

hour. The overall expected cost for the best periodic
checkpointing is calculated as:

C�n�� ���� � �
� � �
60
� 0:5

��
� 0:1 � 2 �

�������
0:5
p

� 0:1:

Hence, the cost difference between the best periodic

checkpointing and the optimal aperiodic checkpointing,

C�n�� ���� ÿ C�n�����, is calculated as:

C�n�� ���� ÿ C�n����� � 2 �
�������
0:5
p

� 0:1ÿ 2 � ÿ�5=6���������������������
3 � ÿ�5=3�p ÿ 0:1

� 0:0429801623 hour:

The calculation shows that the optimal aperiodic

checkpointing is better than the best periodic checkpoint-

ing in terms of the total expected cost because the best

periodic checkpointing requires 2.5788 minutes

(0.04298*60) more than necessary in expected cost.

Fig. 3 is plotted by using the log/log representation of

the measurements (y axis) and time (x axis) for better

visualization, representing the relationship among the

time-varying failure rate, and the checkpoint intervals

generated by the both optimal aperiodic and best periodic

checkpointing.
Fig. 3 illustrates the dependence of the optimal aperiodic

checkpointing on the instantaneous failure rate: Its check-

point interval (the reciprocal of checkpointing frequency)

decreases as the failure rate increases, whereas the

checkpoint interval for the periodic checkpointing is

constant and, hence, is insensitive to the instant failure

rate, initially suffering from an excessive checkpointing and

ultimately performing a deficient checkpointing.
The superiority of the optimal aperiodic checkpointing

over the best periodic checkpointing is ensured and

justified by its mathematical basis: The use of calculus of

variation leads to a global minimum n���� in @, as distinct

from a local minimum n�� ��� obtained in @c. Since @c is a

subfamily of @, it can be inferred that the optimal solution

obtained in @ is superior to one obtained in its subfamily @c
because the periodic checkpointing is a special case of the

aperiodic checkpointing.
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To visualize the bearing of the different checkpointing

frequency functions on the total expected cost, we use the

five checkpointing frequency functions:

1. n�t� � c;
2. n�t� � c � t1=4;
3. n�t� � c � t1=8;
4. n�t� � c � t1=2; and
5. n�t� � c � t.

Each curve in Fig. 4 is plotted by changing the respective

parameter c in the five given checkpointing frequency

functions from 0.01 to 0.9. For a given parameter c and

the form of function, the total expected cost is calculated

by using (6). The numerical calculation demonstrates that,

among the five checkpointing frequency functions of

interest, the function n�t� � c � t1=4 reaches the lowest

point (a global minimum) with the parameter

c � �����
45
p � �ÿ�5=3�

60 �3=4 � 0:287924. With the help of calculus of

variations, we are able to identify the optimal checkpointing

function n��t� that makes its total expected cost globally

minimal.
In practical applications, the system failure rate is

believed to vary with the working load of a computer

system. For example, software failures or system crashes are

more frequent when the system load is high [9], [10], [21]. A

system load is cyclic, having a slack period at night and a

period of heavy load in daytime. The observation suggests

that the system failure can be described as a nonhomoge-

neous Poisson process [9], [10] in which the arrival rate

varies over time. The following example illustrates how the

derived formula is used to tackle cyclical system failure.

Example 3.2. Assume that the system failure rate is a

periodic step function described below, while the cost for

establishing a checkpoint is a constant c0 and the

recovery cost function is L�z� � c1 � z.

��t� �
�1 0 � �0 � t < �1

�2 �1 � t < �2

�3 �2 � t < �3

�4 �3 � t < �4

8>><>>:
and ��t� � ��tÿ �4� if t�4. The optimal checkpoint rate is

determined by using Theorem 1:

n��t� �

��������
c1��1

c0

q
0 � �0 � t < �1��������

c1��2

c0

q
�1 � t < �1��������

c1��3

c0

q
�2 � t < �3��������

c1��4

c0

q
�3 � t < �4

8>>>>>>><>>>>>>>:
and n��t� � n��tÿ �4� if t � �4.

Once the checkpointing frequency function n��t� is
obtained, the sequence of discrete checkpoint instants
fti; i � 1g can be determined by (1).

4 CONCLUSION

In this paper, we derive a closed-form formula that

establishes the connection between the optimum check-

pointing frequency and a general failure rate, with the

objective of minimizing the total expected cost of check-

pointing and recovery. Our theoretical approach is based on

the calculus of variations, differing in fundamental ways

from the stationary analysis in the literature. The derived

formula is applicable to the family of failure rate functions

with the eventual property ��1� > 0, i.e., physically

realizable systems, ensuring that the optimum solution

makes the total expected cost globally minimal. The present

study differs from the work in the literature in its departure
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from the stationary analysis, and its adoption of the calculus
of variations as a mathematical means of problem solving.

The gain of optimal aperiodic checkpointing over the
best periodic one is analyzed in Section 2 and is fully
substantiated by the examples given in Section 3. Periodic
checkpointing is a special case of aperiodic checkpointing.
The theoretical results obtained indicate that the optimal
checkpointing is equally spaced if and only if the system
follows a Poisson failure, which is consistent with the
conclusion [4], [5], [9], [10], [23], [25] that periodic
checkpointing (equidistant strategy) is optimal under
Poisson failures, assuming that no failure would occur
during checkpointing and recovery. Furthermore, the
derived result also indicates that non-Poisson failure
demands that the optimal checkpointing be aperiodic.

The complexity of the model usually varies significantly
with the assumptions used and the criteria of optimality
sought. With the variety of assumptions and criteria of
optimality, it is hard to make sweeping generalizations;
however, there are many useful and realistic extensions that
need to be addressed:

1. The overhead of the time-varying checkpoint setup
should be considered. In this paper, we only
consider the constant overhead of checkpoint setup.
This restriction, though widely used in the literature,
is somewhat unrealistic in some circumstances since
the overhead of checkpointing in fact varies with the
load of the system.

2. The different criterion of optimality such as
maximizing system availability should also be
addressed.

3. System failure is not self-evident. Hence, a system
failure is detected by the self-inspection process. The
latency between the occurrence of a failure and
failure detection should be taken into consideration.

The research direction, guided by the principle of
simplicity, primarily focuses on formulating a more realistic
model with less restrictive assumptions, with different
criteria of optimality. Relaxing restrictions imposed by the
assumptions would add a layer of complications to the
model, but it is rewarded by the increasing scope of
application. Seeking tractable and widely applicable solu-
tions, demanded by the practical needs of efficient im-
plementation and easy performance tuning, would be a
challenging task.
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