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Abstract

We propose a rate-independent, mesoscopic model for the hysteretic evolution
of phase transformations in shape-memory alloys. The model uses the deformation
and phase-indicator function as basic unknowns and the potentials for the elastic
energy and for the dissipation as constitutive laws. Using the associated functionals,
admissible processes are defined to be the ones which are stable at all times and
which satisfy the energy inequality.

This concept leads to a natural time-incremental method which consists in a
minimization problem. The mesoscopic model is obtained by a relaxation proce-
dure. It leads to new functionals involving the cross-quasiconvexification of the
elastic stored-energy density. For a special case involving two phases of linearized
elastic materials we show that the incremental problem provides existence of ad-
missible processes for the time-continuous problem, if we let the time-step go to 0.

1. Introduction

Inthis paper we present a mathematical approach to the modeling of phase trans-
formations (PT) in certain elastic materials, like martensitic PT in shape-memory
alloys. In fact, the methodology introduced here applies to many other continuum
mechanical models with inelastic behavior described by internal variables, like
elasto-plasticity, damage, fracture or micromagnetism [FrM93, CHM02, FrM98,
RoKO02,Mi02a]. This paper contains three threads which run strongly intertwined
through this work. First, we want to present a simple multi-dimensional model for
the slow evolution of PT processes in solids which are able to describe hysteresis
phenomena. Second, we discuss a general relaxation method for rate-independent
time-evolution processes which are ill posed in their original form due to the for-
mation of microstructure. Third, we show that the derived evolution problem can
be analyzed in some special nontrivial cases, thus obtaining nontrivial existence
results.
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Elastic materials which allow for PT (like single or poly-crystalline shape-
memory alloys) display hysteresis effects under quasistatic loading cycles. While
there are many engineering models for this phenomenon for both uniaxial and multi-
axial loading (see, e.g., [Wil93,HuM93, Lev94,LeS97,KMS99] and the references
therein), mathematically rigorous models are only developed for simplified situa-
tions. On the one hand there is an extensive body of mathematical work on spatially
one-dimensional situations (uniaxial case), see, e.g., [BrS@80¥, KuM00]. On
the other hand there is a rich mathematical literature on static problems for the
multi-dimensional situation. Most of that work is restricted to zero-stress or zero-
energy solutions where the crystallographic properties and the transformation strain
tensors determine the set of reachable macroscopic strains, see, e.g., [BaJ87,BaJ92,
Bha93,BhK96, Mil99]. Models coming closer to our theory are given in [HaG99,
Rou00, GoMO01, Rou02].

So far there is no mathematical treatment of models which combine the hys-
teretic behavior with three-dimensional models of elasticity. Here we make a first
proposal for combining these two features: (i) our model is truly three-dimensional,
(ii) it has hysteretic behavior and (iii) it can deal with nonzero stresses. The model
is derived from very simple mechanical postulates, namely a thermodynamic PT
criterion and a definition of stable thermodynamic states. In the present version we
neglect all thermal effects (isothermal case) and also all plastic effects. Of course,
our model is crude and should be considered as the simplest nontrivial model rather
than a realistic model for specific shape-memory alloys. It certainly will be a basis
for more elaborate models.

The second theme of this paper is the relaxation of time-evolution processes
which are mathematically ill posed. This ill-posedness is due to the formation of
microstructure which usually arises from neglecting microscopical effects which
would bound the smallest scales. On a mesoscopic scale we see formation of very
small scales which have to be described in an averaged sense by relaxation. Here
we treat rate-independent processes and approximate them by a fully implicitincre-
mental problem (as is often used in engineering for plasticity problems) which for
each step takes the form of a minimization problem. These problems can be relaxed
introducing a phase-mixture theory. The resulting relaxed incremental problem can
be understood as the incremental formulation of a time-continuous evolution prob-
lem for the phase mixtures.

This partis written in a very general and sometimes less rigorous way to see that
it is a general program which opens up new ways to relax evolutionary problems
derived from energy principles. Classical models in linearized elasto-plasticity can
be formulated using this methodology, cf. [HaR95,ACZ99]. More recent work
in [CHMO02, Mi02a] applies these ideas to nonlinear elasto-plasticity (with finite
strains).

Another successful relaxation of a time-continuous problem for pattern forma-
tion in magnetic fluids was obtained in [Ott98]; there again an incremental problem
in variational form was formulated whose relaxation appears to be the incremental
problem of the time-continuous relaxed problem.

The third theme in the paper is devoted to a specific example, which allows for
an existence theory. This is an example of solid—solid PT with two phases, where
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each phase can be described by linearized elasticity and both phases have the same
elasticity tensor but different transformation strains. For this case we show that most
steps in the relaxation procedure can be made rigorous and we obtain an existence
theorem for the relaxed time-continuous model. Here we use the general theory
of rate-independent hysteresis which was developed in [MiT02] and is based on
energetic formulations. This abstract theory is sketched in Section 2, since it is
essential for the understanding of the relaxation procedure as well.

To be more specific, we describe the underlying mechanical model. Every ma-
terial pointx in the bodyQ c RY, d = 1,2,3, can be in one of possible
phases;, where PP = {ey, ..., e,} is the set of all possible pure phases. The
material properties of each phase are given by the energy détisity") where
F = Vu is the deformation gradient. In martensitic PT it is often assumed that
We, (F) = W(Fijl) with a fixed energy density, whereT; are the transfor-
mation strains for the martensitic phases (eig= 3 for the cubic to tetragonal
PT andn = 12 for the cubic to monoclinic PT, see [BhK96]). The matriggsire
related to each other by the crystallographic symmetry group.

A functioncP : @ — PP is called arinternal state of the system; however we
will just call it a “state” subsequently. The superscAgtenotespure and indicates
the fact that at the present stage phase mixtures are not taken into account, i.e.,
at every pointxr €  the material is in a pure phase. For the loadihg) and
a deformatiorn: : @ — R the elastic plus potential energy defines the energy
functional (Gibbs energy)

EP(t, P u) = / Wep) (Vu(x))dx — (G (1), u)
Q

with (G (1), u) = Jq fuol(t, x) - u(x) dx + [0, gsurf(?, ¥) -u(y) da(y). We denote

by V = {u e WHP(Q) | ulr = upyi } the set of kinematically admissible defor-
mations. A basic assumption for rate-independent processes is that for all time the
elastic deformation is stable. Hence, we define the reduced energy functional

IP(t, Py =inf { EP(t, Pou) | u eV},

which assumes that(r) is always a global minimizer ofP(z, cP, -). Hence,ZP
describes the elastic properties of the body in terms of the dtate

Next we model the dissipation due to changes in the sfat&Ve postulate
the existence of dissipation coefficiemts, ; measuring the dissipation per unit
volume for a PT frome; into e; and satisfyingc;_, ; = 0, andx;_, ; > O for j #i.
Under the assumption that at most one PT occurs at each material point the bulk
dissipation of a PT from staid® : @ — PPintocP: Q@ — PPis

DPaP, P) = / DP@aP(x), cP(x))dx, whereDP(e;, ej) =Kij.
Q

A family of states(cP(¢)):¢(0,77 is called a process, and the total amount of dissi-
pation due to PT in the time intervih, 2] is denoted by DigXcP; 11, 7).

One mechanical motivation of such a rate-independent dissipation is athermal
resistance against interface motion as described in [GhO94]. Athermal resistance
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is similar to dry friction, i.e., PT frome; to ¢; can start when the driving force
exceeds the dissipative thresheld, ;, independently of the interface velocity. It

is caused by the interaction of interfaces with obstacles having long-range stress
fields (point defects, dislocations, grains, twins and subgrain boundaries) which
cannot be overcome by thermal fluctuations. Short-range resistance which can be
overcome by thermal activation gives rise to rate-dependent or viscous friction,
which is not taken into account here. A phenomenological motivation for this type
of dry friction arises from the modeling of systems with potential wells. If a system
stays in local (but not global) minima as long as possible then the energy difference
between the saddle point separating the two wells and the new minimum will be
dissipated in this PT, see Section 3.1.

Having the two constitutive functionals® and DP, we then have to find an
evolution law for the proces$(z). Here we use aextremumprincipleto determine
which PT out of the set of all possible PT does occur, that is, what phases are
created in what regions. This principle was formulated in [Lev95,Lev97,Lev98,
Lev00] in a more general context also allowing for plastic effects and is called the
postulate of realizability. Restricted to our case, it says that PT occurs as soon as
it is thermodynamically possible, namely when the gain in energy through a PT
from a state:P to 4P is larger than (or equal to) the dissipated enefd(z, aP) —

IP(t, bP) > DP(aP, bP). Here, the main assumption is thatthere are no other sources
of dissipation.

Hence, an observable proces(r));c[o0,r1 must bestable for all + € [0, T7],
ie.,

TP@t, cP(1)) < IP(t, bP) + DP(cP(r), bP) forallbP: Q@ — PP.

It is surprising that this condition together with taeergy inequality

12 .
IP(12, cP(12)) + Dis(cP; 11, 12) < TP (11, cP(12)) —/ (G(s), u(s))ds
n
suffices to characterize the evolution of the problem. We are lead to the following
time-continuous formulation of the extremum principle.

(CP) For giverch, find a process® : [0, T] x 2 — PP with ¢P(0, x) = cf(x)
which is stable and satisfies the energy inequality forallQ <» < T.

At this point we want to connect our theory to the purely static theory of PT
without dissipation which is an active mathematical subject, see [BaJ87,BaJ92]
and the survey [MI99]. For our mechanical situation it would mean considering
the single stored-energy density

WF)=min{ W, (F) | j=1....n},

which is not quasiconvex but has potential wells in the set&Sg0. In general, the
infimum of the functionak (s, u) = fQ W (Vu(x))dx — (G(r), u) is not attained
since infimizing sequences develop finer and finer oscillations in the fundtion
defined viaW (Vu(x)) = Wep(x)(Vu(x)). This problem can be avoided by con-
sidering a suitable relaxatioRE (¢, -), namely the lower semicontinuous envelope,
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[Dac89]. However, if we always look for global minimizers we cannot obtain hys-
teretic behavior in rate-independent loading processes as no time direction is pre-
ferred. Nevertheless hysteretic behavior occurs (see [BCJ95]) due to local strong
minimizers which have a true potential barrier in a suitable function space. To de-
scribe this phenomenon with our approach we have to keep track of the internal
variablecP and to choose a dissipation functiorfaf(aP, cP) such that for each
such local strong minimizex the associated phase functigh: @ — PPis a
global minimum ofaP — ZP(z, aP) + DP(ch, aP). In Section 3.1 we discuss the
relation between models with internal variabi€sand models without but having
potential barriers.

In general we cannot expect to find solutions of (CP) since it is not even clear
whether for a given loadin@ (¢) there is any stable stat€ : & — PP. A natural
way to find stable states at timeis to minimize ZP(z, ¢P) over all cP. Clearly
such a minimizer must be stable; however, in general we can only expect to find
an infimizing sequencej[.’, i.e.,ZP(t, c;’) — a =inf {ZP@,bP) | bP: Q — PP},
The weak limitc of the sequence?’ will no longer be a simple phase function but
gives rise to infinitesimally fine phase mixtures. The goal of this work is to discuss
rigorous extensions of the problem from classical staftesith ¢P(z, x) € PP to
phase mixtures with ¢(z, x) € P where

n n
c=) 0j¢j, 6,20 ) 6;=1
j=1 j=1

In mathematical terms such a procedure is called relaxation. We emphasize that we
do not include new modeling assumptions into a mixture theory, but we want to
see how far the given functiorg,, (F) can be used to derive a consistent mixture
theory.

The main idea for finding a proper relaxation is to replace the time-continuous
problem (CP) by an incremental problem (IP) which has a variational structure
arising from the extremum principle. Relaxation of a single variational problem is
a well-developed theory, cf. [Dac89, Rou97]; however for incremental problems no
suitable generalization is known. The problem is to control the interaction of the
microstructures on different time levels, see [FrM93, FrM98] for a first discussion
in the context of fracture. In Section 4.1.2 we propose an abstract setting for re-
laxations of incremental problems, for general evolution problems a counterpart is
discussed in [The01, MiO2b]. However, to obtain a tractable model we propose a
separately relaxed incremental problem (SRIP) which, in general, does not coincide
with the mathematical relaxation, but see [The01] for a rigorous justifications in
special cases. In our setting, separate relaxation tends to neglect incompatibilities
between the microstructures of the phase mixtures at two subsequent time-steps,
and therefore underestimate the true dissipation (making hysteretic effects smaller).
For more general philosophy of relaxation of rate-independent problems we refer
to [The01, Mi02b].

The major advantage of (SRIP) is that it is explicit enough to give an efficient
solution algorithm and to prove existence results. Moreover, its form immediately
showsthatitis the time discretization of atime-continuous relaxed problem (SRCP).

P =comu PP) =ceR"
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To describe the separately relaxed problem we start with the unrelzorethental
problem (IP) for a given partition O=tp <1 < --- <ty_1 <ty =T:

(IP) 1For givencp, find ¢} such thatZP(, ) + DP(c}_;, c}) is minimal fork =
,...,N.

The main problem in treating (IP) as a mathematical or numerical problem
is that in general this minimization process does not have a solution for the same
reason as mentioned above for (CP). Here (CP) and (IP) are defined onfle-set
L1(S2, PP) of pure states, whose weak closure is the convePset L1(Q, P)
of mixture states. The separate relaxed incremental problem is now obtained by
relaxing the functionalgP(z, -) : PP — R andDP : PP x PP — R independently
leading to the relaxationg(z,-) : P — RandD : P x P — R. Now, the
separately relaxed incremental problemis formulated inP = L1(2, P) and reads

(SRIP) For giverty_1, find ¢ such thatZ (t, cx) + D(ck—1, cx) is minimal.

By constructiorZ andD are lower semicontinuous, which implies that (SRIP)
is always solvable.
An important fact is tha andD can be characterized nicely. We have

Z(t,c)=inf {/ W(c(x), Vu(x))dx—{(G (), u)
Q

ue V} ,
where themixture function is defined, using solelW,,, i =1, ... ,n, via

W(e, F) = inf {][ Wep(y) (F+Ve (y))dy ‘ ][ P(ydy =,
B B
P e L@, PP), ¢ ¢ W"(B) }

For givenc € P this function describes the elastic properties of optimally ar-
ranged mixtures with macroscopic phase portionghis mixture function is not
postulated but follows from an exact mathematical theory which is similar to ho-
mogenization theory, cf. [Koh91, FKP94, SmW98, Mie00]. In [LeROW]is called
cross-quasi convexification; see Section 4.2 for more details.

The relaxed dissipation functional takes the form

D(a,c) = A(c—a) with A(z) =/ A(z(x))dx, (1.2)
Q

whereA : R" — R is piecewise affine, convex, homogeneous of degree 1 and
satisfiesA (ej—e;) = D(e;, ej) = ki j;, See Section 4.3 for more details.

The minimization in (SRIP) is a simultaneous minimizationccemdu which
has the advantage thatppears only locally under the integral. Hence, the mini-
mization with respect to can be done pointwise first and thenan be determined.
This leads to the numerically useful algorithm (SR)Bge Section 4.4 and [MTL98,
CaPO00].
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The structure of (SRIP) shows that itis nothing else than the incremental version
of the following time-continuous problem (SRCP). In analogy to the pure phase
situation we say that: [0, 7] — L1(2, P) is stable, if

I(t, c(t)) < I(t,a) + Ala—c(t)) fort e[0,T]anda e LYQ, P). (1.2)

SinceA is defined on the Banach spack L2, P), the dissipation of a process takes
the formffl2 A(dc) = supz,ivzl A(c(ty)—c(tx—1)) where the supremum is taken
over all partitions. The energy inequality fonow takes the form

15
A(de) = Z(11, c(t) + / 2 %ZL(s,c(s)ds.  (1.3)

1

P
L(t2, c(12)) +/

1

With these definitions theeparately relaxed time-continuous problem reads:

(SRCP) For giveny, findc : [0, T] — P with ¢(0) = ¢g such that stability (1.2)
and energy inequality (1.3) holds for®sm < < T.

In Section 5 we study a special PT example given by two phases which are both
modeled by linearized elasticity with the same elastic tensor. For this example,
with a few more specifications, we are able to show that (SRCP) has a solution
for all initial datacg € P. Here we use the fact th& is explicitly known and is
quadratic inVu andé e [0, 1] wherec = (1—6, 6)T (P can be identified with
LY(Q, [0, 1])). Thus,Z(z, -) : P — Ris quadratic as well; yet the problem remains
strongly nonlinear due to the constraing P.

The existence proof is based on the abstract methods for rate-independent prob-
lems which are worked out in Section 2 and given in more detail in [MiT02]. The
basic idea is to solve the incremental problem (SRIP) for finer and finer time dis-
cretizations giving piecewise-constant approximatiofis Using the energy in-
equality, which also holds for (SRIP), we find tagriori bound

T N
/ ANy =) Aler) et ) £ C*,
0

k=1

whereC* is independent oV. Because of|z[l 1) = CA(z) the sequence”

is bounded in BV[0, T, L1(£2)), and an adaption of Helly’s selection principle
provides a subsequene& and a limitc®™ such thate™ (1) — ¢*(r) in L1(S).

(Note that rate independence and (1.1) forces us to useltbetting, although the
weak and the strong topology oA (2, P) coincide with those on4(2, P) for all

q € (1, 00).) Itis easy to see thaft® satisfies the energy inequality (1.3) fer= 0

andr, = T. However, to show that™ is also stable requires a further compactness
argumentinthe spatial direction. This is derived using pseudo-differential operators
and H-measures, cf. [Tar90, Ger91].

Having established a mathematical model which enables us to study simultane-
ously hysteretic and multi-dimensional effects, itis possible to study the question of
their interaction. In[KMS99, CaP00, GoM01, GMHO2] numerical implementations
of the models developed here are discussed, tested and compared with experiments.
In particular itis important to investigate whether multi-dimensional models display
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a richer class of hysteresis effects and whether it is really necessary to introduce
more internal variables to explain the more complicated hysteresis loops observed
in uniaxial experiments, cf. [Wil93, Lev94,601, KuMO0O].

2. Rate-independent processes

The mathematical framework is based on two abstract energy functionals
Z:[0,T]xX —R and A:X— R =0, 00),

which represent the potential energy of a state X and the dissipation power
caused by a raté € X, both lying in the Banach spacé The dissipation poten-

tial A is convex and homogenous of degree 1, which leads to rate independence.
For differentiable functional® there exists a rich amount of literature devoted to
differential inclusions of the form

—DZ(t,¢) € IA@), (2.1)

see, e.g., [BrS96,Vis94] for a starting point. Herelenotes the subdifferential
operator for convex functions, cf. Definition 2.2. The evolution equation (2.1) is
a very general model for systems with hysteresis (like elasto-plastic or magnetic
materials). For time-independent functionalhe Cauchy problem is trivial, every
constant process(r) = cg, Wherecg satisfies—DZ(cp) € dA(0), is a solution.

The time dependence @fdescribes the change of the external loading. For time-
dependent functionalssystem (2.1) constitutes the limit equation for the response
to very smallloading rates when inertial effects and relaxation effects disappear, i.e.,
the system response is immediate. Only the stick-slip motion due to the dry friction
is left. Formally the system is able to take into account all the spatial effects which
affect the hysteretic behavior but unfortunately global well-posedness can only be
expected in special cases. One of the most prominent mathematical difficulties is
that solutions might be discontinuous in time if the potential eng&rigynot strictly
convex. The case whefeis uniformly convex and smooth is well understood and
leads to well-posedness of the Cauchy problem, see [MiT02]. In this section we will
derive a new sufficient condition for existence of solutions to a reformulated version
of (2.1) where also the cage: [0, T] x X — R U {oo} can be treated. Our new
condition is independent of convexity ®f therefore we hope to be able to handle
situations in continuum mechanics where convexity contradicts the fundamental
principle of invariance under rigid body rotations. Uniqueness of solutions lies
outside of the scope of this work. In Chapter 5, for a special example which models
the dynamics of martensitic PT in solids, we will demonstrate that our new condition
actually holds and consequently the existence of solutions can be established.

2.1. Setup of the problem

Let X be a separable Banach space with dual sp&tand let? be a weakly
closed subset of. For every time < [0, T]whereT is a fixed positive number and
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everyc € P the energy of the statds given by theenergy functional Z(z, ¢) € R>.
ForZ we assume the following properties:

7 e C%([0,T] x P), sup  |8,Z(t, ¢)| < oo, (2.2)
ceP,te[0,T]
for everyt € [0, T] the mapping — Z(z,¢) is

weakly lower semicontinuous. (2.3)

In the PT problem the restriction of the phase spad@ to X accounts for the fact
that the variable measures the concentration of phases,d@,x) € P C R".
This restriction is far more than a technical modification of the usual setting, e.g.,
in the theory of linearized elasto-plasticity whePe= X. If P is bounded, the
set of tangential directions may become abruptly smaller as thecstaéehes the
boundary ofP. As a positive effect, the s@& may be weakly compact although
is not reflexive, and this simplifies central steps of the analysis.

Most of our work will take place in spaces of bounded variation in time,

BV({O, T,P)={f:[0,T] - P | Var(f;[0,T]) < o0}

with Var(f; [0, T]) = supz,f’z‘o1 Il f (tr+1)— f (tr) || where the supremum is taken
overallN € Nandall partitionswithG= 17y < ... < ry = T. Observe that our def-
inition of BV functions does not neglect sets of measure 0, therefoilgBY ], X)

is larger than €0, 71, X*)*, even if X is reflexive or finite dimensional.

The dissipation generated loychanging from one state to a different state is
given by adissipation functional A : X — R> which is convex and homogeneous
of degree 1. In the literature (see, e.g., [GNS88])s also denoted agseudo-
potential, since it takes a rate as an argument. We assume that there@xist
so that

[vll/C = A(v) = Clvll. 2.4)

It will become clear later that in our model the solutions are rate independent if
and only if theA is homogeneous of degree one. An immediate consequence of the
convexity and the homogeneity &f is the triangle inequality

A(vy +v2) < A(v1) + A(vp) for everyvy, vz € X. (2.5)

In continuum mechanicd is obtained by integration ove®, i.e., A(v) =
Jo A(w(x)) dx; hence, (2.4) can only hold ¥ equals }(Q, R"). A statec is
calledstable at timez if

I(t,c) SI(t,a)+ A(a—c) foreverya € P. (S)
The variation of a BV functiory’ with respect to the functiona\ is written as

N-1

T
[ a@n® sup Y A —f0).

O=to<...<ty=T k=0
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By (2.4) we have Varf; [0, T])/C < foT A(df) < CVar(f, [0, T]). A process
¢ € BV([0, T, P) satisfies theenergy inequality if, for all 71, 2 with 0 < 11 <
t» < T, we have

15
A(de) = (11, c(t1) + / ’ O Z(t, (1)) dt (E)

n

7]

(12, c(t2)) + /
n
holds. We say that satisfies theveak energy inequality if (E) holds just fors; = 0
andrp =T.
This energetic formulation requires no differentiability fo, -) andc(-). The
central problem in this work is the construction of processes which satisfy both (S)
and (E).

Definition 2.1. For everyr € [0, T] we denote bys(r) C P theset of stable paints,

def

St)={ceP | It o) SI(t,a) + Ala—c)Ya e P}.

A processe € BV([0, T], P) is calledstableif ¢(t) € S(¢) for everyt € (O, T].
Stable processes which satisfy (E) are cadldahissible for Z andA.

The definition of admissibility satisfies the two standard properties of the term
“solution” in evolutionary systems, when no uniqueness of the Cauchy problem is
assumed.

1. Restriction property. For every admissible : [0, T] — P and everys, ] C
[0, T] the restrictiorc|,,) is admissible as well.

2. Concatenation property. Assume thati : [t1, t2] — P andcz : [t2,13] — P
are admissible and that(z2) = c2(#2). Then the concatenati@n [z1, 3] — P
is admissible as well, wher&t) = c1(¢) if t € [t1, 2] andc(z) = c2(2) if
t € [, 13].

In the case of convex potential energigs, -) the above energetic definition of ad-
missibility is equivalent to certain local formulations using variational inequalities
or differential inclusions.

Definition 2.2. For a convex functiory/ : X — R U {oco} the subdifferential atc
is the set

aj(c)z{creX* | J(a)zj(c)—i—(o,a—c)forallan}.

Theindicator function X4 of a setA C X is defined byX4(a) = 0 fora € A and
Xa(x) = ocoforx € X\ A. For a convex seP C X the (interior)tangent cone
T.P of P atc € P is given by

TCchIosure(<{veX| A >0: c+/\ve7>}),

and the (outerhormal coneis given by

NP ={oeX*| (o,v) <O0forallveT.P}.
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It is well known that for closed convex seBsC X we haved Xp(c) = N.P.

For simplicity we have restricted the following result to procegse®, 7] —
P which are absolutely continuous. For the case of gerezaBV ([0, T'], X) there
is a corresponding result if (renormalized) directional derivatives are used and the
jumps are handled properly. We refer to [MiT02], where also the complete proof
can be found.

Theorem 2.3 (Equivalence between the energetic and local formula}idres X
be a Banach space and P C X convex and weakly closed. Let the functional Z e
C1([0, T1x P) beconvexand satisfy (2.2). Let thefunctional A : X — R beconvex
and coercive in the sense of (2.4). Then for ¢ € W31((0, T), X) N C([0, T1, P)
the following statements are equivalent:

(i) ¢ satisfies(S)and (E);
(i) ¢ satisfiesfor almost all ¢ € [0, T'] the local version of (S) and (E), namely

(DZ(t, c(®)),v) + A(v) 20 forallve TP, (2.6)
(DZ(t, c(1)),¢) + A(6) = 0; (2.7)

(i) ¢ isasolution for the differential inclusion
0e€ 0A(c(t)) + DZ(t, c(t)) + 0Xp(c(r)) foramostall r € [0, T]. (2.8)

In the case of general convéxt, -), which need not be differentiable, the
subdifferential allows for a formulation of the problem as a differential inclusion:

0 € dA(c(t)) + a(Z(¢, )+Xp)(c(t)) fora.e.r € [0, T). (2.9)
With the relationd (Z(z, -)+Xp) = dZ(¢, -) + 0Xp = 0Z(t, -) + NP this means
35(t) € dL(t, c(t)) 37(t) € Ne(yP : —5 (1) — 7i(t) € dA(E(D)).

Here—o (r) can be understood as the conjugate force to the varialaled—7(r)

is the reaction of the boundary ®f. Clearly the sum of both has to be equal to
the dissipative force. We will use this formulation in Section 4.5 to derive a flow
formulation for the phase-transformation problem, which is used in the engineering
literature and which has a lot of similarities with flow rules in plasticity theory.
However, since these flow formulations are not needed in what follows, we omit
the details and refer to [MiT02, Mi02a].

When taking limits with respect to time we have to be careful about temporal
discontinuities. By general theorems on BV functions we know that a BV function
¢ has at most a countable number of discontinuities and that forrea¢f, 7] the
limit from the right and from the left exists. Fowe define its projection™ into the
space of left-continuous BV functions via (0) = ¢(0) andc™(z) = lim_~ ¢(s)
fort € (0, T] and find|lc™ llsv(o,71,x) = llcliBv(0,71,%)-

Lemma 2.4. Under the assumptions (2.2) and (2.4) the stable set S(¢) isa closed
subset of P for all ¢+ € [0, T]. Moreover, U;eo,1)(t, S(t)) is a closed subset of
[0, T] x P.If aprocessc € BV([0, T], P) isstablefor all + € T, where T isa
dense subset of [0, T'], then ¢~ isa stable process.
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Proof. We prove the second statement since the firstis a consequence of the second.
Assumeck e S() with ¢ — ¢* ands, — t,. By the continuity ofZ andA we
have, for arbitrary: € P,

Z(ty, c*) = kILmOOI(tk, & < |i£1 iorlf (Z(tx, a) + A(a—c))
=T(ty,a) + Ala—cy).

To prove the third statement lete (0, 7] and choose a sequen@®);cn With
tr € T ands, 7 t. Then,c™ (#) = limy_  c(f;) and the result follows from the
second statement.o

The next three subsections give an overview of the properties of admissible
processes; for more details we refer to [MiT02].

2.2. Qualitative properties of admissible processes

At the jumps a process can take rather arbitrary values without violating (S) or
(E). To obtain definiteness we restrict ourselves to functions which are continuous
from the left, i.e.,c = ¢~. Assumption (2.4) gives a bound on the variation of
c. Therefore the space BY0, T'], P) is the natural space to work within. From
stability (S) and the weak energy inequality (E) we can infer that an energy identity
holds on every subinterval.

Theorem 2.5. Assume that the dissipation functional A satisfies the coercivity as-
sumption (2.4) for some positive constant C and that (2.2) holds. If ¢ is a stable
process with ¢ = ¢~ and satisfying the weak energy inequality (E) (i.e., only for
t1 = 0and r, = T), then the energy equality

t t
Z(,c()) + / A(dc) =Z(s, c(s)) + / 0;Z(t, c(1))dr (2.10)

holdsfor every0 < s <¢ < T.
Proof. We set forrq, r2 € [0, T] the function 7 (z1, 12) = Z(t1, c(t2)). Now for
every 0< s <t < T we have

t
I(s, c(s))=1I(t, c(t)) +/ {0:Z(t, c(1))—A(¢(n))} dT

t
__ / (0,7 (7, D+ A ()} dr.

By the last assumption the left-hand side is nonnegative if we4e0 andr = T'.
Therefore the claim follows if we can show that the integrand on the right-hand
side is nonnegative i€ ([0, T])*. The stability inequality (S) implies, for every

t €[0,T)andh € (0, T—1),

FHI(t, c(t+h)—Z(t, c(t)] + A(Fle(t+h)—c(D)]) = 0,

and this expression converges we#ks — 9,7 (¢, t)+A(c(t)) ash — 0. Since
the set of positive functionals is weaklosed, the proof is finished.o
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2.3. Existence of admissible processes

So far we have only discussed the qualitative properties of admissible processes
without knowing whether they exist. The typical way to achieve existence is to dis-
cretize (S) and (E) fully implicitly in time. This gives a variational problem and in
certain cases it is possible to show that that solutions to the discretized problem
converge to an admissible process as the fineness of the time discretization tends
to 0. It is surprising that the discretized problems seem to have more structure than
the original system (E), (S) although no assumption on the differentiability of the
potentialZ and the dissipation function@ is made. Major parts of the work in
the following sections are inspired by the time-discretized problem. Repléacing
%I(t, c(t)) and %I(t, ¢) by the appropriate finite differences, we arrive immedi-
ately at the incremental problem

(IP) Givencp € P and a time discretization & 7190 < ... < ty = T, find for
k=1...N statex) e P suchthatZ(x,cy) + A(c) —cl ;) is minimal.

To guarantee the existence of solutions to (IP) we need some compactness:

For allr > O the intersectioP N {c e X | [ic| <r}

is weakly compact irk. (2.11)

Definingc" : [0, T] — P as the left-continuous piecewise-constant interpolant
satisfyingc™ (1) = ¢} for ¢ € (tx—1, %] andc™ (0) = co, we obtain the following
existence result.

Theorem 2.6. If the assumptions (2.2)—(2.4) and (2.11) hold, then (IP) has a so-
lution and for every solution to (IP) the following statements hold true:

(i) foreveryr e {n,...,ty = T} thestate ¢V (r) is stable,
(ii) ¢V satisfies the discrete energy inequality

T T
I(T,cN(T))—i—/ A(ch)gf(O,co)—}-/ OZL(t, N () dr,  (2.12)
0 0

where ¥ (¢) = c,](Vfl for ¢ € [tx—1, 1) isthe right-continuous interpolant.

The suitability of (IP) is also manifested in the fact that (2.12) can be improved to
a two-sided estimated, see [MiT99,MiT02].

Proof. First we observe that the weak lower semicontinuityZof;, -) and the
convexity of A(- — c,’{"il) implies that the sum is weakly lower semicontinuous.

The positivity ofZ implies coercivity such that for everye P with |c — c,’{\’|| >
C - Z(tx41, ¢ ) we have

T(tk+1, ) < Tk, ) + Ltir, ©) < T(tign, ©) + Ale — o).

Therefore||cy),, — ¢’ | £ C - Z(tx41. ¢)') holds. The weak compactness (2.11)
implies now the existence of solutions to (IP).
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The stability ofc™ (1) = C/iv arises from its minimizing property. We have

I(ty,a) + A(a—c,iv) =TI(tx,a) + A(a—c,ivfl) + A(a—c,ﬂv) — A(a—c,ivfl)
> It ) + Al —¢pp) + Ala—c) — Ala—c} )
> I(tr, o),

where the triangle inequality (2.5) has been used for the last estimate. To obtain the
discrete energy inequality we first observe that (2.12) is equivalent to

N

Z(I(rk, N (1)) = Tk, ™ (B-1) + A(cNak)—cN(r“))) 0. (213
k=1

From the fact that) minimizesZ(«, -) + A(- — ¢} ,) it follows that each term in
(2.13) is nonpositive and hence (2.12) holdsi

It remains for us to consider under what condition the functiofis
BV ([0, T'1, P) converge to a limit and whether this limit is an admissible pro-
cess. The essential tool is a version of Helly’s theorem for functions which take
values in Banach spaces.

Theorem 2.7 ([BaP86] Thm. 3.5, Ch.)1 Let X be a reflexive separable Banach
spacewith separabledual X*. Let {w,} C BV([a, b]; X) besuchthat ||w, ()| £ C
for t € [a, b] and Var(wy; [a, b]) < C for all n. Then there exists a subsequence
{wp,} C {w,} and a function w € BV([a, b]; X) such that, ask — oo, w,, —
w() in X for all ¢ € [a, b].

Since in our application the Banach space equal€.R"), we need a version
without reflexivity of X and separability of(*. Here we take advantage of the
subsetP and property (2.11). We have the following simple generalization.

Coroallary 2.8. Let X beaseparable Banach spaceand P C X satisfy (2.11). Then,
for each bounded sequence (¢V) yen iN BV([0, T1, X) there exists a subsequence
N; and alimit function ¢ e BV([0, T'], P) suchthat ¢V (r) — ¢ (r) ask — oo
forallr € [0, T1.

Clearly the existence theorem, Theorem 2.6, provides a seq¢ehrevhich
is bounded in BY[O, T'], X) and thus we can extract a limit® € BV ([0, T'], P).
From (2.12) itis not so difficult to show that°® satisfies the weak energy inequality,
hence it remains to check whether the procg8ss stable. There are two ways
to derive stability: (i) if the convergence is not only weak, but strong, then the
continuity of A suffices to prove stability sinc8(z) is strongly closed; and (ii) if
the set of stable states is weakly closed, then the stability of the weak limit follows.
It is case (ii) which we will need for our application; hence we formulate it in the
theorem below and refer to [MiT02] for more general cases.
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Theorem 2.9. Let the assumptions of Theorem 2.6 be satisfied. Assume further that
for all ¢ € [0, T'] the mapping ¢ — 9,Z(¢, c¢) isweakly continuous (2.14)

and that for all ¢+ € [0, T] the stable sets S(¢) are weakly closed. Consider a
sequence of hierarchical discretizations (specified in the proof ) and let ¢*° be the
limit as constructed above. Then, ¢ = (¢*)~ € BV([0, T'], P) is an admissible
process with ¢(0) = co.

Proof. We have to show that the process which is constructed in Theorem 2.6
satisfies the energy inequality and is stable. By the weak lower semicontinuity
of Z(z,-) and A and the weak continuity,Z(z, -) (cf. (2.14)) we find that the
weak energy inequality (2.12) is stable under pointwise weak convergence, hence
¢™ satisfies the weak energy inequality (E). To show that (¢*°)~ also sat-
isfies (E), we first note that the boundedness of the variatiafiofimplies that
thesef{t € [0, T] | c(t) # c*°(¢) } is at most countable, tth@T 0:Z(t, c(r))dt
fOT 0, Z(t,c>®(t)) dr. Together withc(0) = ¢*(0) = c¢p and fOT A(de)
fOT A(dc®), this gives the result.

A sequence(Il,) ey of discretizations withll, = {r5", 1", ... .1y} and
1" < 1), is called hierarchical if0, T} C I, C .41 and if the fineness
O(I1,) = max[ =t L k=1,...,N, ] of I, tends to 0. LeT = U, enI1,,

then 7 is dense in[0, T] and for eaclr € T we havec™ (1) € S(r) for all
sufficiently larger. By the weak convergence ¢6°(¢) and the weak closedness of
S(t) we obtainc™(r) € S(¢) for all ¢+ € 7. Using Lemma 2.4 we conclude that
¢ = (¢*°)” is a stable process.o

A

In particular, forZ(z, ¢) = f(c) — (G(1), c) with G € CL([0, T, X*) the assump-
tion (2.14) is satisfied.

3. Application to martensitic phase transfor mations

Inthis section we will demonstrate that the hysteretic response of shape-memory
alloys can be modeled within the framework of rate-independent evolution prob-
lems. Itturns out that finding a suitable linear structure (the Banach spamethe
state space is a nontrivial problem. The expressions for both the potential and the
dissipated energy are only obvious in the case of pure phase distributions, therefore
we indicate that the energies are only defined on pure phase distributions by adding
a superscript. Instead of assuming a dissipation rateve give an expression for
the minimal dissipatiorDP(c}, c5) which occurs when a stat§ is transformed
into cg. Extending the energies to linear combinations of pure phase distributions
means that a mixture theory has to be constructed where also concentrations can
be treated correctly. This step is postponed to the next section.
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3.1. Modeling hysteresis via metastability or via internal variables

Before starting with the PT problem we relate the above model to the general
theory of systems with hysteretic behavior. Hysteresis is a well-known effect which
is either attributed to rate-independent friction (like dry friction) or to metastability
in nonlinear systems. We want to show that there is a close connection between both
situations when we consider slow or quasistatic processes, their extreme being rate-
independent processes which are considered here. In particular, we demonstrate
how the usage of internal variables enables us to use global minimization instead
of studying local stability.

We show this connection for a simple model with a mass point moving slowly
(without inertia) in the nonconvex potential

E(t,w) = p(w) — g(w  with p(w) = 3(w” - 32,

whereg : [0, T] — R is the slowly varying loading. Since the positiar(t) € R
of the mass point always minimizé&(z, -) locally, we haveo’(w(r)) = g(r) and
o (w(t)) = 0, which may have no or one solution lying (roo, —1] or [1, c0),
respectively. The first situation is called phageand the second is called phase
e2. We assume that the mass point remains in a locally stable state (metastable) as
long as possible. If stability is lost, then it drops into the nearest stable point. The
energy loss will be dissipated.

Now takeg(z) = min{r—2,8—t},t 2 0, andw(0) = —2. Thenp'(w()) =
g(t) with w(r) £ —1fort € [0,4] U (10, c0) andw(z) € [1, oo) for ¢ € (4, 10].
Hence there is a sudden phase change-=at4 (with g(z) = 2) fromeq to ez
wherew jumps from—1 to 2 and the energy drops down from 3 downb5/4.
At t = 10 (with g(r) = —2) the phase changes back frepito ¢; wherew jumps
from 1 to —2 and the energy drops again from 3-td5/4. (Note that the global
minimizer changes at(r) = 0 without any energy loss; this relates to the Maxwell
line having no hysteresis.)

The same hysteresis effect can be obtained by using the internal vafiable
{e1, e2} and the dissipation coefficients_.o = k2.1 = 3—(—15/4) = 27/4. We
choose a strictly convex functign: R — R with p(w) = p(w) forw < —1 and
define

~ p(w) —g(®)w forcP =eq,
Btw. P = Ap( ) —g() 1
p(—w) — g(t)w for cP = ep;

andDP : PP x PP — R> with «;_, ; as above. Therw(t), cP(r)) is stable if
E@t, w(t), (1)) £ E(t. D, aP)+DP(cP(1), aP) for b € R, aP € {e1, ea).

UsingaP = cP(r) = ¢; we obtain the necessary local criteriphw(r)) = g(r)
which gives a unique solutiom, ;) by strict convexity. Lety(g) = p(wg) —
gw, = min{p(w)—gw | w € R}; then—n(-) is the Legendre transform gf
with n(2) = 3 andn(—2) = —15/4. Additionally, we may assume, by choosipg
suitably forw > 1,thaty(g) < 27/4+n(—g) for g > 2. Now, asking for stability of
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Fig. 3.1. The upper three graphs shdw(, -) for the three time levels = 2,7 = 3.8 and

t = 4.2 (from left to right). The lower graphs display(z, -, cP) with cP = e1 to the right
andcP = e to the left for the same time levels. The squdrgmdicate the (meta) stable
positions.

(w(t), cP(1)) = (wq(), e1) With respecttdw, e), we find the additional restriction
n(g(t)) < 15/4 + n(—g(t)) which by construction is equivalent tar) < 2.

Thus, using the same loadingr) = min{r—2,8—t}, t = 0, as above and
the initial conditionw(0) = —2, we obtain exactly the same solutior) if we
additionally setcP(r) = e1 for t € [0,4] U (10,00) andcP(t) = e for ¢ €
(4, 10]. The major difference to the approach without an internal variable is that
in this situation the solution paiiw(z), cP(z)) is a global minimizer oﬁ(z, o)+
D(cP(1), -) whereasw(t) alone is only a local minimizer o (z, -).

3.2. Mathematical formulation of the PT model

We return to the PT model and denote Qayc RY, d € {1, 2,3}, the refer-
ence configuration of an elastically deformable body. #o¢ 1 the discrete set
PP = {e1, ..., ¢} is the set of possibleure phases, ¢; is the j-th unit vector
in R". The purpose of this notation is to identify a very natural relaxation with
the convexification of in the following section. The s&P = L1(Q2, PP) is the
set of pure states; the superscHji$ needed to distinguish between unrelaxed (or
pure-phase) models and relaxed models whdiakes its values in a continuous
set.

The elastic material properties of phagere determined by the stored-energy
density W,, (F) where F replaces the deformation gradievit:. For given state
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cP e PP and deformation fiela : @ — R? the elastic bulk energy is given by

gglast(cp’ u) =/9ch(x)(x,vu(x))dx.

Throughout the paper we will assume that the energy-density fundigreatisfy
the following standard assumptions of elasticity:

(i) Growth conditions: there existC > 0 and 1< p < ¢ < oo such that

|F|P/C —C £ W,,(F) < C|F|? +C forall F e R¥4; (3.1)

(iiy W, () isquasiconvex i.e., forallF € R?*¢ and allp € C§°((0, 1)¥) we have

We,-(F)E/

o1y We, (F + Vo(y))dy. (3.2)

These assumptions are needed to guarantee that the elastic problem has a so-
lution. This means that is is possible to find a minimizeﬁ’g%st(cp, ) where the
statecP is kept fixed. Although the existence of minimizers is not really required
in our theory, itis a typical assumption for any realistic choic&f. Our growth
assumptions exclude true energy-density functions for nonlinear elasticity which
should satisfyW,, (F) = +oo for all F with detF < 0. At present the analysis for
this case is not understood but the general methodology of our modeling procedure
stillworks. Our application in Section 5 is for linearized elasticity where (3.1) holds
withg = p = 2.

Our aim is to describe time-dependent processes which are driven by external
forces and boundary conditions. The boundary conditions are imposed by a closed
(affine) subspack of W17 (). Without going into the details we assume that the
change of the Neumann-boundary data and the bulk force can be represented by
a time-dependent functiondl : [0, T] — V*, the dual space df. Thus, at time
t the system is described liyP, u) € PP x V and has the total energy (Gibbs’

energy)
EP (1, P, u) = / Weogo (Vi () dx — (G (1), u).
Q

Here(-, -) is the duality pairing iV* x V.

We assume that each PT leads to a dissipation of an amount of energy which is
proportional to the volume of the region occupied by the transformed material times
the constant;_, ; depending only on the phasgbefore and the phasge after the
PT. Since the dissipated energy should be positive and finite wechaye= 0 and
ki—; = O foreveryi, j. The general theory requires thats coercive and convex.
These two requirements translate directly into

Ccoercivity: ki > 0ifi # j, 3.3)
triangle inequality: Kimsj S Kiosk + Kk— j (3.4)
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for everyi, j, k. Note that our state spa@® is not endowed with a linear structure
since phase-distribution functions cannot be multiplied with a scalar. With these
assumptions we can postulate our dissipation function which instead of taking rates
as an argument is defined on pairs of states.

DP(cP(11), P(12)) = / DP(cP(t1, x), cP(t2, x))dx  whereDP(e;, ej) = ki ;.
Q

Consequently the total dissipation associated with a process is given by the sum of
the individual dissipations:

m

Dis(cP; 11, 1) = sup{ ZDp(cp(rk_l), P () | meN,
k=1

n<rm<n<... <rm§t2}.

The central concept which determines the evolution of the internal$tated
the deformation is the stability criterion (S) which is derived from the postulate
of realizability in [Lev95, Lev97]. Using the notation introduced so far, it reads

EP(t, P, u) < EP(t, BP, v) + DP(cP(1), bP) (3.5)

for all 5P € PP, v € V. Since the dissipated ener@ does not depend on the
deformation:, the concept of stability implies that for giveandcP the deformation
u is a global minimizer of. Hence, we introduce the energy of a stéteia

IP(t, Py =inf {EP(t, P, v) | ve V.
In analogy to (S) and (E) we say that a proc&ss[0, T] — PP is stableiif
IP(t, P(1)) £ IP(t, aP) + DP(cP(1),aP) foraP e PP, 1 €[0,T]  (3.6)

and it satisfies thenergy inequality if

2
IP(12, cP(12))+DisP(cP; 11, 12) < IP(11, cP(11)) — / (G@),u@)dr  (3.7)
n

for0 < 11 < rp £ T. Here the last term contains the energy contribution of the
work done by the external loading. A process is calidahissible for ZP and DP if
it is stable and satisfies the energy inequality.

The definition of stability gives a time-dependent restrictioncftir) € PP. It
does not see the (rate-independent) dynamics of the process. The stability implies
that for no timer; can the process be changed @n #2] such that the differ-
ence between dissipation and energy gain is negative. Similarly, the energy in-
equality generates a restriction in the space of stresses and strain rates. The term
Disd(cP; 11, t2) includes the dissipation which occurs through phase transforma-
tions in the time intervaz1, 12]. Note that the analogue of Theorem 2.5 holds also
for admissible processes in this generalized sense. For instance, by stability, at
timer a PT fromcgId to chew is possible only when the gain in the enefifyis at
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least as large as the associated dissipation. However, the energy inequality gives
the opposite estimate which implies that at a jump we must satisfy the equality
IP(t, coig)—IP(t, chew) = DP(chigs Chew)-

Until now, our model does not quite fit into the abstract framework outlined in
Section 2 since we have not specified a Banach spackhe sets on which the
energies are defined do not have any linear structure yet. This step will be completed
only in the following section where the question, of how to derive a relaxed model,
will be discussed more seriously. Nevertheless, the definition of admissibility leads
to the followingtime-continuous problem.

(CP) For givercy € PP, find an admissibleP : [0, 7] — PP with cP(0) = cf.

Itis not obvious that the set of stable states is nonempty. In [The01] itis proved
that, if (PP, DP) forms a complete metric space, then stable states exist. The marten-
sitic system satisfies this condition. To actually find stable states, i.e., states which
are relevant for the evolution, it is possible to derive necessary local conditions in
the case of the martensitic system. For a proof of the following two results we refer
to [MTL98]. Result (i) can be interpreted as the stability condition of a pure phase
e; with respect to formation of a nucleus including different phases with average
This result shows that already stability is intrinsically linked to the relaxed density
functionsW and A obtained in Sections 4.2 and 4.3. Result (i) relates to stability
of (smooth) interfaces, see the discussion below.

Theorem 3.1. (i) LetcP € PP bestableandlet xg € 2 besuchthatcPand F = Vu
are continuous at x = xg. Then, with W(a, F) and A from (4.5) and (4.10),

Wer(x) (F (x0)) < A(a—c(x0)) + W(a, F(x0)) foralla € P = conv(PP).

(i) Let cP € PP be stable and let xg € € be a point where cP has a phase bound-
ary with normal vector v. Let (e*, FT) betheleft and right limitsof (cP(x), F(x))
which satisfy by strain and stress compatibility F*—F~ = a®v and

To X 8, W, (FF)v = 9p W,- (F~)v. Then,
—DP(et,e™) S W, (F ) =W (FH+To-(([Ft—F~1v) £ DP(e™, e™).

The scalar quantity = W,- (F~)—W,+ (FT)+To-((FT—F~]v) is the normal
componenb - (Egv) of the Eshelby tensoEy. It is well known in the literature
[Gri91,KaR88,Lev95,Leva7] and is frequently denoted as the driving force for
the interface. As long aslies strictly between-DP(et, e™) andDP(e™, e™) the
interface cannot move in a time-continuous process since the dissipation plays
the role of a threshold. | reaches the valuBP(e~, e*) the interface can move
such that phaset grows, and analogously phase will start to grow if ¢ =
—DP(eT, e7).

From the abstract theory in Section 2, especially the incremental approach in
Section 2.3, it is natural to try to find solutions by time discretization. Choosing
a discrete setof times & 19 <11 < --- <t < --- < ty = T we are lead to
consider the associatéctremental problem (IP):
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(IP) For givenc) € PP, findcl, ..., e PP such that
TPk, c)+DP(ch_y, cf) = inf { ZP(1x, aP)+DP(c}_4.aP) | aP € PP},
fork=1,...,N.

In contrast to Section 2 we do not have the special fPR@P, cP) = A(cP—aP).
However, the triangle inequality (3.4) takes over the role of convexity in Sec-
tion 2 and we are still able to conclude that the solutions of (IP) are stable for
t = 11,...,ty. In complete analogy to the abstract theorem, Theorem 2.6, we
obtain the desired properties for solutions of (IP).

Lemma 3.2. Assume that DP : PP x PP — R satisfies (3.4), then solutions
of (IP) are stable, i.e,, ZP(1, cf) < ZP(tx, aP)+DP(c}, aP) for all aP € PP, and
satisfy the discrete energy inequality

73

IP(te, ) + DP(cf 1, e)) S TP(tk1, ¢} ) +/ HIP(s, cf_4)ds.

-1

We refer to Remark 4.8 for the necessity of the triangle inequality in this context.

4. Coarse graining viarelaxation

The formulation we derived so far is not satisfactory, for two reasons:

(1) The existence of admissible processes cannot be assured, not even for the
incremental problem. Since the state sp@e= L(2, PP) is not weakly
closed, it is unclear whether for fixeds [0, T] andaP € PP, the functional

P IP(t, cP) + DP(aP, P)

has minimizers. Therefore we cannot use the incremental problem to construct
solutions.

(2) The numerical solution of the incremental problem would exhibit strong oscil-
lations, cf. [CaP97]. Energy considerations show that if the data is chosen in
order to achieve deformations in the “soft” directions of a shape-memory alloy,
strong oscillations are needed to avoid large stresses.

For these two reasons it is necessary to derive a coarse-grained model which
relies on effective quantities like phase portions instead of being restricted to pure
phase distributions. Itis not particularly difficult to find extensions from pure-phase
models to models with phase mixtures so that the existence of admissible processes
can be guaranteed. The problem is to establish a clear link between the extended and
the original model. Such links can be obtained in several ways. An abstract notion
which is closely related to the spirit @f-convergence can be found in [TheO1].
Here we develop an approach based on the incremental method which is used to
construct solutions. We first introduce the notion of separate relaxation which is
based only on phase portions and compare it then to a more sophisticated definition
(incremental relaxation).
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Since existence and uniqueness of a separately relaxed model (not the solution!)
is obvious, we can study its properties in the following sections. First, we derive
more explicit expressions for the separately relaxed energies. Then we explain, how
these formulas can be used to convert the rather unusual incremental problem into
a standard problem in the context of nonlinear elasticity theory.

Finally we show that the special form of the separate relaxation allows us to de-
duce a simple differential inclusion as a necessary condition for relaxed admissible
processes with respect to the separately relaxed energies.

For each notion of relaxation we obtain a new incremental problem and rate-
independent evolution problem. To distinguish all these objects properly we have
tabled the relevant nomenclature.

unrelaxed separate incremental
PT problem relaxation relaxation
states, energy, diss.| PP, ZP, DP P.I,D P.I,D
continuous problem (CP) (SRCP)
incremental problem (IP) (SRIP) (SRIP) (RIP)

4.1. Two notions of relaxation

Here we describe two possible notions of relaxation which remain solely on
the level of the incremental problem (IP). Since (IP) is a variational problem we
may study its relaxation. Neither in a real physical process nor in a mathematical
approximation of (IP) can we expect exact minimizatiof®fz, -) + Dp(c,f_l, )
to occur. The general philosophy of relaxation of rate-independent problems is
developed in [The01, Mi02b].

4.1.1. Separaterelaxation. The simplest approach, which has been successfully
applied in related situations (cf. [FrM93]), consists in relaxing the functional
JP(, aP, c?) = IP(t, cP)+DP(aP, cP). The special structure gfP (aP, c?), namely
that it is a sum of two terms, simplifies the analysis enormously. The first term
IP(z, cP) does not depend ar? and the second ter@P(aP, cP) depends oaP and
cP only pointwise under the integral over.

We defineP as the weak closure ¢#°; obviouslyP = L1(2, P) whereP is
the convex hull ofPP, the unit simplex. Foa, ¢ € P we now define the relaxations

I, ¢) = inf { liminf Z°(r, ¢b) | ¢ — ¢ form — oo ] (4.1)
m

D(a,c) = inf { liminf DP@?, ) | ab —a, & — cform — oo } , (4.2)
m—0Q

Ji(a,c) =L(ty,c) + D(a,c).

Note thatDP(-, -) is relaxed in both variables simultaneously. It is not so difficult to
see that7, is in fact the simultaneous relaxationﬁf in both its arguments, viz.,

Ji(a, c) = inf { liminf jkp(a,%, Ayl ah —~a, & —cform— oo }
m—00
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It is a triviality that the separately relaxed incremental problem (SRIP) has a solu-
tion:

(SRIP) For givertf € PP, findcy, ..., cy € P such that
Tk (ck—1, cx) = Inf { Tk (ck-1,a) | a € P}.

Proposition 4.1. For all cg € P the sequence of minimization problems (SRIP)has
a solution.

This approach is obviously too simplistic to be helpful in situations where not only
the concentration but also more delicate properties of the microstructure play a
role. However, because of the concreteness of the notion of separate relaxation
(only phase portions occur), it is possible to obtain structural resul¢g aR, P).

In Sections 4.2 and 4.3 we will derive formulas for ba@ttand D which are still

local in space.

The notion of separate relaxation is quite closely related to similar approaches
for stationary problems. Obviously, it is uniquely determined by the unrelaxed
problem. Its main value for the relaxation of rate-independent evolution problems
is that it leads to well-posed incremental problems and provides good candidates
for an incrementally compatible relaxation.

4.1.2. Incremental relaxation. To find a more honest notion of relaxation we have
to take the influence of the microstructure into account. An attempt which avoids
discussing the structure of the time-continuous evolution problems is given by the
following approximate incremental problem (AIP), where quasiminimal solutions

are allowed.

(AIP), For givene > 0 andcf) € PP, findcl, ..., ¢} € PP such that
IP(te, c)+DP(c]_y, cf) < e+inf {ZP (1, aP) + DP(c]_;, aP)|aP € PP} .

Clearly, this problem always has (many) solutic@a%s, cees C?V.s)' Itis not at
all clear under what conditions the limigs— 0 andN — oo commute. Here we
propose a relaxation which is based on the incremental problem, consequently we
first sends to 0.

Definition 4.2. Let X be a Banach space and &, D, P) be an extension of
(ZP, DP, PP) in the sense thaPP? c P C X, Z|pr = ZP andD|ppyppr = DP.
The incremental problem associated with D, P) is denoted by (RIP). Then,
(Z, D, P) is called arincremental relaxation of (ZP, DP, PP) if

(i) foreachco € P (RIP) has a solution,

(i) PP is dense irP with respect to the weak topology, and

(iii) for any solution(c. ... . cy) of (RIP) there exist solution&? ... ..., ¢}, ,) of
(AIP), such that} , — ¢ for & — 0.

An alternative (or additional) condition to (iii), which is probably much stronger,
is that all weak limits of solutions of (AlIR)are solutions of (RIP):
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(iv) If (c},.....c%,) solves (AIP) andcf, — cx, then(c. ... . cx) solves
(RIP).

A natural question is: Which conditions guarantee that the separate relaxation
indeed is an incremental relaxation? This problem can be understood best by con-
sidering infinimizing sequence{s,f,g) obtained from (AIP) with weak limitscy
for e — 0. The separate relaxation is based on the assumption

Dp(clfflﬁs, c]r:’s) — D(ck—1, cx) fore — 0. (4.3)

Clearly this is not correct for general sequences. The problem is that the weak
limits ¢, only contain information on the macroscopic volume fractions of the
pure phases and none on their microscopic arrangements. On the one hand, for
infinimizing sequences the modeling error may be small as these sequences try
to minimize DP which means that changes in the microscopic arrangement are
energetically less favorable. Yet, on the other hand the microscopic arrangements
are enforced by the first ter@P(z, -) and might differ atr,_; and#. Then our
relaxation underestimates the dissipated energy.

So far, arigorous connection between (IP) and (SRIP) via (AfR)nly known
in the (trivial) one-dimensional case and in the case of linearized elasticity with
two phases with the same elastic moduli. The latter case is stated in the following
theorem, a proof is found in [The00, The01].

Theorem 4.3. Assumethat n = 2, C € Lin(R&, R&x) is positive definite and
that

We, (F) = 3[C(E—ADI[E—A;]1 + BV with 4; e R&w. BV e R, (4.4)

where E = (F+FT —2I)/2. Then the separate relaxation is an incremental relax-
ation in the sense of Definition 4.2.

The main reason why this special case can be handled is that here the formation
of microstructure can be controlled very well. It is sufficient to study lamination in
one specific directiom € R?. Moreover, it is exactly this two-phase problem for
which we are able to provide an existence result for the associated time-continuous
relaxed problem (SRCP), see Theorem 5.1.

4.2. Relaxation of the energy ZP

We recall that the energy-density functios, : R?*¢ — R of the pure phases
are always assumed to be quasiconvex, cf. (3.2). To understand the idea of coarse
graining we consider a small bali(xg,r) = {x € Q | |[x—xo| < r} inside the
body2 where the averaged phase distribution is given b:ny(xo’r)cp(x) dx. We
now allow for suitable rearrangemenfse L1(B(xq, r), PP) of the phases without
changing the average and we also allow for fluctuatigposthe deformation which
have to vanish on the boundary of the ball. For smalthese fluctuations can
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be understood as microscopic adjustments which do not affect the macroscopic
deformation. Lettingc = xo + ry with y € B we are led to thenixture function

W(c, F) % inf { ][ Wep(y) (F+V () dy ' ¢ € WS (B),
B
® e LY(B, PP), ][cp(y) dy=c } (4.5)
B

This defines a functiofV : P x R4*4 — R; (¢, F) — W(c, F) which satisfies
Wej, F) = W, (F) sinceWej was assumed to be quasiconvex. TH¥s;ontains
information on the mixture theory without the addition of new mechanics, just using
the fact that elasticity theory is scale invariant. In general the minifi@ F) is
not achieved, but we need an infimizing seque(m§938>o; this tells us that certain
microstructures are needed to minimize the energy under given phase fractions.
The functionsW was already defined in [Koh91] as a tool to study the quasi-
convexification of minf W, (F) | j =1,...,n}. There,W(c, F) itself plays a
central role and is called tlypiasi convexification with fixed phasefractions, denoted
by O.W (F). Related applications in the theory of phase transformations for shape-
memory alloys are given in [Mie00, GMHO02, Mi02b]. More recently the function
appeared in [FKP94,LeR00] to model elastic materials with internal variables. In
the latter work the functiof¥V is calledcross—quasi convexification.
The importance of the mixture function is that it is exactly the right tool to
characterize the relaxatidnof the functionalZP. Define€ : [0, T] x P xV — R
andZ : [0, T] x P — Rvia

Et,c,u) = / W(c(x), Vu(x))dx—{(G (), u),
Q

Z(t,c)=min{E¢,c,u) | ueV}. (4.6)

From [LeR00], Ch. 4, the following result follows immediately by subsequent min-
imization with respect to the elastic deformation.

Theorem 4.4. Assume that W,, () satisfies (3.1) and (3.2). Then, the relaxation Z
of ZP, asdefined in (4.1), is given by (4.6).

Furthermore, W(-,-) : P x R¥*? — R is cross-quasiconvex in the sense
of [LeR0OO], which implies that W(-, F) : P — R is convex for fixed F and
W(e, -) : R4 — R isquasiconvex for fixed c € P.

Unfortunately, only a limited number of examples are known, wiérean be
computed explicitly. The first such case is the one-dimensional case. There we have
the formula

W(c, F) = E( Zc(j)ﬁWej)(F) withc = (¢, ..., ™7,
j=1
where/L is the Legendre-Fenchel transform with

(LW)(o) =inf{ocF —W(F) | FeR}.
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In the quadratic case witW,, (F) = nTl,.)(F—A@)ZJrﬁ(") andn® > 0 this gives

W(e, F) = (F—=A-¢)’/n-c+8-c.

The second case where the mixture function can be calculated is that of lin-
earized elasticity with identical elastic tensBr € Lin(R&i . R4w) which is
positive definite, i.e., there exists> 0 such that

d
CE:EE Y (CE);Ej 2 wE:E forall E e REL. 4.7)

i.j=1

We continue to use the abbreviatidh= %(F+FT)—I for the linearized strain
tensor. WithC and a directionn € R¢ we associate the so-called acoustic tensor

A(w) € Ry via

[A(w)a] -a = %[C(a@a) + w®a)]:(aRw + w®a) fora € RY.

Proposition 4.5. Assume that C satisfies (4.7) and that W,, has the form (4.4).
Then,

We, F) =Y cDWe, (F) + wmix(c), (4.8)
i=1

where wmix : P — R is convex and satisfies wmix(e;) = 0 and the bounds

n
02 wmix(c) 2 —3 > ¢V [CA/:A; + 3[CA°]:A°
j=1

with A¢ = 3, ¢V A;. Moreover, if A; = Ag+aPAfor j =1,...,n,then
thereisthe explicit formula

wmix(c) = —g[z (a(j))zc(j)—(a-c)z] witha = (a(l), ca™)
j=1

andy = max{|A(a))_1/2(CA)a)|2

o] = 1} . (4.9)

In the caser = 2 the explicit formula (4.9) is always applicable. The first part
of the assertion follows from the quadratic nature of the problem, see, e.g., [Kha67,
R0i67,Kha83,Koh91] where also the case= 2 was solved. Formula (4.9) for
n = 3 was established in [Mie00, GMHO02] and applied to a particular PT problem
with one austenite and two martensitic phases in [PAM98]. For partial results in
more generals situations we also refer to [SmW98, Mie00].

Hence, we arrive at the following special case of Theorem 4.4.
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Theorem 4.6. Let (G(¢),u) = ng(t,x) ~u(t, x) dx and let We, be given asin
Proposition 4.5 and € and Z asin (4.6) with W from (4.8). Then,

Z(t, ¢) = min [ Et,e,u) | ueV cWH2(Q) }
— ) + fg [(Loc)(x) + 80t )] - () + wmix(c(x)) dx.

where Lg € Lin(Y,Y) with Y = L%(Q,R") is a self-adjoint operator and
gt,)eY.

Proof. The validity of Theorem 4.4 in this special case is also proved in [The01].
The second identity follows immediately from the first by using the quadratic nature
and the fact that &2, P) can be embedded continuously irito Minimization

in u does not involvewmix and it follows that the minimizer = U(G(), ¢)
depends linearly otv (¢) andc, i.e.,U (G, ¢) = K1G + Koc with K3 € Lin(V*, V)

and K, € Lin(Y, V). Inserting this linear expression gives the desired quadratic
expression. O

In Section 5 we will use this quadratic structure as well as the factiha a
pseudo-differential operator of order 0 whose symbol is positive definite.

4.3. Relaxation of the dissipation functional

The relaxatiorD : P x P — R of the functionDP : PP x PP — R- as
defined in (4.2) can be calculated much easier, sifi@P, cP) depends onP and
cP only through a simple integration over the point value®8faP (x), cP(x)). For
(a,c) € P x P we set

n
D(a, c) = inf { Z Mjikj—si

jhi=1

n
mji 20, Y my =a',
i=1

n
> mj=c? } (4.10)
j=1

Clearly D is obtained by minimizingdP(aP, cP) overaP, ¢P € L1(B, PP) under
the constraints = f,aP(y) dy andc = f,cP(y) dy. The coefficients:;; in (4.10)
are simply the relative measures of the detse B | a(y) = e\, c(y) = €@ }.
Usingkj— j = 0,kmin = min{kj—; | j # i}, andemax= max{xj; | j #i},
we immediately find

Kmin

2

n
lc—al1 < D(a, ¢) < Kn;x|c—a|1 wherelpls € S" p0). (4.11)
=1
We also haveD(ej, c) = >I_; ¢Pk;_,;. Since the difference—a for a,c € P
will play a major role we define the linear space

x —

Rl ={zeR"| ze, =0} wheree, =(1,...,1".
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Proposition 4.7. Thefunction D : P x P — [0, c0) isconvex, i.e.,

D(Oa1+(1—0)az, 0c1+(1—-0)c2) < 0D(a1, c1) + (1—-0)D(az, c2)
for 0 € [0, 1].

If DP satisfiesthetriangleinequality (3.4), then so does D and there exists a unique
function A : R? — [0, co) which is homogeneous of degree 1 (i.e, A(ab) =
aA(D) for o = 0and b € R?) such that D hasthe form

D(a,c) = A(c—a) foralla,ceP. (4.12)

Remark 4.8. The triangle inequality plays a twofold role. First, it guarantees the
difference representation with. Second, it guarantees the stability of the solutions
of the incremental problem. To illustrate the necessity in both cases, consider a
situation with three phases. Let .3 = « andk;_,; = 1 else fori # j. For the
volume fractions: = (1/4, a, 3/4—a)T andc = (0, o, 1—a)”, we havec—a =
(—1/4,0,1/4)T which is independent af. Fork e (0, 2] the triangle inequality
holds and we findD(a, ¢) = «/4. Fork > 2 anda € [0, 1/4] we haveD(a, ¢) =
20+ (1—4a)k /4 which clearly contradicts the difference formula.

Moreover consider the trivial energi@®(r, ¢;) = 6—2; together with the
initial statec0 = e1. Then,ZP(z, cP) + DP(e1, cP) is minimized withcP = e, for
k 2 3and withcP = ez for « < 3. Howevergs is never stable whereasis always
stable.

Proof. Considera;,c; € P and Ietm](.i{) be the minimizers in the definition of

D(a;, c;) fori =1, 2, that ISm(') =0, J(’l) = l.(/), and) ™ ,; ](ll) = c(l)
Then,mﬁ’) = Om ](,1) + (1— B)m](.lz) forms an admissible set in the definition of
D(@a1+(1-0)az, 6c1+(1—6)c2), which gives the convexity result after separating
the minimum into the weighted sum of two minima. The triangle inequalityfor
follows by a straightforward use of its definition and (3.4).

The proof of the representation (4.12) involves the standard duality theory for
linear transport problems as developed in the textbooks [Gal60, Gas58]. This theory
implies the dual representation

D(a,c) = max{ w-c—v-al| u,veR with g —p® < ki j foralli, j ] )

Using the triangle inequality, we now have to show that in the above maximum we
can restrict the variables andv to the case. = v, which then gives the function

A(c— a) max{u (c—a) | neR", u —/,L()<I(_>jf0rl ]} (4.13)

To this end we employ the following standard optimality conditionif;) is a
minimizer in (4.10) andw, v) a maximizer in the dual formulation then

mij >0 implies i ; = p—v®, (4.14)

Thus, usinge; . ; = 0 we are finished if we can show that; > O for all j =
1,....,n.
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Using the triangle inequality we show that it is always possible to find a mini-

mizer (m;;) in (4.10) which satisfies
mi; = o; With o; def minfa®, c®}fori =1,... ,n. (4.15)

Indeed, if this were not the case for sotige then there would exisjyp and kg
such that = min{m;yj,, migi} € (0, o9—migip]. By the triangle inequality it is
advantageous, for minimizind_ «;_, jm;;, to increasen;y, andmygj, by § > 0
and decreas®;, j, andm;, by the same amount. Clearly after a finite number of
such operations we achiewg, = m;,.

Using identity (4.15) and the extremality condition (4.14) we conclude that
u = v in the dual problem whenever and ¢ have positive coordinates. Then,
the desired relatioD(a, c) = A(c—a) follows. By continuity of D and A it
immediately extendstoalladPx P. O

We now define the integrated functidn: L1(Q, RY) — R> via

A(z) = / A(z(x))dx. (4.16)
Q
Under the assumption thABP satisfies the triangle inequality we hab&(aP, cP) =
A(cP—aP) and henc®P(aP, cP) = A(cP—aP) for all aP, P e PP.

Theorem 4.9. Assume that DP : PP x PP — R satisfies the triangle inequal-
ity (3.4). Then, the relaxation D : P x P — R> defined in (4.2) is given
by D(a,c) = A(c—a). It satisfies the triangle inequality and Kminllc—all L1 <
2D(a, ¢) < kmaxllc—all 1.

The proof can be found in [The01].

4.4. The separately relaxed incremental problem

Using these two relaxed functionals we obtain a relaxed formulation of the
incremental problem (IP). Witl from (4.6) andA from (4.16) we postulate the
following separately relaxed incremental problem:

(SRIP) For givercg € P, findcy, ..., cy € P such that
Z(tk, ck) + Alcg—c—1) = Inf {T(tx,¢) + Alc—ck—1) | c € P}
fork=1,...,N.

Clearly, solutionsck)r=1.....n Of (SRIP) are stable and satisfy the incremental
energy inequality (cf. Theorem 2.6), viz.,

(S) Z@,cr) £I(tx,a)+ Ala—cy) foralla e P,
(E)iner Z(t, cx) + Alck—cr—1) = Z(tx, cx—1) t
k

= Z(tr—1. Ck—1)+/ 3 Z(s, ck—1)ds.

k-1
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There are two ways to see that (SRIP) always has a solution. In the first case
we use the general constructiondfand A which implies thatJ;(a, ) : P —
R; ¢ — Z(t, ¢) + A(c—a) is weakly lower semicontinuous. Singeis bounded
in L>(2, R?) the existence of a minimizer follows. The second approach to the
existence of minimizers € P is much more useful for doing actual numerics. We
reintroducex € ¥V and minimize the functional

Grla,c,u) =E@, c,u) + A(c—a)

= / W(c(x), Vu(x)) + A(c(x)—a(x))dx — (G(1), u)
Q

with respecttdc, u) € P x V. Asc(x) appears only locally in the integral we may
minimize with respect te first and do the minimization pointwise ine Q. For
this purpose define threduced incremental energy density

W'y, F) =min{W(c, F) + A(c—a) | c€ P}, (4.17)

where, by continuity ofW(-, F) + A(- — a), the minimum is achieved at =
C(a, F), ie., ¥ F) = W(C(a, F), F) + A(C(a, F)—a). The cross-
quasiconvexity o implies that, for each € P, the functionw"®9(a, -) is quasi-
convex, cf. [LeR00]. Hence, the functional

G'edt, a, u) =/Q\I/red(a(x),Vu(x))dx—(G(t),u)

is weakly lower semicontinuous, cf. the general theory in [Dac89, FKP94,LeR00Q].
For our special case of Proposition 4.5 with= 2 the functionst"dandC can be
given explicitly, see [MTL98, MiT99, CaP00]. Now, (SRIP) can be reformulated as
follows.

(SRIPY Forch € PP, find (c1, u1), ... , (e, un) € P x V such that

Gy, cr—1, ug) = inf{ G, cx_1,v) | v € V)
and then let, (x) = C(ck—1(x), Vugr(x)).

The formulation of (SRIP)has the major advantage that it reduces to a simple
variational problem for the variablg € V. By the quasiconvexity of"%(a, -) the
existence of a minimizer is clear. The important message is that the furcfi8is
in principle completely determined from the pure energy densitigsF) and the
dissipation coefficients;_, ; = D(e;, ¢;). It can be calculated either analytically or
numerically before even starting to solve the incremental problem (SRIP). (Similar
reduced densities and functionals appear in elasto-plasticity [CHMO02, Mi02a].)
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4.5. The relaxed time-continuous problem

One reason for choosing the separate relaxation was to obtain rather explicit
results. The second reason is that the structure of the problem remains the same.
In particular, (SRIP) can be interpreted as the incremental version of a new time-
continuous relaxed problem. The functionaland A constructed above are now
the ones used in the abstract existence theory of Section Zcphetely relaxed
time-continuous problem is exactly that of the existence of an admissible process
as stated in the abstract section.

(SRCP) Giverrg € P, findc : [0, T] — P with ¢(0) = ¢o such that(r) € P is
stable for allr € (O, T] and that the weak energy inequality holds, viz.,

(S) Z(t,c()) £Z(t,a) + A(a—c(t)) forallt € (0, T]anda € P,
T T
(E) Z(T. e(T)) + / A(de) £ (0, co) — / (G0), o),
0 0

whereu(r) = U(G(t), c(t)) is a minimizer ofE(z, c(¢), -).

Note that in our situation we ha®Z(z, ¢) = —(G(¢), U(G (1), c(r))) such that
we are in accordance with (E).

According to Section 2.3 we can associate with (SRCP) an incremental problem
to obtain solutions. By construction this is exactly the separately relaxed incremen-
tal problem (SRIP) we started with. It is the purpose of the next section to show
that the assumptions of the abstract existence theory are satisfied for a nontrivial
special case. Thus, we are able to conclude that there exist solutions for (SRCP).

Remark 4.10. The above relaxation can be understood as a Young-measure relax-
ation as studied in [Mi02b]. The spacé(Q, P) is exactly YM(R2, PP), the set of
Young measures af? taking values in ProfPP) where ProloPP) is identified with

P = conVPP). Note thatPP is finite andP compact. By construction, the distance

D : P x P — [0, c0) is exactly the Wasserstein distance on PRY) associated

with the distanceDP : PP x PP — [0, co) on PP.

Finally we show that (SRCP) can be interpreted as a doubly nonlinear differ-
ential inclusion which looks similar to flow rules in plasticity, cf. [CoV90,MiT02,
Mi02a]. This will be a specification of the abstract flow rules discussed in Theo-
rem 2.3. In the engineering literature such flow rules are used for phase transfor-
mation problems as well, see [HaG99, GMHO02].

Here we use specifically th@ = L1(Q, P) andA(z) = fQ A(z(x)) dx are
given pointwise it € Q. This allows us to make the differential inclusion (2.9)
quite explicit. Definex C R} = {z € R" | z-e, = 0} via the subdifferential of
A:R} - RasX = dA(0). According to (4.13) we have

T =comnMoy,... oy} and A(x)=max{zo;| j=1...,N}.
In particular we findt = {0 € L¥(Q,R?) | o(x) € = fora.ex € @} and

0AR) ={oc X | o(x)z(x) = A(z(x)) fora.ex € Q}.
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Similarly the outer normal cong&X¥p(¢) = N.P can be characterized pointwise
NP ={o eL®Q,R}) | 6(x) € NP foraex e},

where N P C R} is the finite-dimensional normal cone of the polytape

The derivative of the functiondl(z, -) is best represented by reintroducing the
deformationu and the associated equation for the elastic equilibrium. Recall for
this end thatZ(z, ¢) was defined by minimizing (¢, ¢, u) with respect ta: € V.
This leads to the doubly nonlinear form ([CoV90, MiT02]) of the problem:

0=D,E(t, c(t), u(t)),
0 € dA(C(1) + DE(t, c(t), u(r)) + Ny P.

Here the first equation is the classical elliptic system describing the elastic equilib-
rium and the second relation is a flow rule f@r, x) which is completely local in

x € QWith(G(t),u) = fQ g(t, x) - u(t, x)dx, the full problem can be written as
follows.

Local flow formulation. For almost all(z, x) € [0, T] x © we have
.0
0 =divy,—W(x, Vyu(t, x), c(t, x)) + g, x)
IF 3 (4.18)
0e€dA(c(t, x)) + %W(qu(tv x), c(t,x)) + Nege,x) P

together with the standard boundary conditions.
The second relation can be reformulated without the subdifferential of

3n(t, x) € Ne,x) P such that

A(c(t, x)) + ¢(t, x)- [%W(qu(t, x), c(t, x))+n(t, x):| =0

fora.e.(z, x) € [0, T] x Q. Recall thatW is convex inc € P, however it may not
be differentiable. In such a case we may replace the partial deriva%tWQF, c)
by any element in the subdifferenti@&W (F, c).

5. Existence of admissible processes for a special case

We now restrict our view completely to the case of linearized elasticity with two
phases{=2) whose elastic tensors are identical. For this case the mixture function
W is given explicitly in Proposition 4.5. We simplify the notation by identification
of P = conV{eq, e2} C R? with the interval[0, 1] via the mappindO, 1] > 6
(1—0)e1+0e,. Moreover, we will use the (infinitesimal) displacemgnt — R?

rather than the displacement x — x + ¢ui(x), wheres is a small parameter. We

will consider phase distributions € 7 = L1(%2,[0,1]) ¢ X £'L(@, R) and

displacement& € V = {v e W}2(Q,R9) | v|r = 0}, wherel is that part of
Q2 where Dirichlet boundary conditions are prescribed.
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The mixture function takes the specific form
W, E) = 52 CIE—A1l:(E—A)+5CIE—A2l:(E—A2)—50(1-0), (5.1)

whereC satisfies (4.7) ang is defined in (4.9) withA = A,— A1. The dissipation
functional now reads\ : X — R>;¢ — [ A(C(x)) dx with k1.2, k2,1 > 0
and

AR — R>: ¢ > maX{ikisz2, —{ka1}). (5.2)

The aim of this section is to proof an existence theorem for the separately
relaxed problem (SRCP) for this special case. The following result gives a typical
situation. However, slight generalizations are possible.

Theorem 5.1. Let Q@ ¢ R? be a bounded domain with C! boundary and P, X, V,
A, and W as above. Moreover, assume G € CL([0, T'], V*) and let

I(t,0) = min{/ W, %(Vﬁ—i—VﬁT))dx +(G(@), i)
Q

EEV}.

If additionally either (a) or (b) hold, where

(&) T = a2 (full Dirichlet conditions),
(b) Ax—A1 = bRE+ERD for some b, & € R? (infinitesimally rank-one connected
wells),

thenfor eachcg € P thereexistsanadmissibleprocessinthesenseof Definition 2.1,
i.e., asolution of (SRCP)

The proof of this result constitutes the remainder of this section. In fact, we
can strengthen the result slightly. If (a) as well as certain algebraic conditicDs on
andAz—Aj hold, it is possible to prove strict convexity 6fz, -), see Remark 5.6
at the end of this section. Then, Theorem 7.5 in [MiT02] implies continuity of
c:(0, T]—> P.

Our special case can be handled due to the fact\thag quadratic inc and
Vu. Hence, it is possible to work out the form &fz, 6) more explicitly than in
Theorem 4.6. We use also the Hilbert spéice: L2($2, R), which is possible since
the weak and strong topologies &which are induced by andX are the same.

Proposition 5.2. If the assumptions of Theorem 5.1 (but not necessarily (a) or
(b)) hold, then there exist € CY([0, T], R), g € C([0, T, Y) and a symmetric
operator L € Lin(Y, Y) such that

I(t,0) = n(t)+[Q[(%Le)(x)+§(z,x)]9(x)dx.

Moreover, L is a pseudo-differential operator of order 0 which has the symbol
¢ : R\ {0} — R given by

L) = ¥ — (o) With A(w) = [A(a))*l(CA)w] [(CA],  (5.3)

where A = A>— A1, and hence is nonnegative, cf. (4.9).
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Proof. We have to minimize£(z, 6, ), which is quadratic in@,%) € ¥ x V
with respect tou € V. We obtain the unique minimizef = K1G(t) + K20
whereK; € Lin(V*, V) andK> € Lin(Y, V). Note thatkK; is a pseudo-differential
operator of order1. Inserting this result int&(z, -) defines the differentiable
functionsr — n(z) € R andr — g(¢) € Y and the pseudo-differential operator
of order 0, ast = %(V’J+Vﬁ7) is a differential operator of order 1.

It remains to calculate the symbol af This is done most easily by inserting

E=E,, def 3(a®o + w®a) € R&xd into the quadratic part 6V which gives

1CE, wiEqw—0CEqwiA+0°% = LA(w)a-a — 0CAw - a + 6%%.
A subsequent minimization with respectda R? yields the desired result.o

From the theory of pseudo-differential operators, it follows that the range of
the symbol¢ constitutes the continuous spectrum whereas compact perturbations
which are not seen in the symbol may generate additional discrete eigenvalues.
Such compact perturbations arise from the different boundary conditions for the
displacemernit. However, we conclude that the (strictly) negative pait ofiust be
compact and it is exactly this property which guarantees weak lower semicontinuity
of Z(z,-) : Y — Rand hencethat & (s, -) : P c L1, R) — R. Itis remarkable
that the continuous spectrum always includes 0, as the definitipriojust such
that the minimum oft(w), 0 # o € R? is 0. This implies thatZ can never
be uniformly convex. However, strict convexity is still possible depending on the
compact perturbations through the boundary conditions.

Our subsequent existence result will work for all cases wleis positive
semi-definite. Thus, we give some cases where this can be guaranteed. We now
have to take into account the boundary conditionsifdiVe recall thal" C 92 is
that part of the boundary where we have imposed Dirichlet datay|je= O.

Lemma 5.3. The operator L is positive semi-definite if either (a) or (b) in Theo-
rem5.1 holds.

Proof. The idea of the proof is to return to the quadratic functigh@l 6, u) and
to eliminated first, cf. Section 4.4 and the derivation of (SRIR)Y the analogous
strategy. Consider the quadratic form

1
00, 1) = / 5CE(E):EGZ) —O9CE®@):A + ngdx,
Q
with E(@) = %(VﬁJrV’zZT), which is the homogeneous part of degree Z of
On the one hand we havg,(L6)6 dx = 2min{ Q(0,%) | u € V}. On the

other hand we may eliminatefirst to obtain

~ 1~

O@) =min{Q®,%) | 6eY)} =/ ECE(iZ):E(iZ)dx,

Q

where the reduced elasticity tengdis given byCE:E = CE:E — [CE:A1%/y.

Clearly we haveL. = 0 if and only if Ou) = 0 for all u_€ V. SinceQ is
homogeneous, the last condition is equivalent to convexit@ .of
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The case (a) is now obtained by studying the symbol associatecwithich
takes the forn(w) = A(w) — %[(CA)w]@[(CA)a)]. Usinga = A(w)~Y2b we
find

S@a-a = pP-2(CAw- Aw) V2P 2 p2(1-L A VACHP),

and using the definition of shows that the symbol is always positive semi-definite.
This means that the functioR %6(F+FT):(F+FT) is rank-one convex.
Together with the full Dirichlet condition this implies convexity Of cf. [Dac89].

For the case (b) we cannot use the boundary conditions. Instead we show con-
vexity of O by convexity of the integrand, i.€GE:E > 0 for all E € RExd. We
define a scalar product dzg;,g via ((E1, E2)) = CE1:E». Then, on the one hand
we haveCE:E = ((E, E)) — ((E, A))?/y: and convexity holds, by the Cauchy-
Schwarz inequality, if and only if(A, A)) < y. On the other hangt takes the
form

y =max{ (Ea.wn A)2/({Eawr Eaw)) | 0#a,0 <R | < (A, 4)).

By assumption (b)A = E; ¢ is an admissible candidate in the maximum and we
conclude thay = ((A, A)) and, hence, the desired convexity followsa

We now want to apply the abstract theory of Section 2. Clearly, the quadratic
form of Z and the continuous differentiability nimplies that all necessary conti-
nuity assumptions are satisfied fbrand A. Thus, Theorem 2.6 is applicable and
we have solutions of the incremental problem (SRIP) which are stable and satisfy
the discrete energy inequality. The compactness condition (2.1B forY c X
is also fulfilled and thus Corollary 2.8 allows us to extract a limit functi&hsuch
thatd = (6*°)~ is a suitable candidate for the solution of (SRCP). The abstract
existence theorem, Theorem 2.9, has two further assumptions. The first is the weak
continuity of the mapping — 9;Z(¢, -) which clearly holds due to linearity.

The second condition is the weak closedness of the set of stable states

S)={60eP | Z(t,0) SI(t,{)+ A—0)forall; e P}.

It is here that we need to restrict our analysis to the case wher@ositive semi-
definite. We do not believe that this condition is really needed, but we were unable
to find a proof for the more general case. Recall that convexif(af-) does not
imply convexity ofS(¢); we have to use the theory of pseudo-differential operators
in the form of the H-measure, also called microlocal defect measure [Tar90, Ger91].

Proposition 5.4. If, in addition to the above assumptions, L = 0, then the set of
stable states S(¢) isweakly closed for all ¢ € [0, T].

Proof. For simplicity we omit the dependence othroughout the proof.
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—K1-52 0 K251 o

Fig. 5.1. The (nonconvex) se¥ C R2 is the filled rectangle plus the two infinite halflines

Clearly,Z(z,-) : Y — R is differentiable and convex due fo = 0. Hence,
0 € Sifandonly if DZ(0)[¢—0]+ A(¢—0) = Ofor all¢ € P. (In the nonconvex
case this is necessary but not sufficient.) Written as integrals this gives

/Q[LG(X)+§(X)](§(X)—H(X))+A(§(X)—9(X))dx =0 (5.4)

forc € P = LY, [0, 1]). This condition has the big advantage that the test
function¢ appears only locally under the integral. Thus, we can yappintwise
and find that € S if and only if

O(x), (LO)(x) +8(x)) e M foraex e Q, (5.5)
whereM c RZ? s defined via
M={®.0)€e[0,1] xR | (6—k2-1)0 <0, (6+Kk1-2)(6—1) <0},

see Fig. 5.1. Note tha is not convex; however, roughly speaking, the proof works
since intersections af with lines of the form(9, £0 + g) with £ = 0 are convex.

Now consider a sequenég € S C P which satisfiesy — 6, inY =
L2(). Clearly we then hav&6;+g — L6,+g. The following lemma shows the
implication

0 (L) — win X =LY(Q) = 6,(x)(LO)(x) < w(x) a.e.inQ. (5.6)

Convexity just implies the weaker statemefgfw dx = [, 6,(L6,) dx. Thus,
we are able to control the sign of the quadratic expressions which appear in the
definition of M. By (5.5) we know tha#; € S is equivalent to

Oc(x) € [0,1],  Ok(x)(LO)(x) = (§(x)+k2-1)0k (x),
Ok (x) (L) (x) £ (§(x)—Kk1-2) Bk (x)—1) + (L) (x) for a.e.x € Q.

Choosing a subsequeng@e) suchéy, (L6,) converges tav weakly in X, we find
for the limit 4, the estimates

0:(x) € [0,1],  w(x) = (€(x)+k2-1)0:(x),
wx) = (§(x)—k1-2) (Ox(x)—1) + (LO)(x) fora.e.x € Q.

Together withd, (LO,) < w this impliest, € S. O
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Theorem 5.1 is established if the implication (5.6) is proved, which is the content
of the following lemma.

Lemmab5.5. Let L be a scalar pseudo-differential operator of order O with non-
negative symbol ¢. Assume that for k — oo we have 6 — 0, in L”(Q2) and
O (LOy) — winLP/2(Q), where p > 2. Then 6,(L6,) < w a.e.in Q.

Proof. We definev, = 6; — 8, such thaty;y — 0. Then it suffices to show that
vr(Lvg) — z implies 0< z.

There are two closely related ways to prove this result. The first uses the H-
measure as developed in [Tar90, Ger91]: we apply Corollary 1.12 of [Tar90] to the
sequenced/1 ; = Uz x = v and the operatord; = id andA, = L and use the
positivity of the diagonal entries of the H-measure.

We describe the second proof in more detail. It is based solely on the theory
of pseudo-differential operators. Lét> 0 be an arbitrary localization function
and denote by, the multiplication operator — ¢v. ThenMyL = LMy + Ky
whereKy is a compact operator depending only prisee, e.g., [Tar90, Lemma
1.7] and [The01]).

For a sequencé@y)ien With vy — 0 andv; Lvy — z we find that

/¢2zdx= lim /¢2vk (Lvg)dx
Q k—oo Jo

= lim /(M¢vk) Mg (L) dx
k—oo J

= lim /(M¢vk)L(M¢vk)dx+ lim / (Mgpvr) (Kgvg) dx
k=00 JQ k—o00 JRd
= 0.

In the last estimate we have used O for the first term. The second term is 0 by
the compactness & . Sinceg was arbitrary, this gives the desired resulti

Remark 5.6. With the above theory we can easily construct cases where the oper-
ator L is strictly positive. If we assume th&t = dQ2 (condition (a) from above),
then Fourier transform shows that

0, LO) =/ 0 (LO)dx =/ £(@) | (Fbexp) (@) | d
Q R4

With fexe(x) = 0(x) for x € Q and= 0 forx € R4 \ Q. This implies(d, L#) > 0
for all @ # 0 if and only if £(w) # O for a.e.w € R?. Sincet|sq-1 is analytic the
latter condition holds whenevéris not identically O.

The case¢ = 0 may occur in degenerate or highly symmetric cases. Recall
that¢ always vanishes along at least one straight line. If now the elastic tensor is
isotropic andd,— A1 is a multiple of identity, thed must be rotationally symmetric
and hence vanishes everywhere.
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