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Abstract

We propose a rate-independent, mesoscopic model for the hysteretic evolution
of phase transformations in shape-memory alloys. The model uses the deformation
and phase-indicator function as basic unknowns and the potentials for the elastic
energy and for the dissipation as constitutive laws. Using the associated functionals,
admissible processes are defined to be the ones which are stable at all times and
which satisfy the energy inequality.

This concept leads to a natural time-incremental method which consists in a
minimization problem. The mesoscopic model is obtained by a relaxation proce-
dure. It leads to new functionals involving the cross-quasiconvexification of the
elastic stored-energy density. For a special case involving two phases of linearized
elastic materials we show that the incremental problem provides existence of ad-
missible processes for the time-continuous problem, if we let the time-step go to 0.

1. Introduction

In this paper we present a mathematical approach to the modeling of phase trans-
formations (PT) in certain elastic materials, like martensitic PT in shape-memory
alloys. In fact, the methodology introduced here applies to many other continuum
mechanical models with inelastic behavior described by internal variables, like
elasto-plasticity, damage, fracture or micromagnetism [FrM93,CHM02,FrM98,
RoK02,Mi02a]. This paper contains three threads which run strongly intertwined
through this work. First, we want to present a simple multi-dimensional model for
the slow evolution of PT processes in solids which are able to describe hysteresis
phenomena. Second, we discuss a general relaxation method for rate-independent
time-evolution processes which are ill posed in their original form due to the for-
mation of microstructure. Third, we show that the derived evolution problem can
be analyzed in some special nontrivial cases, thus obtaining nontrivial existence
results.
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Elastic materials which allow for PT (like single or poly-crystalline shape-
memory alloys) display hysteresis effects under quasistatic loading cycles. While
there are many engineering models for this phenomenon for both uniaxial and multi-
axial loading (see, e.g., [Wil93,HuM93,Lev94,LeS97,KMS99] and the references
therein), mathematically rigorous models are only developed for simplified situa-
tions. On the one hand there is an extensive body of mathematical work on spatially
one-dimensional situations (uniaxial case), see, e.g., [BrS96,M¨uS01,KuM00]. On
the other hand there is a rich mathematical literature on static problems for the
multi-dimensional situation. Most of that work is restricted to zero-stress or zero-
energy solutions where the crystallographic properties and the transformation strain
tensors determine the set of reachable macroscopic strains, see, e.g., [BaJ87,BaJ92,
Bha93,BhK96,M¨ul99]. Models coming closer to our theory are given in [HaG99,
Rou00,GoM01,Rou02].

So far there is no mathematical treatment of models which combine the hys-
teretic behavior with three-dimensional models of elasticity. Here we make a first
proposal for combining these two features: (i) our model is truly three-dimensional,
(ii) it has hysteretic behavior and (iii) it can deal with nonzero stresses. The model
is derived from very simple mechanical postulates, namely a thermodynamic PT
criterion and a definition of stable thermodynamic states. In the present version we
neglect all thermal effects (isothermal case) and also all plastic effects. Of course,
our model is crude and should be considered as the simplest nontrivial model rather
than a realistic model for specific shape-memory alloys. It certainly will be a basis
for more elaborate models.

The second theme of this paper is the relaxation of time-evolution processes
which are mathematically ill posed. This ill-posedness is due to the formation of
microstructure which usually arises from neglecting microscopical effects which
would bound the smallest scales. On a mesoscopic scale we see formation of very
small scales which have to be described in an averaged sense by relaxation. Here
we treat rate-independent processes and approximate them by a fully implicit incre-
mental problem (as is often used in engineering for plasticity problems) which for
each step takes the form of a minimization problem. These problems can be relaxed
introducing a phase-mixture theory. The resulting relaxed incremental problem can
be understood as the incremental formulation of a time-continuous evolution prob-
lem for the phase mixtures.

This part is written in a very general and sometimes less rigorous way to see that
it is a general program which opens up new ways to relax evolutionary problems
derived from energy principles. Classical models in linearized elasto-plasticity can
be formulated using this methodology, cf. [HaR95,ACZ99]. More recent work
in [CHM02,Mi02a] applies these ideas to nonlinear elasto-plasticity (with finite
strains).

Another successful relaxation of a time-continuous problem for pattern forma-
tion in magnetic fluids was obtained in [Ott98]; there again an incremental problem
in variational form was formulated whose relaxation appears to be the incremental
problem of the time-continuous relaxed problem.

The third theme in the paper is devoted to a specific example, which allows for
an existence theory. This is an example of solid–solid PT with two phases, where
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each phase can be described by linearized elasticity and both phases have the same
elasticity tensor but different transformation strains. For this case we show that most
steps in the relaxation procedure can be made rigorous and we obtain an existence
theorem for the relaxed time-continuous model. Here we use the general theory
of rate-independent hysteresis which was developed in [MiT02] and is based on
energetic formulations. This abstract theory is sketched in Section 2, since it is
essential for the understanding of the relaxation procedure as well.

To be more specific, we describe the underlying mechanical model. Every ma-
terial point x in the body� ⊂ R

d , d = 1,2,3, can be in one ofn possible
phasesej , whereP p = {e1, . . . , en} is the set of all possible pure phases. The
material properties of each phase are given by the energy densityWej (F ) where
F = ∇u is the deformation gradient. In martensitic PT it is often assumed that
Wej (F ) = W(FT −1

j ) with a fixed energy densityW , whereTj are the transfor-
mation strains for the martensitic phases (e.g.,n = 3 for the cubic to tetragonal
PT andn = 12 for the cubic to monoclinic PT, see [BhK96]). The matricesTj are
related to each other by the crystallographic symmetry group.

A function cp : �→ P p is called aninternal state of the system; however we
will just call it a “state” subsequently. The superscriptp denotespure and indicates
the fact that at the present stage phase mixtures are not taken into account, i.e.,
at every pointx ∈ � the material is in a pure phase. For the loadingG(t) and
a deformationu : � → R

d the elastic plus potential energy defines the energy
functional (Gibbs energy)

Ep(t, cp, u) =
∫
�

Wcp(x)(∇u(x))dx − 〈G(t), u〉

with 〈G(t), u〉 = ∫
�
fvol(t, x) ·u(x)dx+

∫
∂�\� gsurf(t, y) ·u(y)da(y). We denote

by V = {
u ∈W1,p(�) | u|� = uDir

}
the set of kinematically admissible defor-

mations. A basic assumption for rate-independent processes is that for all time the
elastic deformation is stable. Hence, we define the reduced energy functional

Ip(t, cp) = inf
{ Ep(t, cp, u) | u ∈ V }

,

which assumes thatu(t) is always a global minimizer ofEp(t, cp, ·). Hence,Ip

describes the elastic properties of the body in terms of the statecp.
Next we model the dissipation due to changes in the statecp. We postulate

the existence of dissipation coefficientsκi→j measuring the dissipation per unit
volume for a PT fromei into ej and satisfyingκj→j = 0, andκi→j > 0 for j �= i.
Under the assumption that at most one PT occurs at each material point the bulk
dissipation of a PT from stateap : �→ P p into cp : �→ P p is

Dp(ap, cp) =
∫
�

Dp(ap(x), cp(x))dx, whereDp(ei, ej ) = κi→j .

A family of states(cp(t))t∈[0,T ] is called a process, and the total amount of dissi-
pation due to PT in the time interval[t1, t2] is denoted by Dissp(cp; t1, t2).

One mechanical motivation of such a rate-independent dissipation is athermal
resistance against interface motion as described in [GhO94]. Athermal resistance
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is similar to dry friction, i.e., PT fromei to ej can start when the driving force
exceeds the dissipative thresholdκi→j , independently of the interface velocity. It
is caused by the interaction of interfaces with obstacles having long-range stress
fields (point defects, dislocations, grains, twins and subgrain boundaries) which
cannot be overcome by thermal fluctuations. Short-range resistance which can be
overcome by thermal activation gives rise to rate-dependent or viscous friction,
which is not taken into account here. A phenomenological motivation for this type
of dry friction arises from the modeling of systems with potential wells. If a system
stays in local (but not global) minima as long as possible then the energy difference
between the saddle point separating the two wells and the new minimum will be
dissipated in this PT, see Section 3.1.

Having the two constitutive functionalsIp andDp, we then have to find an
evolution law for the processcp(t). Here we use anextremum principle to determine
which PT out of the set of all possible PT does occur, that is, what phases are
created in what regions. This principle was formulated in [Lev95,Lev97,Lev98,
Lev00] in a more general context also allowing for plastic effects and is called the
postulate of realizability. Restricted to our case, it says that PT occurs as soon as
it is thermodynamically possible, namely when the gain in energy through a PT
from a stateap to bp is larger than (or equal to) the dissipated energy:Ip(t, ap)−
Ip(t, bp) > Dp(ap, bp). Here, the main assumption is that there are no other sources
of dissipation.

Hence, an observable process(cp(t))t∈[0,T ] must bestable for all t ∈ [0, T ],
i.e.,

Ip(t, cp(t)) � Ip(t, bp)+Dp(cp(t), bp) for all bp : �→ P p.

It is surprising that this condition together with theenergy inequality

Ip(t2, c
p(t2))+ Dissp(cp; t1, t2) � Ip(t1, c

p(t1))−
∫ t2

t1

〈Ġ(s), u(s)〉ds

suffices to characterize the evolution of the problem. We are lead to the following
time-continuous formulation of the extremum principle.

(CP) For givencp
0, find a processcp : [0, T ] × � → P p with cp(0, x) = cp

0(x)

which is stable and satisfies the energy inequality for all 0� t1 < t2 � T .

At this point we want to connect our theory to the purely static theory of PT
without dissipation which is an active mathematical subject, see [BaJ87,BaJ92]
and the survey [M¨ul99]. For our mechanical situation it would mean considering
the single stored-energy density

W(F) = min
{
Wej (F ) | j = 1, . . . , n

}
,

which is not quasiconvex but has potential wells in the sets SO(3)Tj . In general, the
infimum of the functionalE(t, u) = ∫

�
W(∇u(x)) dx − 〈G(t), u〉 is not attained

since infimizing sequences develop finer and finer oscillations in the functioncp

defined viaW(∇u(x)) = Wcp(x)(∇u(x)). This problem can be avoided by con-
sidering a suitable relaxationRE(t, ·), namely the lower semicontinuous envelope,
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[Dac89]. However, if we always look for global minimizers we cannot obtain hys-
teretic behavior in rate-independent loading processes as no time direction is pre-
ferred. Nevertheless hysteretic behavior occurs (see [BCJ95]) due to local strong
minimizers which have a true potential barrier in a suitable function space. To de-
scribe this phenomenon with our approach we have to keep track of the internal
variablecp and to choose a dissipation functionalDp(ap, cp) such that for each
such local strong minimizeru the associated phase functioncp

u : � → P p is a
global minimum ofap �→ Ip(t, ap) + Dp(c

p
u, a

p). In Section 3.1 we discuss the
relation between models with internal variablescp and models without but having
potential barriers.

In general we cannot expect to find solutions of (CP) since it is not even clear
whether for a given loadingG(t) there is any stable statecp : �→ P p. A natural
way to find stable states at timet is to minimizeIp(t, cp) over all cp. Clearly
such a minimizer must be stable; however, in general we can only expect to find
an infimizing sequencecp

j , i.e.,Ip(t, c
p
j )→ α = inf { Ip(t, bp) | bp : �→ P p }.

The weak limitc of the sequencecp
j will no longer be a simple phase function but

gives rise to infinitesimally fine phase mixtures. The goal of this work is to discuss
rigorous extensions of the problem from classical statescp with cp(t, x) ∈ P p to
phase mixturesc with c(t, x) ∈ P where

P = conv(P p) =
c ∈ R

n

∣∣∣∣ c = n∑
j=1

θj ej , θj � 0,
n∑
j=1

θj = 1

 .
In mathematical terms such a procedure is called relaxation. We emphasize that we
do not include new modeling assumptions into a mixture theory, but we want to
see how far the given functionsWej (F ) can be used to derive a consistent mixture
theory.

The main idea for finding a proper relaxation is to replace the time-continuous
problem (CP) by an incremental problem (IP) which has a variational structure
arising from the extremum principle. Relaxation of a single variational problem is
a well-developed theory, cf. [Dac89,Rou97]; however for incremental problems no
suitable generalization is known. The problem is to control the interaction of the
microstructures on different time levels, see [FrM93,FrM98] for a first discussion
in the context of fracture. In Section 4.1.2 we propose an abstract setting for re-
laxations of incremental problems, for general evolution problems a counterpart is
discussed in [The01,Mi02b]. However, to obtain a tractable model we propose a
separately relaxed incremental problem (SRIP) which, in general, does not coincide
with the mathematical relaxation, but see [The01] for a rigorous justifications in
special cases. In our setting, separate relaxation tends to neglect incompatibilities
between the microstructures of the phase mixtures at two subsequent time-steps,
and therefore underestimate the true dissipation (making hysteretic effects smaller).
For more general philosophy of relaxation of rate-independent problems we refer
to [The01,Mi02b].

The major advantage of (SRIP) is that it is explicit enough to give an efficient
solution algorithm and to prove existence results. Moreover, its form immediately
shows that it is the time discretization of a time-continuous relaxed problem (SRCP).
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To describe the separately relaxed problem we start with the unrelaxedincremental
problem (IP) for a given partition 0= t0 < t1 < · · · < tN−1 < tN = T :

(IP) For givencp
0, find cp

k such thatIp(tk, c
p
k) + Dp(c

p
k−1, c

p
k) is minimal fork =

1, . . . , N .

The main problem in treating (IP) as a mathematical or numerical problem
is that in general this minimization process does not have a solution for the same
reason as mentioned above for (CP). Here (CP) and (IP) are defined on the setPp =
L1(�, P p) of pure states, whose weak closure is the convex setP = L1(�, P )

of mixture states. The separate relaxed incremental problem is now obtained by
relaxing the functionalsIp(t, ·) : Pp→ R andDp : Pp×Pp→ R independently
leading to the relaxationsI(t, ·) : P → R and D : P × P → R. Now, the
separately relaxed incremental problem is formulated inP = L1(�, P ) and reads

(SRIP) For givenck−1, find ck such thatI(tk, ck)+D(ck−1, ck) is minimal.

By constructionI andD are lower semicontinuous, which implies that (SRIP)
is always solvable.

An important fact is thatI andD can be characterized nicely. We have

I(t, c) = inf

{∫
�

W(c(x),∇u(x))dx−〈G(t), u〉
∣∣∣∣ u ∈ V

}
,

where themixture function is defined, using solelyWei , i = 1, . . . , n, via

W(c, F ) = inf

{∫
B

Wcp(y)(F+∇φ(y))dy
∣∣∣∣ ∫
B

cp(y)dy = c,

cp ∈ L1(�, P p), φ ∈W1,p
0 (B)

}
.

For givenc ∈ P this function describes the elastic properties of optimally ar-
ranged mixtures with macroscopic phase portionsc. This mixture function is not
postulated but follows from an exact mathematical theory which is similar to ho-
mogenization theory, cf. [Koh91,FKP94,SmW98,Mie00]. In [LeR00],W is called
cross-quasiconvexification; see Section 4.2 for more details.

The relaxed dissipation functional takes the form

D(a, c) = �(c−a) with �(z) =
∫
�

)(z(x))dx, (1.1)

where) : R
n → R� is piecewise affine, convex, homogeneous of degree 1 and

satisfies)(ej−ei) = D(ei, ej ) = κi→j ; see Section 4.3 for more details.
The minimization in (SRIP) is a simultaneous minimization onc andu which

has the advantage thatc appears only locally under the integral. Hence, the mini-
mization with respect toc can be done pointwise first and thenu can be determined.
This leads to the numerically useful algorithm (SRIP)′, see Section 4.4 and [MTL98,
CaP00].
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The structure of (SRIP) shows that it is nothing else than the incremental version
of the following time-continuous problem (SRCP). In analogy to the pure phase
situation we say thatc : [0, T ] → L1(�, P ) is stable, if

I(t, c(t)) � I(t, a)+�(a−c(t)) for t ∈ [0, T ] anda ∈ L1(�, P ). (1.2)

Since� is defined on the Banach space L1(�, P ), the dissipation of a process takes
the form

∫ t2
t1

�(dc) = sup
∑N
k=1 �(c(tk)−c(tk−1)) where the supremum is taken

over all partitions. The energy inequality forc now takes the form

I(t2, c(t2))+
∫ t2

t1

�(dc) � I(t1, c(t1))+
∫ t2

t1

∂tI(s, c(s))ds. (1.3)

With these definitions theseparately relaxed time-continuous problem reads:

(SRCP) For givenc0, find c : [0, T ] → P with c(0) = c0 such that stability (1.2)
and energy inequality (1.3) holds for 0� t1 < t2 � T .

In Section 5 we study a special PT example given by two phases which are both
modeled by linearized elasticity with the same elastic tensor. For this example,
with a few more specifications, we are able to show that (SRCP) has a solution
for all initial datac0 ∈ P. Here we use the fact thatW is explicitly known and is
quadratic in∇u andθ ∈ [0,1] wherec = (1−θ, θ)T (P can be identified with
L1(�, [0,1])). Thus,I(t, ·) : P → R is quadratic as well; yet the problem remains
strongly nonlinear due to the constraintc ∈ P.

The existence proof is based on the abstract methods for rate-independent prob-
lems which are worked out in Section 2 and given in more detail in [MiT02]. The
basic idea is to solve the incremental problem (SRIP) for finer and finer time dis-
cretizations giving piecewise-constant approximationscN . Using the energy in-
equality, which also holds for (SRIP), we find thea priori bound∫ T

0
�(dcN) =

N∑
k=1

�(c(tNk )−c(tNk−1)) � C∗,

whereC∗ is independent ofN . Because of‖z‖L1(�) � C�(z) the sequencecN

is bounded in BV([0, T ], L1(�)), and an adaption of Helly’s selection principle
provides a subsequencecNl and a limitc∞ such thatcNl (t) ⇀ c∞(t) in L1(�).
(Note that rate independence and (1.1) forces us to use the L1 setting, although the
weak and the strong topology on L1(�, P ) coincide with those on Lq(�, P ) for all
q ∈ (1,∞).) It is easy to see thatc∞ satisfies the energy inequality (1.3) fort1 = 0
andt2 = T . However, to show thatc∞ is also stable requires a further compactness
argument in the spatial direction. This is derived using pseudo-differential operators
and H-measures, cf. [Tar90,Ger91].

Having established a mathematical model which enables us to study simultane-
ously hysteretic and multi-dimensional effects, it is possible to study the question of
their interaction. In [KMS99,CaP00,GoM01,GMH02] numerical implementations
of the models developed here are discussed, tested and compared with experiments.
In particular it is important to investigate whether multi-dimensional models display
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a richer class of hysteresis effects and whether it is really necessary to introduce
more internal variables to explain the more complicated hysteresis loops observed
in uniaxial experiments, cf. [Wil93,Lev94,M¨uS01,KuM00].

2. Rate-independent processes

The mathematical framework is based on two abstract energy functionals

I : [0, T ] ×X→ R and � : X→ R� = [0,∞),
which represent the potential energy of a statec ∈ X and the dissipation power
caused by a ratėc ∈ X, both lying in the Banach spaceX. The dissipation poten-
tial � is convex and homogenous of degree 1, which leads to rate independence.
For differentiable functionalsI there exists a rich amount of literature devoted to
differential inclusions of the form

−DI(t, c) ∈ ∂�(ċ), (2.1)

see, e.g., [BrS96,Vis94] for a starting point. Here∂ denotes the subdifferential
operator for convex functions, cf. Definition 2.2. The evolution equation (2.1) is
a very general model for systems with hysteresis (like elasto-plastic or magnetic
materials). For time-independent functionalsI the Cauchy problem is trivial, every
constant processc(t) ≡ c0, wherec0 satisfies−DI(c0) ∈ ∂�(0), is a solution.
The time dependence ofI describes the change of the external loading. For time-
dependent functionalsI system (2.1) constitutes the limit equation for the response
to very small loading rates when inertial effects and relaxation effects disappear, i.e.,
the system response is immediate. Only the stick-slip motion due to the dry friction
is left. Formally the system is able to take into account all the spatial effects which
affect the hysteretic behavior but unfortunately global well-posedness can only be
expected in special cases. One of the most prominent mathematical difficulties is
that solutions might be discontinuous in time if the potential energyI is not strictly
convex. The case whereI is uniformly convex and smooth is well understood and
leads to well-posedness of the Cauchy problem, see [MiT02]. In this section we will
derive a new sufficient condition for existence of solutions to a reformulated version
of (2.1) where also the caseI : [0, T ] × X → R ∪ {∞} can be treated. Our new
condition is independent of convexity ofI, therefore we hope to be able to handle
situations in continuum mechanics where convexity contradicts the fundamental
principle of invariance under rigid body rotations. Uniqueness of solutions lies
outside of the scope of this work. In Chapter 5, for a special example which models
the dynamics of martensitic PT in solids, we will demonstrate that our new condition
actually holds and consequently the existence of solutions can be established.

2.1. Setup of the problem

LetX be a separable Banach space with dual spaceX∗ and letP be a weakly
closed subset ofX. For every timet ∈ [0, T ]whereT is a fixed positive number and
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everyc ∈ P the energy of the statec is given by theenergy functional I(t, c) ∈ R�.
ForI we assume the following properties:

I ∈ C0([0, T ] × P), sup
c∈P,t∈[0,T ]

|∂tI(t, c)| <∞, (2.2)

for everyt ∈ [0, T ] the mappingc �→ I(t, c) is
weakly lower semicontinuous.

(2.3)

In the PT problem the restriction of the phase space toP ⊂ X accounts for the fact
that the variablec measures the concentration of phases, i.e.,c(t, x) ∈ P ⊂ R

n.
This restriction is far more than a technical modification of the usual setting, e.g.,
in the theory of linearized elasto-plasticity whereP = X. If P is bounded, the
set of tangential directions may become abruptly smaller as the statec reaches the
boundary ofP. As a positive effect, the setP may be weakly compact althoughX
is not reflexive, and this simplifies central steps of the analysis.

Most of our work will take place in spaces of bounded variation in time,

BV([0, T ],P) = { f : [0, T ] → P | Var(f ; [0, T ]) <∞}
with Var(f ; [0, T ]) = sup

∑N−1
k=0 ‖f (tk+1)−f (tk)‖ where the supremum is taken

over allN ∈ N and all partitions with 0= t0 < . . . < tN = T . Observe that our def-
inition of BV functions does not neglect sets of measure 0, therefore BV([0, T ], X)
is larger than C0([0, T ], X∗)∗, even ifX is reflexive or finite dimensional.

The dissipation generated byc changing from one state to a different state is
given by adissipation functional � : X→ R� which is convex and homogeneous
of degree 1. In the literature (see, e.g., [GNS83])� is also denoted aspseudo-
potential, since it takes a rate as an argument. We assume that there existsC > 0
so that

‖v‖/C � �(v) � C‖v‖. (2.4)

It will become clear later that in our model the solutions are rate independent if
and only if the� is homogeneous of degree one. An immediate consequence of the
convexity and the homogeneity of� is the triangle inequality

�(v1+ v2) � �(v1)+�(v2) for everyv1, v2 ∈ X. (2.5)

In continuum mechanics� is obtained by integration over�, i.e., �(v) =∫
�
)(v(x)) dx; hence, (2.4) can only hold ifX equals L1(�,Rn). A statec is

calledstable at timet if

I(t, c) � I(t, a)+�(a−c) for everya ∈ P. (S)

The variation of a BV functionf with respect to the functional� is written as

∫ T

0
�(df )

def= sup
0=t0<...<tN=T

N−1∑
k=0

�(f (tk+1)−f (tk)).
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By (2.4) we have Var(f ; [0, T ])/C �
∫ T

0 �(df ) � CVar(f, [0, T ]). A process
c ∈ BV([0, T ],P) satisfies theenergy inequality if, for all t1, t2 with 0 � t1 <

t2 � T , we have

I(t2, c(t2))+
∫ t2

t1

�(dc) � I(t1, c(t1))+
∫ t2

t1

∂tI(t, c(t))dt (E)

holds. We say thatc satisfies theweak energy inequality if (E) holds just fort1 = 0
andt2 = T .

This energetic formulation requires no differentiability forI(t, ·) andc(·). The
central problem in this work is the construction of processes which satisfy both (S)
and (E).

Definition 2.1. For everyt ∈ [0, T ]we denote byS(t) ⊂ P theset of stable points,

S(t) def= {
c ∈ P | I(t, c) � I(t, a)+�(a−c) ∀a ∈ P }

.

A processc ∈ BV([0, T ],P) is calledstable if c(t) ∈ S(t) for everyt ∈ (0, T ].
Stable processes which satisfy (E) are calledadmissible for I and�.

The definition of admissibility satisfies the two standard properties of the term
“solution” in evolutionary systems, when no uniqueness of the Cauchy problem is
assumed.

1. Restriction property. For every admissiblec : [0, T ] → P and every[s, t] ⊂
[0, T ] the restrictionc|[s,t] is admissible as well.

2. Concatenation property. Assume thatc1 : [t1, t2] → P andc2 : [t2, t3] → P
are admissible and thatc1(t2) = c2(t2). Then the concatenatioñc : [t1, t3] → P
is admissible as well, wherẽc(t) = c1(t) if t ∈ [t1, t2] and c̃(t) = c2(t) if
t ∈ [t2, t3].

In the case of convex potential energiesI(t, ·) the above energetic definition of ad-
missibility is equivalent to certain local formulations using variational inequalities
or differential inclusions.

Definition 2.2. For a convex functionJ : X → R ∪ {∞} thesubdifferential at c
is the set

∂J (c) = {
σ ∈ X∗ | J (a) � J (c)+〈σ, a−c〉 for all a ∈ X }

.

Theindicator function XA of a setA ⊂ X is defined byXA(a) = 0 for a ∈ A and
XA(x) = ∞ for x ∈ X \ A. For a convex setP ⊂ X the (interior)tangent cone
TcP of P at c ∈ P is given by

TcP = closureX
(
{ v ∈ X | ∃λ > 0 : c + λv ∈ P }

)
,

and the (outer)normal cone is given by

NcP =
{
σ ∈ X∗ | 〈σ, v〉 � 0 for all v ∈ TcP

}
.
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It is well known that for closed convex setsP ⊂ X we have∂XP (c) = NcP.
For simplicity we have restricted the following result to processesc : [0, T ] →

P which are absolutely continuous. For the case of generalc ∈ BV([0, T ], X) there
is a corresponding result if (renormalized) directional derivatives are used and the
jumps are handled properly. We refer to [MiT02], where also the complete proof
can be found.

Theorem 2.3 (Equivalence between the energetic and local formulations). Let X
be a Banach space and P ⊂ X convex and weakly closed. Let the functional I ∈
C1([0, T ]×P) be convex and satisfy (2.2). Let the functional � : X→ R be convex
and coercive in the sense of (2.4). Then for c ∈ W1,1((0, T ),X) ∩ C([0, T ],P)
the following statements are equivalent:

(i) c satisfies (S) and (E);
(ii) c satisfies for almost all t ∈ [0, T ] the local version of (S) and (E), namely

〈DI(t, c(t)), v〉 +�(v) � 0 for all v ∈ Tc(t)P, (2.6)

〈DI(t, c(t)), ċ〉 +�(ċ) � 0; (2.7)

(iii) c is a solution for the differential inclusion

0 ∈ ∂�(ċ(t))+ DI(t, c(t))+ ∂XP (c(t)) for almost all t ∈ [0, T ]. (2.8)

In the case of general convexI(t, ·), which need not be differentiable, the
subdifferential allows for a formulation of the problem as a differential inclusion:

0 ∈ ∂�(ċ(t))+ ∂(I(t, ·)+XP )(c(t)) for a.e.t ∈ [0, T ]. (2.9)

With the relation∂(I(t, ·)+XP ) = ∂I(t, ·)+ ∂XP = ∂I(t, ·)+ NP this means

∃ σ̃ (t) ∈ ∂I(t, c(t)) ∃ ñ(t) ∈ Nc(t)P : −σ̃ (t)− ñ(t) ∈ ∂�(ċ(t)).
Here−σ̃ (t) can be understood as the conjugate force to the variablec, and−ñ(t)
is the reaction of the boundary ofP. Clearly the sum of both has to be equal to
the dissipative force. We will use this formulation in Section 4.5 to derive a flow
formulation for the phase-transformation problem, which is used in the engineering
literature and which has a lot of similarities with flow rules in plasticity theory.
However, since these flow formulations are not needed in what follows, we omit
the details and refer to [MiT02,Mi02a].

When taking limits with respect to time we have to be careful about temporal
discontinuities. By general theorems on BV functions we know that a BV function
c has at most a countable number of discontinuities and that for eacht ∈ [0, T ] the
limit from the right and from the left exists. Forcwe define its projectionc− into the
space of left-continuous BV functions viac−(0) = c(0) andc−(t) = lims↗t c(s)
for t ∈ (0, T ] and find‖c−‖BV([0,T ],X) � ‖c‖BV([0,T ],X).

Lemma 2.4. Under the assumptions (2.2) and (2.4) the stable set S(t) is a closed
subset of P for all t ∈ [0, T ]. Moreover, ∪t∈[0,T ](t,S(t)) is a closed subset of
[0, T ] × P . If a process c ∈ BV([0, T ],P) is stable for all t ∈ T , where T is a
dense subset of [0, T ], then c− is a stable process.
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Proof. We prove the second statement since the first is a consequence of the second.
Assumeck ∈ S(tk) with ck → c∗ andtk → t∗. By the continuity ofI and� we
have, for arbitrarya ∈ P,

I(t∗, c∗) = lim
k→∞ I(tk, ck) � lim inf

k→∞ (I(tk, a)+�(a−ck))
= I(t∗, a)+�(a−c∗).

To prove the third statement lett ∈ (0, T ] and choose a sequence(tk)k∈N with
tk ∈ T andtk ↗ t . Then,c−(t) = limk→∞ c(tk) and the result follows from the
second statement.!"

The next three subsections give an overview of the properties of admissible
processes; for more details we refer to [MiT02].

2.2. Qualitative properties of admissible processes

At the jumps a process can take rather arbitrary values without violating (S) or
(E). To obtain definiteness we restrict ourselves to functions which are continuous
from the left, i.e.,c = c−. Assumption (2.4) gives a bound on the variation of
c. Therefore the space BV([0, T ],P) is the natural space to work within. From
stability (S) and the weak energy inequality (E) we can infer that an energy identity
holds on every subinterval.

Theorem 2.5. Assume that the dissipation functional � satisfies the coercivity as-
sumption (2.4) for some positive constant C and that (2.2) holds. If c is a stable
process with c = c− and satisfying the weak energy inequality (E) (i.e., only for
t1 = 0 and t2 = T ), then the energy equality

I(t, c(t))+
∫ t

s

�(dc) = I(s, c(s))+
∫ t

s

∂tI(τ, c(τ ))dτ (2.10)

holds for every 0 � s < t � T .

Proof. We set fort1, t2 ∈ [0, T ] the functionJ (t1, t2) = I(t1, c(t2)). Now for
every 0� s � t � T we have

I(s, c(s))−I(t, c(t))+
∫ t

s

{∂tI(τ, c(τ ))−�(ċ(τ ))} dτ

= −
∫ t

s

{∂t2J (τ, τ )+�(ċ(τ ))}dτ.

By the last assumption the left-hand side is nonnegative if we lets = 0 andt = T .
Therefore the claim follows if we can show that the integrand on the right-hand
side is nonnegative inC([0, T ])∗. The stability inequality (S) implies, for every
t ∈ [0, T ) andh ∈ (0, T−t),

1
h
[I(t, c(t+h))−I(t, c(t))] +�( 1

h
[c(t+h)−c(t)]) � 0,

and this expression converges weak∗ to t �→ ∂t2J (t, t)+�(ċ(t)) ash→ 0. Since
the set of positive functionals is weak∗ closed, the proof is finished.!"
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2.3. Existence of admissible processes

So far we have only discussed the qualitative properties of admissible processes
without knowing whether they exist. The typical way to achieve existence is to dis-
cretize (S) and (E) fully implicitly in time. This gives a variational problem and in
certain cases it is possible to show that that solutions to the discretized problem
converge to an admissible process as the fineness of the time discretization tends
to 0. It is surprising that the discretized problems seem to have more structure than
the original system (E), (S) although no assumption on the differentiability of the
potentialI and the dissipation functional� is made. Major parts of the work in
the following sections are inspired by the time-discretized problem. Replacingċ,
d
dt I(t, c(t)) and ∂

∂t
I(t, c) by the appropriate finite differences, we arrive immedi-

ately at the incremental problem

(IP) Givenc0 ∈ P and a time discretization 0= t0 < . . . < tN = T , find for
k = 1 . . . N statescNk ∈ P such thatI(tk, cNk )+�(cNk −cNk−1) is minimal.

To guarantee the existence of solutions to (IP) we need some compactness:

For all r > 0 the intersectionP ∩ { c ∈ X | ‖c‖ � r
}

is weakly compact inX.
(2.11)

Defining cN : [0, T ] → P as the left-continuous piecewise-constant interpolant
satisfyingcN(t) = cNk for t ∈ (tk−1, tk] andcN(0) = c0, we obtain the following
existence result.

Theorem 2.6. If the assumptions (2.2)–(2.4) and (2.11) hold, then (IP) has a so-
lution and for every solution to (IP) the following statements hold true:

(i) for every t ∈ {t1, . . . , tN = T } the state cN(t) is stable,
(ii) cN satisfies the discrete energy inequality

I(T , cN(T ))+
∫ T

0
�(dcN) � I(0, c0)+

∫ T

0
∂tI(t, c̃N (t))dt, (2.12)

where c̃N (t) = cNk−1 for t ∈ [tk−1, tk) is the right-continuous interpolant.

The suitability of (IP) is also manifested in the fact that (2.12) can be improved to
a two-sided estimated, see [MiT99,MiT02].

Proof. First we observe that the weak lower semicontinuity ofI(tk, ·) and the
convexity of�(· − cNk−1) implies that the sum is weakly lower semicontinuous.
The positivity ofI implies coercivity such that for everyc ∈ P with ‖c − cNk ‖ >
C · I(tk+1, c

N
k ) we have

I(tk+1, c
N
k ) � I(tk, cNk )+ I(tk+1, c) < I(tk+1, c)+�(c − cNk ).

Therefore‖cNk+1 − cNk ‖ � C · I(tk+1, c
N
k ) holds. The weak compactness (2.11)

implies now the existence of solutions to (IP).
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The stability ofcN(tk) = cNk arises from its minimizing property. We have

I(tk, a)+�(a−cNk ) = I(tk, a)+�(a−cNk−1)+�(a−cNk )−�(a−cNk−1)

� I(tk, cNk )+�(cNk −cNk−1)+�(a−cNk )−�(a−cNk−1)

� I(tk, cNk ),

where the triangle inequality (2.5) has been used for the last estimate. To obtain the
discrete energy inequality we first observe that (2.12) is equivalent to

N∑
k=1

(
I(tk, cN(tk))− I(tk, cN(tk−1))+�(cN(tk)−cN(tk−1))

)
� 0. (2.13)

From the fact thatcNk minimizesI(tk, ·)+�(· − cNk−1) it follows that each term in
(2.13) is nonpositive and hence (2.12) holds.!"

It remains for us to consider under what condition the functionscN ∈
BV([0, T ],P) converge to a limit and whether this limit is an admissible pro-
cess. The essential tool is a version of Helly’s theorem for functions which take
values in Banach spaces.

Theorem 2.7 ([BaP86] Thm. 3.5, Ch. 1). Let X be a reflexive separable Banach
space with separable dualX∗. Let {wn} ⊂ BV([a, b];X) be such that ‖wn(t)‖ � C
for t ∈ [a, b] and Var(wn; [a, b]) � C for all n. Then there exists a subsequence
{wnk } ⊂ {wn} and a function w ∈ BV([a, b];X) such that, as k → ∞, wnk ⇀
w(t) in X for all t ∈ [a, b].

Since in our application the Banach space equals L1(�,Rn), we need a version
without reflexivity ofX and separability ofX∗. Here we take advantage of the
subsetP and property (2.11). We have the following simple generalization.

Corollary 2.8. LetX be a separable Banach space and P ⊂ X satisfy (2.11). Then,
for each bounded sequence (cN)N∈N in BV([0, T ], X) there exists a subsequence
Nk and a limit function c∞ ∈ BV([0, T ],P) such that cNk (t) ⇀ c∞(t) as k→∞
for all t ∈ [0, T ].

Clearly the existence theorem, Theorem 2.6, provides a sequence(cN) which
is bounded in BV([0, T ], X) and thus we can extract a limitc∞ ∈ BV([0, T ],P).
From (2.12) it is not so difficult to show thatc∞ satisfies the weak energy inequality,
hence it remains to check whether the processc∞ is stable. There are two ways
to derive stability: (i) if the convergence is not only weak, but strong, then the
continuity of� suffices to prove stability sinceS(t) is strongly closed; and (ii) if
the set of stable states is weakly closed, then the stability of the weak limit follows.
It is case (ii) which we will need for our application; hence we formulate it in the
theorem below and refer to [MiT02] for more general cases.
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Theorem 2.9. Let the assumptions of Theorem 2.6 be satisfied. Assume further that

for all t ∈ [0, T ] the mapping c �→ ∂tI(t, c) is weakly continuous (2.14)

and that for all t ∈ [0, T ] the stable sets S(t) are weakly closed. Consider a
sequence of hierarchical discretizations (specified in the proof ) and let c∞ be the
limit as constructed above. Then, c = (c∞)− ∈ BV([0, T ],P) is an admissible
process with c(0) = c0.

Proof. We have to show that the processc∞ which is constructed in Theorem 2.6
satisfies the energy inequality and is stable. By the weak lower semicontinuity
of I(t, ·) and � and the weak continuity∂tI(t, ·) (cf. (2.14)) we find that the
weak energy inequality (2.12) is stable under pointwise weak convergence, hence
c∞ satisfies the weak energy inequality (E). To show thatc = (c∞)− also sat-
isfies (E), we first note that the boundedness of the variation ofc∞ implies that
the set{ t ∈ [0, T ] | c(t) �= c∞(t) } is at most countable, thus

∫ T
0 ∂tI(t, c(t))dt =∫ T

0 ∂tI(t, c∞(t)) dt . Together withc(0) = c∞(0) = c0 and
∫ T

0 �(dc) �∫ T
0 �(dc∞), this gives the result.

A sequence(9r)r∈N of discretizations with9r = {tNr0 , t
Nr
1 , . . . , t

Nr
Nr
} and

t
Nr
k < t

Nr
k+1 is called hierarchical if{0, T } ⊂ 9r ⊂ 9r+1 and if the fineness

:(9r) = max
{
t
Nr
k −tNrk−1 | k = 1, . . . , Nr

}
of9r tends to 0. LetT = ∪r∈N9r ,

then T is dense in[0, T ] and for eacht ∈ T we havecNr (t) ∈ S(t) for all
sufficiently larger. By the weak convergence toc∞(t) and the weak closedness of
S(t) we obtainc∞(t) ∈ S(t) for all t ∈ T . Using Lemma 2.4 we conclude that
c = (c∞)− is a stable process.!"

In particular, forI(t, c) = Ĩ(c)− 〈G(t), c〉 with G ∈ C1([0, T ], X∗) the assump-
tion (2.14) is satisfied.

3. Application to martensitic phase transformations

In this section we will demonstrate that the hysteretic response of shape-memory
alloys can be modeled within the framework of rate-independent evolution prob-
lems. It turns out that finding a suitable linear structure (the Banach spaceX) on the
state space is a nontrivial problem. The expressions for both the potential and the
dissipated energy are only obvious in the case of pure phase distributions, therefore
we indicate that the energies are only defined on pure phase distributions by adding
a superscriptp. Instead of assuming a dissipation rate� we give an expression for
the minimal dissipationDp(c

p
1, c

p
2) which occurs when a statecp

1 is transformed
into cp

2. Extending the energies to linear combinations of pure phase distributions
means that a mixture theory has to be constructed where also concentrations can
be treated correctly. This step is postponed to the next section.
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3.1. Modeling hysteresis via metastability or via internal variables

Before starting with the PT problem we relate the above model to the general
theory of systems with hysteretic behavior. Hysteresis is a well-known effect which
is either attributed to rate-independent friction (like dry friction) or to metastability
in nonlinear systems. We want to show that there is a close connection between both
situations when we consider slow or quasistatic processes, their extreme being rate-
independent processes which are considered here. In particular, we demonstrate
how the usage of internal variables enables us to use global minimization instead
of studying local stability.

We show this connection for a simple model with a mass point moving slowly
(without inertia) in the nonconvex potential

E(t, w) = ρ(w)− g(t)w with ρ(w) = 1
4(w

2− 3)2,

whereg : [0, T ] → R is the slowly varying loading. Since the positionw(t) ∈ R

of the mass point always minimizesE(t, ·) locally, we haveρ′(w(t)) = g(t) and
ρ′′(w(t)) � 0, which may have no or one solution lying in(−∞,−1] or [1,∞),
respectively. The first situation is called phasee1 and the second is called phase
e2. We assume that the mass point remains in a locally stable state (metastable) as
long as possible. If stability is lost, then it drops into the nearest stable point. The
energy loss will be dissipated.

Now takeg(t) = min{t−2,8−t}, t � 0, andw(0) = −2. Thenρ′(w(t)) =
g(t) with w(t) � −1 for t ∈ [0,4] ∪ (10,∞) andw(t) ∈ [1,∞) for t ∈ (4,10].
Hence there is a sudden phase change att = 4 (with g(t) = 2) from e1 to e2
wherew jumps from−1 to 2 and the energy drops down from 3 down to−15/4.
At t = 10 (withg(t) = −2) the phase changes back frome2 to e1 wherew jumps
from 1 to−2 and the energy drops again from 3 to−15/4. (Note that the global
minimizer changes atg(t) = 0 without any energy loss; this relates to the Maxwell
line having no hysteresis.)

The same hysteresis effect can be obtained by using the internal variablecp ∈
{e1, e2} and the dissipation coefficientsκ1→2 = κ2→1 = 3−(−15/4) = 27/4. We
choose a strictly convex function̂ρ : R→ R with ρ̂(w) = ρ(w) for w � −1 and
define

Ẽ(t, w, cp) =
{
ρ̂(w)− g(t)w for cp = e1,
ρ̂(−w)− g(t)w for cp = e2;

andDp : P p× P p→ R� with κi→j as above. Then,(w(t), cp(t)) is stable if

Ẽ(t, w(t), cp(t)) � Ẽ(t, ŵ, ap)+Dp(cp(t), ap) for ŵ ∈ R, ap ∈ {e1, e2}.
Usingap = cp(t) = ej we obtain the necessary local criterion̂ρ′(w(t)) = g(t)
which gives a unique solutionwg(t) by strict convexity. Letη(g) = ρ̂(wg) −
gwg = min { ρ̂(w)−gw | w ∈ R }; then−η(·) is the Legendre transform of̂ρ
with η(2) = 3 andη(−2) = −15/4. Additionally, we may assume, by choosingρ̂
suitably forw > 1, thatη(g) < 27/4+η(−g) forg > 2. Now, asking for stability of



Rate-Independent Phase Transformation 153

Fig. 3.1. The upper three graphs showE(t, ·) for the three time levelst = 2, t = 3.8 and
t = 4.2 (from left to right). The lower graphs displaỹE(t, ·, cp) with cp = e1 to the right
andcp = e2 to the left for the same time levels. The squares� indicate the (meta) stable
positions.

(w(t), cp(t)) = (wg(t), e1)with respect to(ŵ, e2), we find the additional restriction
η(g(t)) � 15/4+ η(−g(t)) which by construction is equivalent tog(t) � 2.

Thus, using the same loadingg(t) = min{t−2,8−t}, t � 0, as above and
the initial conditionw(0) = −2, we obtain exactly the same solutionw(t) if we
additionally setcp(t) = e1 for t ∈ [0,4] ∪ (10,∞) and cp(t) = e2 for t ∈
(4,10]. The major difference to the approach without an internal variable is that
in this situation the solution pair(w(t), cp(t)) is a global minimizer of̃E(t, ·, ·)+
D(cp(t), ·) whereasw(t) alone is only a local minimizer ofE(t, ·).

3.2. Mathematical formulation of the PT model

We return to the PT model and denote by� ⊂ R
d , d ∈ {1,2,3}, the refer-

ence configuration of an elastically deformable body. Forn > 1 the discrete set
P p = {e1, . . . , en} is the set of possiblepure phases, ej is thej -th unit vector
in R

n. The purpose of this notation is to identify a very natural relaxation with
the convexification ofP in the following section. The setPp = L1(�, P p) is the
set of pure states; the superscriptp is needed to distinguish between unrelaxed (or
pure-phase) models and relaxed models wherec takes its values in a continuous
set.

The elastic material properties of phaseej are determined by the stored-energy
densityWej (F ) whereF replaces the deformation gradient∇u. For given state
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cp ∈ Pp and deformation fieldu : �→ R
d the elastic bulk energy is given by

Ep
elast(c

p, u) =
∫
�

Wcp(x)(x,∇u(x))dx.

Throughout the paper we will assume that the energy-density functionsWei satisfy
the following standard assumptions of elasticity:

(i) Growth conditions: there existC > 0 and 1< p � q <∞ such that

|F |p/C − C � Wei (F ) � C|F |q + C for all F ∈ R
d×d; (3.1)

(ii) Wei (·) is quasiconvex, i.e., for allF ∈ R
d×d and allϕ ∈ C∞0 ((0,1)d) we have

Wei (F ) �
∫
(0,1)d

Wei (F + ∇ϕ(y))dy. (3.2)

These assumptions are needed to guarantee that the elastic problem has a so-
lution. This means that is is possible to find a minimizer toEp

elast(c
p, ·) where the

statecp is kept fixed. Although the existence of minimizers is not really required
in our theory, it is a typical assumption for any realistic choice ofWei . Our growth
assumptions exclude true energy-density functions for nonlinear elasticity which
should satisfyWei (F ) = +∞ for all F with detF � 0. At present the analysis for
this case is not understood but the general methodology of our modeling procedure
still works. Our application in Section 5 is for linearized elasticity where (3.1) holds
with q = p = 2.

Our aim is to describe time-dependent processes which are driven by external
forces and boundary conditions. The boundary conditions are imposed by a closed
(affine) subspaceV of W1,p(�). Without going into the details we assume that the
change of the Neumann-boundary data and the bulk force can be represented by
a time-dependent functionalG : [0, T ] → V∗, the dual space ofV. Thus, at time
t the system is described by(cp, u) ∈ Pp × V and has the total energy (Gibbs’
energy)

Ep(t, cp, u) =
∫
�

Wcp(x)(∇u(x))dx − 〈G(t), u〉.

Here〈·, ·〉 is the duality pairing inV∗ × V.
We assume that each PT leads to a dissipation of an amount of energy which is

proportional to the volume of the region occupied by the transformed material times
the constantκi→j depending only on the phaseei before and the phaseej after the
PT. Since the dissipated energy should be positive and finite we haveκi→j � 0 and
κi→i = 0 for everyi, j . The general theory requires that� is coercive and convex.
These two requirements translate directly into

coercivity: κi→j > 0 if i �= j, (3.3)

triangle inequality: κi→j � κi→k + κk→j (3.4)
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for everyi, j, k. Note that our state spacePp is not endowed with a linear structure
since phase-distribution functions cannot be multiplied with a scalar. With these
assumptions we can postulate our dissipation function which instead of taking rates
as an argument is defined on pairs of states.

Dp(cp(t1), c
p(t2)) =

∫
�

Dp(cp(t1, x), c
p(t2, x))dx whereDp(ei, ej ) = κi→j .

Consequently the total dissipation associated with a process is given by the sum of
the individual dissipations:

Dissp(cp; t1, t2) = sup

{ m∑
k=1

Dp(cp(τk−1), c
p(τk))

∣∣∣m∈N,

t1�τ0<τ1< . . .<τm�t2
}
.

The central concept which determines the evolution of the internal statecp and
the deformationu is the stability criterion (S) which is derived from the postulate
of realizability in [Lev95,Lev97]. Using the notation introduced so far, it reads

Ep(t, cp, u) � Ep(t, bp, v)+Dp(cp(t), bp) (3.5)

for all bp ∈ Pp, v ∈ V. Since the dissipated energyDp does not depend on the
deformationu, the concept of stability implies that for givent andcp the deformation
u is a global minimizer ofE . Hence, we introduce the energy of a statecp via

Ip(t, cp) = inf
{ Ep(t, cp, v) | v ∈ V }

.

In analogy to (S) and (E) we say that a processcp : [0, T ] → Pp is stable if

Ip(t, cp(t)) � Ip(t, ap)+Dp(cp(t), ap) for ap ∈ Pp, t ∈ [0, T ] (3.6)

and it satisfies theenergy inequality if

Ip(t2, c
p(t2))+Dissp(cp; t1, t2) � Ip(t1, c

p(t1))−
∫ t2

t1

〈Ġ(t), u(t)〉dt (3.7)

for 0 � t1 < t2 � T . Here the last term contains the energy contribution of the
work done by the external loading. A process is calledadmissible for Ip and Dp if
it is stable and satisfies the energy inequality.

The definition of stability gives a time-dependent restriction forcp(t) ∈ Pp. It
does not see the (rate-independent) dynamics of the process. The stability implies
that for no timet1 can the process be changed on(t1, t2] such that the differ-
ence between dissipation and energy gain is negative. Similarly, the energy in-
equality generates a restriction in the space of stresses and strain rates. The term
Dissp(cp; t1, t2) includes the dissipation which occurs through phase transforma-
tions in the time interval[t1, t2]. Note that the analogue of Theorem 2.5 holds also
for admissible processes in this generalized sense. For instance, by stability, at
time t a PT fromcp

old to cp
new is possible only when the gain in the energyIp is at
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least as large as the associated dissipation. However, the energy inequality gives
the opposite estimate which implies that at a jump we must satisfy the equality
Ip(t, c

p
old)−Ip(t, c

p
new) � Dp(c

p
old, c

p
new).

Until now, our model does not quite fit into the abstract framework outlined in
Section 2 since we have not specified a Banach spaceX. The sets on which the
energies are defined do not have any linear structure yet. This step will be completed
only in the following section where the question, of how to derive a relaxed model,
will be discussed more seriously. Nevertheless, the definition of admissibility leads
to the followingtime-continuous problem.

(CP) For givencp
0 ∈ Pp, find an admissiblecp : [0, T ] → Pp with cp(0) = cp

0.

It is not obvious that the set of stable states is nonempty. In [The01] it is proved
that, if(Pp,Dp) forms a complete metric space, then stable states exist. The marten-
sitic system satisfies this condition. To actually find stable states, i.e., states which
are relevant for the evolution, it is possible to derive necessary local conditions in
the case of the martensitic system. For a proof of the following two results we refer
to [MTL98]. Result (i) can be interpreted as the stability condition of a pure phase
ei with respect to formation of a nucleus including different phases with averagec.
This result shows that already stability is intrinsically linked to the relaxed density
functionsW and) obtained in Sections 4.2 and 4.3. Result (ii) relates to stability
of (smooth) interfaces, see the discussion below.

Theorem 3.1. (i) Let cp ∈ Pp be stable and let x0 ∈ � be such that cp andF = ∇u
are continuous at x = x0. Then, with W(a, F ) and ) from (4.5) and (4.10),

Wcp(x0)(F (x0)) � )(a−c(x0))+W(a, F (x0)) for all a ∈ P = conv(P p).

(ii) Let cp ∈ Pp be stable and let x0 ∈ � be a point where cp has a phase bound-
ary with normal vector ν. Let (e±, F±) be the left and right limits of (cp(x), F (x))

which satisfy by strain and stress compatibility F+−F− = a⊗ν and

T0
def= ∂FWe+(F+)ν = ∂FWe−(F−)ν. Then,

−Dp(e+, e−) � We−(F−)−We+(F+)+T0·([F+−F−]ν) � Dp(e−, e+).

The scalar quantityξ = We−(F−)−We+(F+)+T0·([F+−F−]ν) is the normal
componentν · (E0ν) of the Eshelby tensorE0. It is well known in the literature
[Gri91,KaR88,Lev95,Lev97] and is frequently denoted as the driving force for
the interface. As long asξ lies strictly between−Dp(e+, e−) andDp(e−, e+) the
interface cannot move in a time-continuous process since the dissipation plays
the role of a threshold. Ifξ reaches the valueDp(e−, e+) the interface can move
such that phasee+ grows, and analogously phasee− will start to grow if ξ =
−Dp(e+, e−).

From the abstract theory in Section 2, especially the incremental approach in
Section 2.3, it is natural to try to find solutions by time discretization. Choosing
a discrete set of times 0= t0 < t1 < · · · < tk < · · · < tN = T we are lead to
consider the associatedincremental problem (IP):
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(IP) For givencp
0 ∈ Pp, find cp

1, . . . , c
p
N ∈ Pp such that

Ip(tk, c
p
k)+Dp(c

p
k−1, c

p
k) = inf

{ Ip(tk, a
p)+Dp(c

p
k−1, a

p) | ap ∈ Pp } ,
for k = 1, . . . , N .

In contrast to Section 2 we do not have the special formDp(ap, cp) = �(cp−ap).
However, the triangle inequality (3.4) takes over the role of convexity in Sec-
tion 2 and we are still able to conclude that the solutions of (IP) are stable for
t = t1, . . . , tN . In complete analogy to the abstract theorem, Theorem 2.6, we
obtain the desired properties for solutions of (IP).

Lemma 3.2. Assume that Dp : P p × P p → R� satisfies (3.4), then solutions

of (IP) are stable, i.e., Ip(tk, c
p
k) � Ip(tk, a

p)+Dp(c
p
k, a

p) for all ap ∈ Pp, and
satisfy the discrete energy inequality

Ip(tk, c
p
k)+Dp(c

p
k−1, c

p
k) � Ip(tk−1, c

p
k−1)+

∫ tk

tk−1

∂tIp(s, c
p
k−1)ds.

We refer to Remark 4.8 for the necessity of the triangle inequality in this context.

4. Coarse graining via relaxation

The formulation we derived so far is not satisfactory, for two reasons:

(1) The existence of admissible processes cannot be assured, not even for the
incremental problem. Since the state spacePp = L1(�, P p) is not weakly
closed, it is unclear whether for fixedt ∈ [0, T ] andap ∈ Pp, the functional

cp �→ Ip(t, cp)+Dp(ap, cp)

has minimizers. Therefore we cannot use the incremental problem to construct
solutions.

(2) The numerical solution of the incremental problem would exhibit strong oscil-
lations, cf. [CaP97]. Energy considerations show that if the data is chosen in
order to achieve deformations in the “soft” directions of a shape-memory alloy,
strong oscillations are needed to avoid large stresses.

For these two reasons it is necessary to derive a coarse-grained model which
relies on effective quantities like phase portions instead of being restricted to pure
phase distributions. It is not particularly difficult to find extensions from pure-phase
models to models with phase mixtures so that the existence of admissible processes
can be guaranteed. The problem is to establish a clear link between the extended and
the original model. Such links can be obtained in several ways. An abstract notion
which is closely related to the spirit of�-convergence can be found in [The01].
Here we develop an approach based on the incremental method which is used to
construct solutions. We first introduce the notion of separate relaxation which is
based only on phase portions and compare it then to a more sophisticated definition
(incremental relaxation).
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Since existence and uniqueness of a separately relaxed model (not the solution!)
is obvious, we can study its properties in the following sections. First, we derive
more explicit expressions for the separately relaxed energies. Then we explain, how
these formulas can be used to convert the rather unusual incremental problem into
a standard problem in the context of nonlinear elasticity theory.

Finally we show that the special form of the separate relaxation allows us to de-
duce a simple differential inclusion as a necessary condition for relaxed admissible
processes with respect to the separately relaxed energies.

For each notion of relaxation we obtain a new incremental problem and rate-
independent evolution problem. To distinguish all these objects properly we have
tabled the relevant nomenclature.

unrelaxed
PT problem

separate
relaxation

incremental
relaxation

states, energy, diss. Pp,Ip,Dp P,I,D P,I,D
continuous problem (CP) (SRCP)
incremental problem (IP) (SRIP) (SRIP)′ (RIP)

4.1. Two notions of relaxation

Here we describe two possible notions of relaxation which remain solely on
the level of the incremental problem (IP). Since (IP) is a variational problem we
may study its relaxation. Neither in a real physical process nor in a mathematical
approximation of (IP) can we expect exact minimization ofIp(tk, ·)+Dp(c

p
k−1, ·)

to occur. The general philosophy of relaxation of rate-independent problems is
developed in [The01,Mi02b].

4.1.1. Separate relaxation. The simplest approach, which has been successfully
applied in related situations (cf. [FrM93]), consists in relaxing the functional
J p(t, ap, cp) = Ip(t, cp)+Dp(ap, cp).The special structure ofJ p(ap, cp), namely
that it is a sum of two terms, simplifies the analysis enormously. The first term
Ip(t, cp) does not depend onap and the second termDp(ap, cp) depends onap and
cp only pointwise under the integral over�.

We defineP as the weak closure ofPp; obviouslyP = L1(�, P ) whereP is
the convex hull ofP p, the unit simplex. Fora, c ∈ P we now define the relaxations

I(t, c) = inf
{

lim inf
m→∞ Ip(t, c

p
m) | cp

m ⇀ c for m→∞
}
, (4.1)

D(a, c) = inf
{

lim inf
m→∞ Dp(a

p
m, c

p
m) | ap

m ⇀ a, c
p
m ⇀ c for m→∞

}
, (4.2)

Jk(a, c) = I(tk, c)+D(a, c).
Note thatDp(·, ·) is relaxed in both variables simultaneously. It is not so difficult to
see thatJk is in fact the simultaneous relaxation ofJ p

k in both its arguments, viz.,

Jk(a, c) = inf
{

lim inf
m→∞ J p

k (a
p
m, c

p
m) | ap

m ⇀ a, c
p
m ⇀ c for m→∞

}
.
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It is a triviality that the separately relaxed incremental problem (SRIP) has a solu-
tion:

(SRIP) For givencp
0 ∈ Pp, find c1, . . . , cN ∈ P such that

Jk(ck−1, ck) = inf {Jk(ck−1, a) | a ∈ P } .
Proposition 4.1. For all c0 ∈ P the sequence of minimization problems (SRIP)has
a solution.

This approach is obviously too simplistic to be helpful in situations where not only
the concentration but also more delicate properties of the microstructure play a
role. However, because of the concreteness of the notion of separate relaxation
(only phase portions occur), it is possible to obtain structural results on(I,D,P).
In Sections 4.2 and 4.3 we will derive formulas for bothI andD which are still
local in space.

The notion of separate relaxation is quite closely related to similar approaches
for stationary problems. Obviously, it is uniquely determined by the unrelaxed
problem. Its main value for the relaxation of rate-independent evolution problems
is that it leads to well-posed incremental problems and provides good candidates
for an incrementally compatible relaxation.

4.1.2. Incremental relaxation. To find a more honest notion of relaxation we have
to take the influence of the microstructure into account. An attempt which avoids
discussing the structure of the time-continuous evolution problems is given by the
following approximate incremental problem (AIP)ε where quasiminimal solutions
are allowed.

(AIP)ε For givenε > 0 andcp
0 ∈ Pp, find cp

1, . . . , c
p
N ∈ Pp such that

Ip(tk, c
p
k)+Dp(c

p
k−1, c

p
k) � ε+inf

{Ip(tk, a
p)+Dp(c

p
k−1, a

p)
∣∣ap ∈ Pp} .

Clearly, this problem always has (many) solutions(cp
1,ε, . . . , c

p
N,ε). It is not at

all clear under what conditions the limitsε→ 0 andN →∞ commute. Here we
propose a relaxation which is based on the incremental problem, consequently we
first sendε to 0.

Definition 4.2. Let X be a Banach space and let(I,D,P) be an extension of
(Ip,Dp,Pp) in the sense thatPp ⊂ P ⊂ X, I|Pp = Ip andD|Pp×Pp = Dp.
The incremental problem associated with(I,D,P) is denoted by (RIP). Then,
(I,D,P) is called anincremental relaxation of (Ip,Dp,Pp) if

(i) for eachc0 ∈ P (RIP) has a solution,
(ii) Pp is dense inP with respect to the weak topology, and
(iii) for any solution(c1, . . . , cN) of (RIP) there exist solutions(cp

1,ε, . . ., c
p
N,ε) of

(AIP)ε such thatcp
k,ε ⇀ ck for ε→ 0.

An alternative (or additional) condition to (iii), which is probably much stronger,
is that all weak limits of solutions of (AIP)ε are solutions of (RIP):
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(iv) If (cp
1,ε, . . . , c

p
N,ε) solves (AIP)ε and cp

k,ε ⇀ ck, then (c1, . . . , cN) solves
(RIP).

A natural question is: Which conditions guarantee that the separate relaxation
indeed is an incremental relaxation? This problem can be understood best by con-
sidering infinimizing sequences(cp

k,ε) obtained from (AIP)ε with weak limitsck
for ε→ 0. The separate relaxation is based on the assumption

Dp(c
p
k−1,ε, c

p
k,ε)→ D(ck−1, ck) for ε→ 0. (4.3)

Clearly this is not correct for general sequences. The problem is that the weak
limits ck only contain information on the macroscopic volume fractions of the
pure phases and none on their microscopic arrangements. On the one hand, for
infinimizing sequences the modeling error may be small as these sequences try
to minimizeDp which means that changes in the microscopic arrangement are
energetically less favorable. Yet, on the other hand the microscopic arrangements
are enforced by the first termIp(tk, ·) and might differ attk−1 and tk. Then our
relaxation underestimates the dissipated energy.

So far, a rigorous connection between (IP) and (SRIP) via (AIP)ε is only known
in the (trivial) one-dimensional case and in the case of linearized elasticity with
two phases with the same elastic moduli. The latter case is stated in the following
theorem, a proof is found in [The00,The01].

Theorem 4.3. Assume that n = 2, C ∈ Lin(Rd×dsym ,R
d×d
sym ) is positive definite and

that

Wei (F ) = 1
2[C(E−Ai)]:[E−Ai] + β(i) with Ai ∈ R

d×d
sym , β

(i) ∈ R, (4.4)

where E = (F+FT−2I )/2. Then the separate relaxation is an incremental relax-
ation in the sense of Definition 4.2.

The main reason why this special case can be handled is that here the formation
of microstructure can be controlled very well. It is sufficient to study lamination in
one specific directionω ∈ R

d . Moreover, it is exactly this two-phase problem for
which we are able to provide an existence result for the associated time-continuous
relaxed problem (SRCP), see Theorem 5.1.

4.2. Relaxation of the energy Ip

We recall that the energy-density functionsWei : Rd×d → R of the pure phases
are always assumed to be quasiconvex, cf. (3.2). To understand the idea of coarse
graining we consider a small ballB(x0, r) = { x ∈ � | |x−x0| < r } inside the
body�where the averaged phase distribution is given byc = ∫

–
B(x0,r)

cp(x)dx. We

now allow for suitable rearrangementscp ∈ L1(B(x0, r), P
p) of the phases without

changing the average and we also allow for fluctuationsφ of the deformation which
have to vanish on the boundary of the ball. For smallr, these fluctuations can
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be understood as microscopic adjustments which do not affect the macroscopic
deformation. Lettingx = x0 + ry with y ∈ B we are led to themixture function

W(c, F )
def= inf

{ ∫
B

Wcp(y)(F+∇φ(y))dy
∣∣∣∣ φ ∈W1,p

0 (B),

cp ∈ L1(B, P p),

∫
B

cp(y)dy = c
}
. (4.5)

This defines a functionW : P × R
d×d → R; (c, F ) �→ W(c, F ) which satisfies

W(ej , F ) = Wej (F ) sinceWej was assumed to be quasiconvex. Thus,W contains
information on the mixture theory without the addition of new mechanics, just using
the fact that elasticity theory is scale invariant. In general the minimumW(c, F ) is
not achieved, but we need an infimizing sequence(c

p
ε)ε>0; this tells us that certain

microstructures are needed to minimize the energy under given phase fractions.
The functionsW was already defined in [Koh91] as a tool to study the quasi-

convexification of min
{
Wej (F ) | j = 1, . . . , n

}
. There,W(c, F ) itself plays a

central role and is called thequasiconvexification with fixed phase fractions, denoted
byQcW(F). Related applications in the theory of phase transformations for shape-
memory alloys are given in [Mie00,GMH02,Mi02b]. More recently the function
appeared in [FKP94,LeR00] to model elastic materials with internal variables. In
the latter work the functionW is calledcross–quasiconvexification.

The importance of the mixture function is that it is exactly the right tool to
characterize the relaxationI of the functionalIp. DefineE : [0, T ] ×P ×V → R

andI : [0, T ] × P → R via

E(t, c, u) =
∫
�

W(c(x),∇u(x))dx−〈G(t), u〉,
I(t, c) = min { E(t, c, u) | u ∈ V } . (4.6)

From [LeR00], Ch. 4, the following result follows immediately by subsequent min-
imization with respect to the elastic deformation.

Theorem 4.4. Assume thatWei (·) satisfies (3.1) and (3.2). Then, the relaxation I
of Ip, as defined in (4.1), is given by (4.6).

Furthermore, W(·, ·) : P × R
d×d → R is cross-quasiconvex in the sense

of [LeR00], which implies that W(·, F ) : P → R is convex for fixed F and
W(c, ·) : Rd×d → R is quasiconvex for fixed c ∈ P .

Unfortunately, only a limited number of examples are known, whereW can be
computed explicitly. The first such case is the one-dimensional case. There we have
the formula

W(c, F ) = L
( n∑
j=1

c(j)LWej
)
(F ) with c = (c(1), . . . , c(n))T ,

whereL is the Legendre-Fenchel transform with

(LW)(σ) = inf { σF −W(F) | F ∈ R } .



162 Alexander Mielke, Florian Theil & Valery I. Levitas

In the quadratic case withWei (F ) = 1
η(i)
(F−A(i))2+β(i) andη(i) > 0 this gives

W(c, F ) = (F−A · c)2/η · c + β · c.
The second case where the mixture function can be calculated is that of lin-

earized elasticity with identical elastic tensorC ∈ Lin(Rd×dsym ,R
d×d
sym ) which is

positive definite, i.e., there existsα > 0 such that

CE:E def=
d∑

i,j=1

(CE)ijEij � αE:E for all E ∈ R
d×d
sym . (4.7)

We continue to use the abbreviationE = 1
2(F+FT )−I for the linearized strain

tensor. WithC and a directionω ∈ R
d we associate the so-called acoustic tensor

A(ω) ∈ R
d×d
sym via

[A(ω)a] · a = 1
4[C(a⊗ω + ω⊗a)]:(a⊗ω + ω⊗a) for a ∈ R

d .

Proposition 4.5. Assume that C satisfies (4.7) and that Wei has the form (4.4).
Then,

W(c, F ) =
n∑
i=1

c(i)Wei (F )+ wmix(c), (4.8)

where wmix : P → R is convex and satisfies wmix(ej ) = 0 and the bounds

0 � wmix(c) � −1
2

n∑
j=1

c(j)[CAj ]:Aj + 1
2

[
CAc

]:Ac
with Ac = ∑n

j=1 c
(j)Aj . Moreover, if Aj = A0 + a(j)A for j = 1, . . . , n , then

there is the explicit formula

wmix(c) = −γ
2

[ n∑
j=1

(
a(j)

)2
c(j)−(a·c)2

]
with a = (a(1), . . . , a(n))

and γ = max

{
|A(ω)−1/2(CA)ω|2

∣∣∣∣ |ω| = 1

}
. (4.9)

In the casen = 2 the explicit formula (4.9) is always applicable. The first part
of the assertion follows from the quadratic nature of the problem, see, e.g., [Kha67,
Roi67,Kha83,Koh91] where also the casen = 2 was solved. Formula (4.9) for
n � 3 was established in [Mie00,GMH02] and applied to a particular PT problem
with one austenite and two martensitic phases in [PAM98]. For partial results in
more generals situations we also refer to [SmW98,Mie00].

Hence, we arrive at the following special case of Theorem 4.4.
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Theorem 4.6. Let 〈G(t), u〉 = ∫
�
g(t, x) · u(t, x) dx and let Wej be given as in

Proposition 4.5 and E and I as in (4.6) with W from (4.8). Then,

I(t, c) = min
{

E(t, c, u) | u ∈ V ⊂W1,2(�)
}

= η(t)+
∫
�

[(L0c)(x)+ ĝ(t, x)] · c(x)+ wmix(c(x))dx,

where L0 ∈ Lin(Y, Y ) with Y = L2(�,Rn) is a self-adjoint operator and
ĝ(t, ·) ∈ Y .

Proof. The validity of Theorem 4.4 in this special case is also proved in [The01].
The second identity follows immediately from the first by using the quadratic nature
and the fact that L1(�, P ) can be embedded continuously intoY . Minimization
in u does not involvewmix and it follows that the minimizeru = U(G(t), c)
depends linearly onG(t) andc, i.e.,U(G, c) = K1G+K2c withK1 ∈ Lin(V∗,V)
andK2 ∈ Lin(Y,V). Inserting this linear expression gives the desired quadratic
expression. !"

In Section 5 we will use this quadratic structure as well as the fact thatL0 is a
pseudo-differential operator of order 0 whose symbol is positive definite.

4.3. Relaxation of the dissipation functional

The relaxationD : P × P → R� of the functionDp : Pp × Pp → R� as
defined in (4.2) can be calculated much easier, sinceDp(ap, cp) depends onap and
cp only through a simple integration over the point values ofDp(ap(x), cp(x)). For
(a, c) ∈ P × P we set

D(a, c) = inf

{ n∑
j,i=1

mjiκj→i
∣∣∣ mji � 0,

n∑
i=1

mji = a(j),

n∑
j=1

mji = c(i)
}
. (4.10)

ClearlyD is obtained by minimizingDp(ap, cp) overap, cp ∈ L1(B, P p) under
the constraintsa = ∫

–
B
ap(y)dy andc = ∫

–
B
cp(y)dy. The coefficientsmji in (4.10)

are simply the relative measures of the sets
{
y ∈ B | a(y) = e(j), c(y) = e(i) }.

Usingκj→j = 0,κmin = min
{
κj→i | j �= i

}
, andκmax= max

{
κj→i | j �= i

}
,

we immediately find

κmin

2
|c−a|1 � D(a, c) � κmax

2
|c−a|1 where|b|1 def=

n∑
j=1

|b(j)|. (4.11)

We also haveD(ej , c) = ∑n
i=1 c

(i)κj→i . Since the differencec−a for a, c ∈ P
will play a major role we define the linear space

R
n∗ =

{
z ∈ R

n | z·e∗ = 0
}

wheree∗ = (1, . . . ,1)T .
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Proposition 4.7. The function D : P × P → [0,∞) is convex, i.e.,

D(θa1+(1−θ)a2, θc1+(1−θ)c2) � θD(a1, c1)+ (1−θ)D(a2, c2)

for θ ∈ [0,1].
IfDp satisfies the triangle inequality (3.4), then so doesD and there exists a unique
function ) : R

n∗ → [0,∞) which is homogeneous of degree 1 (i.e., )(αb) =
α)(b) for α � 0 and b ∈ R

n∗) such that D has the form

D(a, c) = )(c−a) for all a, c ∈ P. (4.12)

Remark 4.8. The triangle inequality plays a twofold role. First, it guarantees the
difference representation with). Second, it guarantees the stability of the solutions
of the incremental problem. To illustrate the necessity in both cases, consider a
situation with three phases. Letκ1→3 = κ andκj→i = 1 else fori �= j . For the
volume fractionsa = (1/4, α,3/4−α)T andc = (0, α,1−α)T , we havec−a =
(−1/4,0,1/4)T which is independent ofα. Forκ ∈ (0,2] the triangle inequality
holds and we findD(a, c) = κ/4. Forκ > 2 andα ∈ [0,1/4] we haveD(a, c) =
2α+(1−4α)κ/4 which clearly contradicts the difference formula.

Moreover, consider the trivial energiesIp(t, ej ) = 6−2j together with the
initial statecp

0 = e1. Then,Ip(t, cp) + Dp(e1, c
p) is minimized withcp = e2 for

κ � 3 and withcp = e3 for κ � 3. However,e2 is never stable wherease3 is always
stable.

Proof. Considerai, ci ∈ P and letm(i)jk be the minimizers in the definition of

D(ai, ci) for i = 1,2, that ism(i)jk � 0,
∑n
l=1m

(i)
j l = a(j)i , and

∑n
j=1m

(i)
j l = c(l)i .

Then,m(3)j l = θm
(1)
j l + (1−θ)m(2)j l forms an admissible set in the definition of

D(θa1+(1−θ)a2, θc1+(1−θ)c2), which gives the convexity result after separating
the minimum into the weighted sum of two minima. The triangle inequality forD

follows by a straightforward use of its definition and (3.4).
The proof of the representation (4.12) involves the standard duality theory for

linear transport problems as developed in the textbooks [Gal60,Gas58]. This theory
implies the dual representation

D(a, c) = max
{
µ · c − ν · a | µ, ν ∈ R

n with µ(j)−ν(i) � κi→j for all i, j
}
.

Using the triangle inequality, we now have to show that in the above maximum we
can restrict the variablesµ andν to the caseµ = ν, which then gives the function

)(c−a) def= max
{
µ · (c−a) | µ ∈ R

n, µ(j)−µ(i) � κi→j for i, j
}
. (4.13)

To this end we employ the following standard optimality condition. If(mij ) is a
minimizer in (4.10) and(µ, ν) a maximizer in the dual formulation then

mij > 0 implies κi→j = µ(j)−ν(i). (4.14)

Thus, usingκj→j = 0 we are finished if we can show thatmjj > 0 for all j =
1, . . . , n.
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Using the triangle inequality we show that it is always possible to find a mini-
mizer(mij ) in (4.10) which satisfies

mii = σi with σi
def= min{a(i), c(i)} for i = 1, . . . , n. (4.15)

Indeed, if this were not the case for somei0, then there would existj0 and k0
such thatδ = min{mi0j0,mk0i0} ∈ (0, σi0−mi0i0]. By the triangle inequality it is
advantageous, for minimizing

∑
κi→jmij , to increasemi0i0 andmk0j0 by δ > 0

and decreasemi0j0 andmk0i0 by the same amount. Clearly after a finite number of
such operations we achieveσi0 = mi0i0.

Using identity (4.15) and the extremality condition (4.14) we conclude that
µ = ν in the dual problem whenevera andc have positive coordinates. Then,
the desired relationD(a, c) = )(c−a) follows. By continuity ofD and) it
immediately extends to all ofP×P . !"

We now define the integrated function� : L1(�,Rn∗)→ R� via

�(z) =
∫
�

)(z(x))dx. (4.16)

Under the assumption thatDp satisfies the triangle inequality we haveDp(ap, cp) =
)(cp−ap) and henceDp(ap, cp) = �(cp−ap) for all ap, cp ∈ Pp.

Theorem 4.9. Assume that Dp : P p × P p → R� satisfies the triangle inequal-
ity (3.4). Then, the relaxation D : P × P → R� defined in (4.2) is given
by D(a, c) = �(c−a). It satisfies the triangle inequality and κmin‖c−a‖L1 �
2D(a, c) � κmax‖c−a‖L1.

The proof can be found in [The01].

4.4. The separately relaxed incremental problem

Using these two relaxed functionals we obtain a relaxed formulation of the
incremental problem (IP). WithI from (4.6) and� from (4.16) we postulate the
following separately relaxed incremental problem:

(SRIP) For givenc0 ∈ P, find c1, . . . , cN ∈ P such that

I(tk, ck)+�(ck−ck−1) = inf { I(tk, c)+�(c−ck−1) | c ∈ P }
for k = 1, . . . , N .

Clearly, solutions(ck)k=1,... ,N of (SRIP) are stable and satisfy the incremental
energy inequality (cf. Theorem 2.6), viz.,

(S) I(tk, ck) � I(tk, a)+�(a−ck) for all a ∈ P,
(E)incr I(tk, ck)+�(ck−ck−1) � I(tk, ck−1)

= I(tk−1, ck−1)+
∫ tk

tk−1

∂tI(s, ck−1)ds.
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There are two ways to see that (SRIP) always has a solution. In the first case
we use the general construction ofI and� which implies thatJk(a, ·) : P →
R; c �→ I(tk, c) +�(c−a) is weakly lower semicontinuous. SinceP is bounded
in L∞(�,Rd) the existence of a minimizer follows. The second approach to the
existence of minimizersc ∈ P is much more useful for doing actual numerics. We
reintroduceu ∈ V and minimize the functional

Gk(a, c, u) = E(tk, c, u)+�(c−a)
=
∫
�

W(c(x),∇u(x))+)(c(x)−a(x))dx − 〈G(t), u〉

with respect to(c, u) ∈ P×V. Asc(x) appears only locally in the integral we may
minimize with respect toc first and do the minimization pointwise inx ∈ �. For
this purpose define thereduced incremental energy density

Lred(a, F ) = min {W(c, F )+)(c−a) | c ∈ P } , (4.17)

where, by continuity ofW(·, F ) + )(· − a), the minimum is achieved atc =
C(a, F ), i.e., Lred(a, F ) = W(C(a, F ), F ) + )(C(a, F )−a). The cross-
quasiconvexity ofW implies that, for eacha ∈ P , the functionLred(a, ·) is quasi-
convex, cf. [LeR00]. Hence, the functional

Gred(t, a, u) =
∫
�

Lred(a(x),∇u(x))dx − 〈G(t), u〉

is weakly lower semicontinuous, cf. the general theory in [Dac89,FKP94,LeR00].
For our special case of Proposition 4.5 withn = 2 the functionsLred andC can be
given explicitly, see [MTL98,MiT99,CaP00]. Now, (SRIP) can be reformulated as
follows.

(SRIP)′ For cp
0 ∈ Pp, find (c1, u1), . . . , (cN , uN) ∈ P × V such that

Gred(tk, ck−1, uk) = inf {Gred(tk, ck−1, v) | v ∈ V }

and then letck(x) = C(ck−1(x),∇uk(x)).

The formulation of (SRIP)′ has the major advantage that it reduces to a simple
variational problem for the variableuk ∈ V. By the quasiconvexity ofLred(a, ·) the
existence of a minimizer is clear. The important message is that the functionLred is
in principle completely determined from the pure energy densitiesWej (F ) and the
dissipation coefficientsκi→j = D(ei, ej ). It can be calculated either analytically or
numerically before even starting to solve the incremental problem (SRIP). (Similar
reduced densities and functionals appear in elasto-plasticity [CHM02,Mi02a].)
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4.5. The relaxed time-continuous problem

One reason for choosing the separate relaxation was to obtain rather explicit
results. The second reason is that the structure of the problem remains the same.
In particular, (SRIP) can be interpreted as the incremental version of a new time-
continuous relaxed problem. The functionalsI and� constructed above are now
the ones used in the abstract existence theory of Section 2. Theseparately relaxed
time-continuous problem is exactly that of the existence of an admissible process
as stated in the abstract section.

(SRCP) Givenc0 ∈ P, find c : [0, T ] → P with c(0) = c0 such thatc(t) ∈ P is
stable for allt ∈ (0, T ] and that the weak energy inequality holds, viz.,

(S) I(t, c(t)) � I(t, a)+�(a−c(t)) for all t ∈ (0, T ] anda ∈ P,

(E) I(T , c(T ))+
∫ T

0
)(dc) � I(0, c0)−

∫ T

0
〈Ġ(t), u(t)〉dt ,

whereu(t) = U(G(t), c(t)) is a minimizer ofE(t, c(t), ·).
Note that in our situation we have∂tI(t, c) = −〈Ġ(t),U(G(t), c(t))〉 such that
we are in accordance with (E).

According to Section 2.3 we can associate with (SRCP) an incremental problem
to obtain solutions. By construction this is exactly the separately relaxed incremen-
tal problem (SRIP) we started with. It is the purpose of the next section to show
that the assumptions of the abstract existence theory are satisfied for a nontrivial
special case. Thus, we are able to conclude that there exist solutions for (SRCP).

Remark 4.10. The above relaxation can be understood as a Young-measure relax-
ation as studied in [Mi02b]. The space L1(�, P ) is exactly YM(�, P p), the set of
Young measures on� taking values in Prob(P p)where Prob(P p) is identified with
P = conv(P p). Note thatP p is finite andP compact. By construction, the distance
D : P × P → [0,∞) is exactly the Wasserstein distance on Prob(P p) associated
with the distanceDp : P p× P p→ [0,∞) onP p.

Finally we show that (SRCP) can be interpreted as a doubly nonlinear differ-
ential inclusion which looks similar to flow rules in plasticity, cf. [CoV90,MiT02,
Mi02a]. This will be a specification of the abstract flow rules discussed in Theo-
rem 2.3. In the engineering literature such flow rules are used for phase transfor-
mation problems as well, see [HaG99,GMH02].

Here we use specifically thatP = L1(�, P ) and�(z) = ∫
�
)(z(x)) dx are

given pointwise inx ∈ �. This allows us to make the differential inclusion (2.9)
quite explicit. DefineM ⊂ R

n∗ = { z ∈ R
n | z·e∗ = 0 } via the subdifferential of

) : Rn∗ → R asM = ∂)(0). According to (4.13) we have

M = conv{σ1, . . . , σN } and )(z) = max
{
z·σj | j = 1, . . . , N

}
.

In particular we find� = {
σ ∈ L∞(�,Rn∗) | σ(x) ∈ M for a.e.x ∈ � }

and

∂�(z) = { σ ∈ � | σ(x)·z(x) = )(z(x)) for a.e.x ∈ � } .
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Similarly the outer normal cone∂XP (c) = NcP can be characterized pointwise

NcP =
{
σ ∈ L∞(�,Rn∗) | σ(x) ∈ Nc(x)P for a.e.x ∈ � }

,

where Nc(x)P ⊂ R
n∗ is the finite-dimensional normal cone of the polytopeP .

The derivative of the functionalI(t, ·) is best represented by reintroducing the
deformationu and the associated equation for the elastic equilibrium. Recall for
this end thatI(t, c) was defined by minimizingE(t, c, u) with respect tou ∈ V.
This leads to the doubly nonlinear form ([CoV90,MiT02]) of the problem:

0= DuE(t, c(t), u(t)),
0 ∈ ∂�(ċ(t))+ DcE(t, c(t), u(t))+ Nc(t)P.

Here the first equation is the classical elliptic system describing the elastic equilib-
rium and the second relation is a flow rule forc(t, x) which is completely local in
x ∈ �. With 〈G(t), u〉 = ∫

�
g(t, x) · u(t, x)dx, the full problem can be written as

follows.

Local flow formulation. For almost all(t, x) ∈ [0, T ] ×� we have

0= divx
∂

∂F
W(x,∇xu(t, x), c(t, x))+ g(t, x)

0 ∈ ∂)(ċ(t, x))+ ∂

∂c
W(∇xu(t, x), c(t, x))+ Nc(t,x)P .

(4.18)

together with the standard boundary conditions.
The second relation can be reformulated without the subdifferential of):

∃ n(t, x) ∈ Nc(t,x)P such that

)(ċ(t, x))+ ċ(t, x)·
[
∂

∂c
W(∇xu(t, x), c(t, x))+n(t, x)

]
= 0

for a.e.(t, x) ∈ [0, T ] ×�. Recall thatW is convex inc ∈ P , however it may not
be differentiable. In such a case we may replace the partial derivative∂

∂c
W(F, c)

by any element in the subdifferential∂cW(F, c).

5. Existence of admissible processes for a special case

We now restrict our view completely to the case of linearized elasticity with two
phases (n=2) whose elastic tensors are identical. For this case the mixture function
W is given explicitly in Proposition 4.5. We simplify the notation by identification
of P = conv{e1, e2} ⊂ R

2 with the interval[0,1] via the mapping[0,1] % θ �→
(1−θ)e1+θe2. Moreover, we will use the (infinitesimal) displacementũ : �→ R

d

rather than the displacementu : x �→ x + εũ(x), whereε is a small parameter. We

will consider phase distributionsθ ∈ P = L1(�, [0,1]) ⊂ X def= L1(�,R) and
displacements̃u ∈ V = {

v ∈W1,2(�,Rd) | v|� = 0
}
, where� is that part of

∂� where Dirichlet boundary conditions are prescribed.
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The mixture function takes the specific form

W(θ, E) = 1−θ
2 C[E−A1]:(E−A1)+ θ2C[E−A2]:(E−A2)− γ2 θ(1−θ), (5.1)

whereC satisfies (4.7) andγ is defined in (4.9) withA = A2−A1. The dissipation
functional now reads� : X → R�; ζ �→

∫
�
)(ζ(x)) dx with κ1→2, κ2→1 > 0

and

) : R→ R�; ζ �→ max{ζκ1→2,−ζκ2→1}. (5.2)

The aim of this section is to proof an existence theorem for the separately
relaxed problem (SRCP) for this special case. The following result gives a typical
situation. However, slight generalizations are possible.

Theorem 5.1. Let � ⊂ R
d be a bounded domain with C1 boundary and P , X, V ,

�, and W as above. Moreover, assume G ∈ C1([0, T ],V∗) and let

I(t, θ) = min

{∫
�

W(θ,
1

2
(∇ũ+∇ũT ))dx + 〈G(t), ũ〉

∣∣∣∣ ũ ∈ V
}
.

If additionally either (a) or (b) hold, where

(a) � = ∂� (full Dirichlet conditions),
(b) A2−A1 = b⊗ξ+ξ⊗b for some b, ξ ∈ R

d (infinitesimally rank-one connected
wells),

then for each c0 ∈ P there exists an admissible process in the sense of Definition 2.1,
i.e., a solution of (SRCP).

The proof of this result constitutes the remainder of this section. In fact, we
can strengthen the result slightly. If (a) as well as certain algebraic conditions onC
andA2−A1 hold, it is possible to prove strict convexity ofI(t, ·), see Remark 5.6
at the end of this section. Then, Theorem 7.5 in [MiT02] implies continuity of
c : (0, T ] → P.

Our special case can be handled due to the fact thatW is quadratic inc and
∇u. Hence, it is possible to work out the form ofI(t, θ) more explicitly than in
Theorem 4.6. We use also the Hilbert spaceY = L2(�,R), which is possible since
the weak and strong topologies onP which are induced byY andX are the same.

Proposition 5.2. If the assumptions of Theorem 5.1 (but not necessarily (a) or
(b)) hold, then there exist η ∈ C1([0, T ],R), ĝ ∈ C1([0, T ], Y ) and a symmetric
operator L ∈ Lin(Y, Y ) such that

I(t, θ) = η(t)+
∫
�

[
(1

2Lθ)(x)+ ĝ(t, x)
]
θ(x)dx.

Moreover, L is a pseudo-differential operator of order 0 which has the symbol
O : Rd \ {0} → R given by

O(ω) = γ − λ(ω) with λ(ω) =
[
A(ω)−1(CA)ω

]
· [(CA)ω] , (5.3)

where A = A2−A1, and hence is nonnegative, cf. (4.9).
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Proof. We have to minimizeE(t, θ, ũ), which is quadratic in(θ, ũ) ∈ Y × V
with respect tõu ∈ V. We obtain the unique minimizer̃u = K1G(t) + K2θ

whereK1 ∈ Lin(V∗,V) andK2 ∈ Lin(Y,V). Note thatK2 is a pseudo-differential
operator of order−1. Inserting this result intoE(t, ·) defines the differentiable
functionst �→ η(t) ∈ R andt �→ ĝ(t) ∈ Y and the pseudo-differential operatorL
of order 0, asE = 1

2(∇ũ+∇ũT ) is a differential operator of order 1.
It remains to calculate the symbol ofL. This is done most easily by inserting

E = Ea,ω def= 1
2(a⊗ω + ω⊗a) ∈ R

d×d
sym into the quadratic part ofW which gives

1
2CEa,ω:Ea,ω − θCEa,ω:A+ θ2 γ

2 = 1
2A(ω)a · a − θCAω · a + θ2 γ

2 .

A subsequent minimization with respect toa ∈ R
d yields the desired result.!"

From the theory of pseudo-differential operators, it follows that the range of
the symbolO constitutes the continuous spectrum whereas compact perturbations
which are not seen in the symbol may generate additional discrete eigenvalues.
Such compact perturbations arise from the different boundary conditions for the
displacement̃u. However, we conclude that the (strictly) negative part ofLmust be
compact and it is exactly this property which guarantees weak lower semicontinuity
of I(t, ·) : Y → R and hence that ofI(t, ·) : P ⊂ L1(�,R)→ R. It is remarkable
that the continuous spectrum always includes 0, as the definition ofγ is just such
that the minimum ofO(ω), 0 �= ω ∈ R

d is 0. This implies thatI can never
be uniformly convex. However, strict convexity is still possible depending on the
compact perturbations through the boundary conditions.

Our subsequent existence result will work for all cases whereL is positive
semi-definite. Thus, we give some cases where this can be guaranteed. We now
have to take into account the boundary conditions forũ. We recall that� ⊂ ∂� is
that part of the boundary where we have imposed Dirichlet data, i.e.,ũ|� = 0.

Lemma 5.3. The operator L is positive semi-definite if either (a) or (b) in Theo-
rem 5.1 holds.

Proof. The idea of the proof is to return to the quadratic functionalE(t, θ, ũ) and
to eliminateθ first, cf. Section 4.4 and the derivation of (SRIP)′ for the analogous
strategy. Consider the quadratic form

Q(θ, ũ) =
∫
�

1

2
CE(̃u):E(̃u)− θCE(̃u):A+ θ2γ

2
dx,

with E(̃u) = 1
2(∇ũ+∇ũT ), which is the homogeneous part of degree 2 ofE .

On the one hand we have
∫
�
(Lθ)θ dx = 2 min{Q(θ, ũ) | u ∈ V }. On the

other hand we may eliminateθ first to obtain

Q̂(̃u) = min {Q(θ, ũ) | θ ∈ Y } =
∫
�

1

2
ĈE(̃u):E(̃u)dx,

where the reduced elasticity tensorĈ is given byĈE:E = CE:E − [CE:A]2/γ .
Clearly we haveL � 0 if and only if Q̂(u) � 0 for all u ∈ V. SinceQ̂ is
homogeneous, the last condition is equivalent to convexity ofQ̂.
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The case (a) is now obtained by studying the symbol associated withQ̂ which
takes the formS(ω) = A(ω) − 1

γ
[(CA)ω]⊗[(CA)ω]. Usinga = A(ω)−1/2b we

find

S(ω)a · a = |b|2− 1
γ
[(CA)ω · A(ω)−1/2b]2 � |b|2

(
1− 1

γ
|A(ω)−1/2(CA)ω|2

)
,

and using the definition ofγ shows that the symbol is always positive semi-definite.
This means that the functionF �→ 1

4Ĉ(F+FT ):(F+FT ) is rank-one convex.
Together with the full Dirichlet condition this implies convexity of̂Q, cf. [Dac89].

For the case (b) we cannot use the boundary conditions. Instead we show con-
vexity of Q̂ by convexity of the integrand, i.e.,̂CE:E � 0 for all E ∈ R

d×d
sym . We

define a scalar product onRd×dsym via 〈〈E1, E2〉〉 = CE1:E2. Then, on the one hand

we havêCE:E = 〈〈E,E〉〉 − 〈〈E,A〉〉2/γ ; and convexity holds, by the Cauchy-
Schwarz inequality, if and only if〈〈A,A〉〉 � γ . On the other handγ takes the
form

γ = max
{
〈〈Ea,ω,A〉〉2/〈〈Ea,ω, Ea,ω〉〉 | 0 �= a, ω ∈ R

d
}

� 〈〈A,A〉〉.

By assumption (b),A = Eb,ξ is an admissible candidate in the maximum and we
conclude thatγ = 〈〈A,A〉〉 and, hence, the desired convexity follows.!"

We now want to apply the abstract theory of Section 2. Clearly, the quadratic
form of I and the continuous differentiability int implies that all necessary conti-
nuity assumptions are satisfied forI and�. Thus, Theorem 2.6 is applicable and
we have solutions of the incremental problem (SRIP) which are stable and satisfy
the discrete energy inequality. The compactness condition (2.11) forP ⊂ Y ⊂ X
is also fulfilled and thus Corollary 2.8 allows us to extract a limit functionθ∞ such
that θ = (θ∞)− is a suitable candidate for the solution of (SRCP). The abstract
existence theorem, Theorem 2.9, has two further assumptions. The first is the weak
continuity of the mappingθ �→ ∂tI(t, ·) which clearly holds due to linearity.

The second condition is the weak closedness of the set of stable states

S(t) = {
θ ∈ P | I(t, θ) � I(t, ζ )+�(ζ−θ) for all ζ ∈ P }

.

It is here that we need to restrict our analysis to the case whereL is positive semi-
definite. We do not believe that this condition is really needed, but we were unable
to find a proof for the more general case. Recall that convexity ofI(t, ·) does not
imply convexity ofS(t); we have to use the theory of pseudo-differential operators
in the form of the H-measure, also called microlocal defect measure [Tar90,Ger91].

Proposition 5.4. If, in addition to the above assumptions, L � 0, then the set of
stable states S(t) is weakly closed for all t ∈ [0, T ].

Proof. For simplicity we omit the dependence ont throughout the proof.
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✲
σ

✻
θ

1

0

M

−κ1→2 κ2→1

Fig. 5.1. The (nonconvex) setM ⊂ R
2 is the filled rectangle plus the two infinite halflines

Clearly,I(t, ·) : Y → R is differentiable and convex due toL � 0. Hence,
θ ∈ S if and only if DI(θ)[ζ−θ ] +�(ζ−θ) � 0 for all ζ ∈ P. (In the nonconvex
case this is necessary but not sufficient.) Written as integrals this gives∫

�

[Lθ(x)+ĝ(x)](ζ(x)−θ(x))+)(ζ(x)−θ(x))dx � 0 (5.4)

for ζ ∈ P = L1(�, [0,1]). This condition has the big advantage that the test
functionζ appears only locally under the integral. Thus, we can varyζ pointwise
and find thatθ ∈ S if and only if

(θ(x), (Lθ)(x)+ ĝ(x)) ∈ M for a.e.x ∈ �, (5.5)

whereM ⊂ R
2 is defined via

M = {
(θ, σ ) ∈ [0,1] × R | (σ−κ2→1)θ � 0, (σ+κ1→2)(θ−1) � 0

}
,

see Fig. 5.1. Note thatM is not convex; however, roughly speaking, the proof works
since intersections ofM with lines of the form(θ, Oθ + ĝ) with O � 0 are convex.

Now consider a sequenceθk ∈ S ⊂ P which satisfiesθk ⇀ θ∗ in Y =
L2(�). Clearly we then haveLθk+ĝ ⇀ Lθ∗+ĝ. The following lemma shows the
implication

θk(Lθk) ⇀ w in X = L1(�) &⇒ θ∗(x)(Lθ∗)(x) � w(x) a.e. in�. (5.6)

Convexity just implies the weaker statement
∫
�
w dx �

∫
�
θ∗(Lθ∗) dx. Thus,

we are able to control the sign of the quadratic expressions which appear in the
definition ofM. By (5.5) we know thatθk ∈ S is equivalent to

θk(x) ∈ [0,1], θk(x)(Lθk)(x) � (ĝ(x)+κ2→1)θk(x),

θk(x)(Lθk)(x) � (ĝ(x)−κ1→2)(θk(x)−1)+ (Lθk)(x) for a.e.x ∈ �.
Choosing a subsequence(kl) suchθkl (Lθkl ) converges tow weakly inX, we find
for the limit θ∗, the estimates

θ∗(x) ∈ [0,1], w(x) � (ĝ(x)+κ2→1)θ∗(x),
w(x) � (ĝ(x)−κ1→2)(θ∗(x)−1)+ (Lθ∗)(x) for a.e.x ∈ �.

Together withθ∗(Lθ∗) � w this impliesθ∗ ∈ S. !"
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Theorem 5.1 is established if the implication (5.6) is proved, which is the content
of the following lemma.

Lemma 5.5. Let L be a scalar pseudo-differential operator of order 0 with non-
negative symbol O. Assume that for k → ∞ we have θk ⇀ θ∗ in Lp(�) and
θk(Lθk) ⇀ w in Lp/2(�), where p � 2. Then θ∗(Lθ∗) � w a.e. in �.

Proof. We definevk = θk − θ∗ such thatvk ⇀ 0. Then it suffices to show that
vk(Lvk) ⇀ z implies 0� z.

There are two closely related ways to prove this result. The first uses the H-
measure as developed in [Tar90,Ger91]: we apply Corollary 1.12 of [Tar90] to the
sequencesU1,k = U2,k = vk and the operatorsA1 = id andA2 = L and use the
positivity of the diagonal entries of the H-measure.

We describe the second proof in more detail. It is based solely on the theory
of pseudo-differential operators. Letφ � 0 be an arbitrary localization function
and denote byMφ the multiplication operatorv �→ φv. ThenMφL = LMφ +Kφ
whereKφ is a compact operator depending only onφ (see, e.g., [Tar90, Lemma
1.7] and [The01]).

For a sequence(vk)k∈N with vk ⇀ 0 andvk Lvk ⇀ z we find that∫
�

φ2 zdx = lim
k→∞

∫
�

φ2 vk (Lvk)dx

= lim
k→∞

∫
�

(Mφvk)Mφ(Lvk)dx

= lim
k→∞

∫
�

(Mφvk) L(Mφvk)dx + lim
k→∞

∫
Rd
(Mφvk) (Kφvk)dx

� 0.

In the last estimate we have usedL � 0 for the first term. The second term is 0 by
the compactness ofKφ . Sinceφ was arbitrary, this gives the desired result.!"

Remark 5.6. With the above theory we can easily construct cases where the oper-
atorL is strictly positive. If we assume that� = ∂� (condition (a) from above),
then Fourier transform shows that

〈θ, Lθ〉 =
∫
�

θ (Lθ)dx =
∫

Rd
O(ω)|(Fθext)(ω)|2dω

with θext(x) = θ(x) for x ∈ � and= 0 for x ∈ R
d \�. This implies〈θ, Lθ〉 > 0

for all θ �= 0 if and only if O(ω) �= 0 for a.e.ω ∈ R
d . SinceO|Sd−1 is analytic the

latter condition holds wheneverO is not identically 0.
The caseO ≡ 0 may occur in degenerate or highly symmetric cases. Recall

thatO always vanishes along at least one straight line. If now the elastic tensor is
isotropic andA2−A1 is a multiple of identity, thenOmust be rotationally symmetric
and hence vanishes everywhere.
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[CaP00] C. Carstensen&P. Plecháč: Numerical analysis of a relaxed variational model
of hysteresis in two-phase solids. Preprint no. 80 MPI Math. in the Sciences,
Leipzig, 2000.

[CHM02] C. Carstensen, K. Hackl &A.Mielke: Nonconvex potentials and microstruc-
tures in finite-strain plasticity.Proc. Royal Soc. London 2002, in press.

[CoV90] P. Colli & A. Visintin: On a class of doubly nonlinear evolution equations.
Comm. Partial Diff. Eqns. 15, (1990) 737–756.

[Dac89] B. Dacorogna: Direct Methods in the Calculus of Variations. Springer-Verlag
1989.

[FKP94] I. Fonseca, D. Kinderlehrer & P. Pedregal: Energy functionals depending
on elastic strain and chemical composition.Calc. Var. Part. Diff. Eqns. 2, (1994)
283–313.

[FrM93] G. Francfort & J. Marigo: Stable damage evolution in a brittle continuous
medium.Eur. J. Mech. Solids 12, (1993) 149–189.

[FrM98] G. Francfort& J.Marigo: Revisting brittle fracture as an energy minimization
problem.J. Mech. Phys. Solids 48, (1998) 1310–1342.

[Gas58] S. I. Gass: Linear Programming. Methods and Applications. McGraw-Hill 1958.
[Gal60] D. Gale: The Theory of Linear Economic Models. McGraw-Hill 1960.
[Ger91] P. Gérard: Microlocal defect measures.Comm. Part. Diff. Eqns. 16, (1991)

1761–1796.



Rate-Independent Phase Transformation 175

[GNS83] P. Germain, Q. S. Nguyen & P. Suquet: Continuum Thermodynamics.Trans.
ASME–Applied Mechanics 50, (1983) 1010–1020.

[GhO94] G. Ghosh & G.B. Olson: Kinetics of F.C.C.→ B.C.C. heterogeneous marten-
sitic nucleation. I. The critical driving force for athermal nucleation.Acta Metall.
Mater. 42, (1994) 3361–3370.

[GMH02] S. Govindjee, A. Mielke &G. J. Hall: The free energy of mixing forn-variant
martensitic phase transformations using quasi-convex analysis.J. Mech. Physics
Solids (2002), to appear.

[GoM01] S. Govindjee & C. Miehe: A multi-variant martensitic phase transformation
model: Formulation and numerical implementation.Computer Meth. Applied
Mech. Eng. 191, (2001) 215–238.

[Gri91] M.A. Grinfeld: Thermodynamic Methods in the Theory of Heterogeneous Sys-
tems, Longman, Sussex, 1991.

[HaG99] G. J.Hall&S.Govindjee:A model and numerical framework for the simulation
of solid–solid phase transformation. Preprint UCB/SEMM–1999/11, Univ. Calif.
Berkeley, 1999.

[HaR95] W. Han & D. Reddy: Computational plasticity and numerical analysis.Comp.
Mech. Adv. 2, (1995) 283–400.

[HuM93] Y.Huo& I.Müller: Nonequilibrium thermodynamics of pseudoelasticity.Con-
tinuum Mech. Thermodyn. 5, (1993) 163–204.

[KaR88] I.M.Kaganova&A. L.Roitburd: Equilibrium of elastically interacting phases.
Sov. Physics JETP 67 (1988) 1174–1186.

[Kha67] A.G. Khachaturyan: Some questions concerning the theory of phase transfor-
mations in solids.Soviet Physics: Solid State 8, (1967) 2163–2168.

[Kha83] A.G. Khachaturyan: Theory of Structural Transformations in Solids. John
Wiley and Sons 1983.

[KMS99] M.S. Kuczma, A. Mielke & E. Stein: Modeling of hysteresis in problems with
phase transformations.Archive of Mechanics 51, (6), (1999) 693–715.

[Koh91] R.V. Kohn: The relaxation of a double-well energy.Continuum Mech. Thermo-
dyn. 3, (1991) 193–236.

[KuM00] M.S. Kuczma & A. Mielke: Influence of hardening and inhomogeneity on
internal loops in pseudoelasticity.Zeits. Angew. Math. Mechanik 80, (2000) 291–
306.

[LeR00] H. LeDret & A. Raoult: Variational convergence for nonlinear shell models
with directors and related semicontinuity and relaxation results.Arch. Rational
Mech. Anal. 154, (2000) 101–134.

[LeS97] V. I. Levitas & E. Stein: Simple micromechanical model of thermoelastic
martensitic transformations,Mech. Res. Commun. 24, (1997) 309–318.

[Lev94] V. I. Levitas: Thermomechanical description of pseudoelasticity – the threshold-
type dissipative force with discrete memory.Mech. Res. Commun. 21, (1994)
273–280.

[Lev95] V. I. Levitas: The postulate of realizability: formulation and applications to post–
bifurcation behavior and phase transitions in elastoplastic materials.Int. J. Eng.
Sci. 33, (1995) 921–971.

[Lev97] V. I. Levitas: Phase transitions in elastoplastic materials: continuum thermome-
chanical theory and examples of control. Part I and II.J. Mech. Physics Solids
45, (1997) 923–947 and 1203–1222.

[Lev98] V. I. Levitas: Thermomechanical theory of martensitic phase transformations in
inelastic materials.Int. J. Solids Structures 35, (1998) 889–940.

[Lev00] V. I. Levitas: Structural changes without stable intermediate state in inelastic
material. Part I and II.Int. J. Plasticity 16, (2000) 805–849 and 851–892.



176 Alexander Mielke, Florian Theil & Valery I. Levitas

[Mie00] A. Mielke: Estimates on the mixture function for multiphase problems in elas-
ticity. In “ Multifield Problems, State of the Art, A.–M. Sändig, W. Schiehlen,
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[Rou02] T. Roubı́ček: Evolution model for martensitic phase transformation in shape-
memory alloys.Interf. Free Bound. (2002), to appear.

[SmW98] V. P. Smyshlyaev& J. R.Willis: On the relaxation of a three-well energy.Proc.
Royal Soc. London A 455, (1998) 779–814.

[Tar90] L. Tartar: H-measures, a new approach for studying homogenisation, oscilla-
tions and concentration effects in partial differential equations.Proc. Royal Soc.
Edinb. A 115, (1990) 193–230.

[The00] F. Theil: Approximation of quasistatic processes with friction by incremental
problems in the theory of phase transitions. In “Trends in Applications of Mathe-
matics to Mechanics,G. Iooss, O. Guès, A. Nouri (eds), Chapman & Hall/CRC,
2000”, pp. 172–179.

[The01] F. Theil: Relaxation of rate independent evolution problems.Proc. Roy. Soc.
Edinb. A (2001), to appear.

[Vis94] A. Visintin: Differential Models of Hysteresis. Springer-Verlag 1994.



Rate-Independent Phase Transformation 177

[Wil93] K. Wilmanski: Models of stress-strain hysteresis loops in shape memory alloys.
Int. J. Eng. Sci. 31, (8), (1993) 1121–1138.

Mathematisches Institut A
Universität Stuttgart
Pfaffenwaldring 57

70569 Stuttgart, Germany
e-mail: mielke@mathematik.uni-stuttgart.de

and

University of Warwick
Mathematics Institute

CV4 7AL Coventry, UK

and

Texas Tech University
Department of Mechanical Engineering

Lubbock, TX 79409-1021, USA

(Accepted November 22, 2001)
Published online March 25, 2002 – c© Springer-Verlag (2002)


