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ABSTRACT. In [ORT 99], Ortiz and Stainier proposed a general variational approach for elasto-
plastic models in finite deformations regime. This work can be extended to finite viscoleastic
models, as shown in [STA 03]. The striking feature of this approach is its variational charac-
teristic which provides an appropriate mathematical structure and allows the use of theoretical
and numerical facilities like, for instance, error estimation studies or mathematical program-
ming algorithms. The present paper follows the same path and focuses on a general varia-
tional approach for finite viscoelastic models. In addition, a specific group of them (generalized
Kelvin-Maxwell models) is analyzed with detail, together with numerical implementation. Fi-
nally, numerical simulations illustrate the performance of the present approach.

RÉSUMÉ. Dans [ORT 99], Ortiz et Stainier ont proposé une approche variationnelle générale
de l’élastoplasticité en grandes déformations. Ces travaux peuvent être étendus au cadre de
la viscoélasticité en grandes déformations, comme illustré dans [STA 03]. L’atout principal
de cette approche est son caractère variationnel, qui fournit un cadre mathématique particu-
lièrement intéressant. Cet article s’intéresse de plus près au développement d’une approche
variationnelle générale des modèles de viscoélasticité en grandes déformations. En particulier,
un sous-ensemble de ces modèles (matériaux de Kelvin-Maxwell généralisés) sont étudiés en
détails, y compris en regard de leur mise en œuvre numérique. Finalement, des simulations
numériques illustrent la performance de l’approche proposée.
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1. Introduction

In [ORT 99], Ortiz and Stainier proposed a general variational approach for elasto-
plastic models in finite deformations regime. This work can be extended to finite
viscoleastic models, as shown in [STA 03]. The striking feature of this approach is
its variational characteristic which provides a mathematical structure opening the way
to many theoretical and numerical tools and methods. The present paper follows the
same path and focuses on a general variational approach for finite viscoelastic models.

2. Variational form of constitutive equations

Using conventional notation, let us call
���������

the gradient of deformations,
and 	 �
����

the Cauchy strain tensor, respectively. These values may be decom-
posed in volumetric and isochoric parts. The isochoric tensors are defined as follows:���� �������� ����������� �"!#�%$ � �	 � �� � ���� ��'&(�)� � � ���

(1)

We will work in the framework of irreversible thermodynamics, with internal vari-
ables. Thus, we define a general set * �,+����)�.-/�(021

of external and internal vari-
ables, where

�%-
its inelastic part of the (total) deformation, and

0
contains all the

remaining internal variables of the model. In addition, a multiplicative decomposition�3�4�%56��-
of the gradient of deformations is considered. We assume the existence

of a free energy potential 7 ! * $ and a dissipative potential 8 !9�;: * $ , such that the
Piola-Kirchhoff stress tensor, comprised of an equilibrium (elastic) and a dissipative
(viscous) components, is derived as follows:<=��> 7> � ! * $?�> 8> 9� ! 9��: * $6@ (2)

In addition, another dissipative potential A ! 9��-�� 90B: * $ is included to characterize the
inelastic behavior related to the inelastic tensor

�.-
, such thatC �EDF> 7> � - ! * $G�H> A> 9� - ! 9� - � 902: * $6� I��=DF> 7> 0 ! * $J�K> A> 90 - ! 9� - � 90B: * $6@ (3)

It was shown in [ORT 99] and [STA 03] that an incremental version of the above
equations, constituting an incremental update method for the material state, can be
obtained from the following incremental potential:

L
!#��MON � : * MP$J�RQTS 8BUWV��� * M�X;?
Y[Z]\^`_acbedf acbed

g 7 ! * MhN � $iD 7 ! * M $?jQTS A U V� - � V02: * M�XGk �
(4)

where V�l!#� MhN � � * M $'� V��-'mn��-MhN � � * MPo and V0E!p0 MhN � � * M $ are suitable incremental ap-
proximations of the rate variables

9���i9��-
and

90
respectively.
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3. A group of visco-hyperelastic models

3.1. General form

A quite general group of viscoelastic materials can be modelled within the present
variational framework. Due to the possibility of obtaining analytical or semi-analytical
expression for the constitutive updates, only isotropic models will be considered now.
However, no theoretical constraints to include more general behaviors are found. The

(a) General model (b) Model for cyclic shear test

Figure 1. Generalized Kelvin-Maxwell model.

rheological mechanism shown in Figure 1(a) is taken as a basis to include different
potentials expressions in (4). The model is based on the following assumptions:

– The elastic part of the Kelvin branch is split in isochoric and volumetric energies.
The isochoric part is a isotropic function of

�	 � �� � ��rq
s ! �	 $W� s !ut � �)t & �)t � $ � (5)

where
t)v

are the eigenvalues of
�	 @

The volumetric part may be defined using the usual
expression w !x�$;�zy &�{ | \ �~} &

, The viscous part of the Kelvin branch is an isotropic
function of the symmetric part of the rate of deformation:

8 !#�2$G� 8 !u� � ��� & �)� � $ with
�4�

dev U sym U������� � X~X[�
(6)

where
�hv

are the eigenvalues of
��@

– The Maxwell branch, connected in parallel, is based on a multiplicative split of
strains in an elastic and an isochoric inelastic (viscous) part:���� �� 5 ���;�'� �� 5 � ���� � � � ���P� ������� � @ (7)

A flow rule for the internal variable
� �

can be written as:9���;���B��������mu���v�� �v o �����
(8)

in which the spectral decomposition of
� � �

sym
! 9� � � � � � $ in eigenvalues

� �v
and

eigenprojections
� �v ����� � �(�����`� was used. The scalars

�hv
are chosen to be the

internal variables contained in the set �03�=+�� � �)� & ��� � 1 . In this case, it is important to



4 Giens 2005.

note that (8) is a constraint relating the internal variables
� �

and
0

. The elastic and
viscous potentials associated to this branch are assumed to be isotropic functions of
the elastic deformation and viscous stretching, and thus depend on their eigenvalues:s 5 ! �	 5 $W� s 5 !#t 5 � ��t 5& ��t 5� $ and A !u�B�h$G� A !#���� �����& ������ $ � (9)

where
t 5v

are the eigenvalues of
�	 5

.

– Viscous deformations are incrementally updated by exponential mappings:

Q ��R� �� MhN � �� � �M ��� ��� { QTS/�F} ���4� Q[�6vQ�S � v.� ��OQTS | \ U Q �	 X @
(10)

Q[���;�����MhN � ��� � �M �R� ��� { QTS/����} ���B�;� Q[� �vQTS � �v � ��OQTS | \ !nQ 	 �h$�@
(11)

Expressions (10) and (11) show that
�

and
� �

are approximated by incremental ex-
pressions of

Q �	 and
Q 	 �

respectively. The exponential mapping has the partic-
ular convenient property of providing a isochoric tensor for any traceless argument
[WEB 90, MIE 96].

Taking into account (10) and (11), the minimizing variables
0 MhN � ��� �MhN � in (4)

are replaced by the new incremental variables
Q[� �v � � �v @

:L
!#��MON � : * MP$J��L
! 	 MhN � : * MP$W�rQ s ! �	 MhN � $�?�QTS 82U��W�/ ¡�i¢ X£?�Q w !#¤�MhN � $
? Y�Z]\¥  ¡"¦ �W�  ¡

g Q s 5 ! �	 5MhN � $?jQ�S A U��W�/ ¡�i¢ XGk �
(12)

such thatQT���v�§2¨F© �E+)ª v §�« q ª � ?¬ª & ?�ª � ���1��
(13)� �v §2¨¯® �=+�° v §¬±i²e³ qO° v�´ ° v � � �B° - ´ ° v ��P�Bµ�¶�j�`1�@
(14)

The set
¨ ©

enforces the traceless form of
� � �

while the set
¨ ®

accounts for usual
properties of eigenprojections. Moreover, it is easy to verify that both sets are convex
on their respective variables. Given isotropic expressions for energy functions, the
minimization in (12) can be performed analytically. A simple extension to this model
can be obtained by considering a set of · Maxwell branches, as seen in Figure 1(a).

3.2. Hencky and Ogden models

Hencky models are based on quadratic forms of logarithmic strain tensors:

s �R¸ �¹v�º � !n»¼vc$ & � 8 ��½ �¹v�º � !#�hv�$ & �
(15)

s 5 �R¸ 5 �¹v�º � m » 5v o & � A ��½�� �¹v�º � m ���v o & @
(16)
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In this case, it is particularly convenient to obtain simple uncoupled linear expressions
for the minimizing argument

Q[� �v
. In spite of the facility offered by Hencky mod-

els in terms of analytical treatment, it is well known that these type of hyperelastic
potentials do not fit well the behavior of rubber-like materials. For that case, a more
adequate choice may be the Ogden model which has also the capability of generaliz-
ing other models like neo-Hookean and Mooney-Rivlin. Ogden models are based on
the following potentials:

s � �¹v�º �¿¾¹À º �
¸ ÀÁ À ! { � ���!u»¼v�$p}ÃÂ�Ä�D � $�� 8 � �¹v�º �¿¾¹À º �

½ ÀÁ À ! { � ���!#�hv�$p}#ÂhÄ¿D � $~� (17)

s 5 � �¹v�º � ¾¹À º �
¸5ÀÁ À mhÅ �Æ���!#» 5v $xÇ ÂhÄ D � oi� A � �¹v�º � ¾¹À º �

½ �ÀÁ À mOÅ � ���!#���v $pÇ ÂhÄ D � oi@
(18)

4. Numerical example

This example presents a pure shear tests of a single 3D element (Figure 1(b)).
Material parameters and load characteristics were taken from an equivalent example in
[REE 98], in order to perform some useful comparisons. Thus, the rheological model
chosen for this example corresponds to that of Figure 1(b). The lateral displacementÈ�É follows a sinusoidal law È�É � w�Ê Z]\�Ë S

, where Ë �Ì`@ �2Í � � . The material
was assumed to be almost incompressible through the choice of a high value for the
bulk modulus

¨ @
Two different models for s were used: Ogden model and Hencky

model. In the case of Ogden, we used the following six-parameter fitting:
¸ � �
�h

,¸ & �
D¿Î
,
¸ � � � @ Ï , Á � � � @ Ð , Á & �
D.�

, Á � �ÑÎ
. For the Hencky model, the value¸Ò� ¹ - �& ¸ - Á - �Ó�OP@Ô�OÏ

was used, which is the consistent equivalent shear modulus
for small deformations. The Maxwell branch uses Hencky model for both potentials
with

¸5��ÕÎOÎe@ÖÎOÎ
and viscous coefficient

½ �
such that × ��Ø  ÙhÚ � � Î�@ Ï .

The time evolution of Cauchy stresses Û É�Ü as a function of shear strain 	 É�Ü , for
different shear amplitudes, is shown in Figure 2. In the case of small strains both
models (Ogden or Hencky main spring) give identical results, and match quite well
equivalent results in [REE 98]. As expected, the behavior of the main spring is de-
terminant on the behavior of the whole system for deformations higher than unity.
Comparing the results of the Ogden-based model with those of [REE 98] it is possible
to see a close correlation of maximum values of stress for all four cases. However,
hysteresis loops clearly look “thinner” as the deformation grows along the cycle. This
behavior is in agreement with the fact that the Hencky model used in the Maxwell
branch provides a contribution in stress much more lower than a corresponding Og-
den model for high deformations. In [REE 98], Ogden model is used for both, main
and Maxwell springs.

5. Conclusion

We have proposed a general variational formulation of nonlinear finite viscoelas-
ticity models. We focused in particular on generalized Kelvin-Maxwell models. We
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Figure 2. Stress-strain curves in cyclic shear test

compared the capacity of Hencky- and Ogden-type models to reproduce observed non-
linear viscous behaviour in shear tests. It appears that Ogden models perform better,
without really involving additional complexity to the numerical implementation.
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