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Abstract. Retinex theory addresses the problem of separating the illumination from the reflectance in a given

image and thereby compensating for non-uniform lighting. This is in general an ill-posed problem. In this paper we

propose a variational model for the Retinex problem that unifies previous methods. Similar to previous algorithms,

it assumes spatial smoothness of the illumination field. In addition, knowledge of the limited dynamic range of

the reflectance is used as a constraint in the recovery process. A penalty term is also included, exploiting a-priori

knowledge of the nature of the reflectance image. The proposed formulation adopts a Bayesian view point of the

estimation problem, which leads to an algebraic regularization term, that contributes to better conditioning of the

reconstruction problem.

Based on the proposed variational model, we show that the illumination estimation problem can be formulated

as a Quadratic Programming optimization problem. An efficient multi-resolution algorithm is proposed. It exploits

the spatial correlation in the reflectance and illumination images. Applications of the algorithm to various color

images yield promising results.

Keywords: variational models, multi-resolution, quadratic programming, illumination removal, image

enhancement, dynamic range compression, reflectance

1. Introduction

Retinex theory deals with compensation for illumina-

tion effects in images. The primary goal is to decom-

pose a given image S into two different images, the

reflectance image R, and the illumination image L ,

such that, at each point (x, y) in the image domain,

S(x, y) = R(x, y) · L(x, y). The benefits of such a
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decomposition include the possibility of removing

illumination effects of back/front lighting, and en-

hancing shots that include spatially varying illumina-

tion such as images that contain indoor and outdoor

zones.

Recovering the illumination from a given image

is known to be a mathematically ill-posed problem,

and algorithms proposed in the literature for its so-

lution vary in their way of overcoming this limi-

tation. The Retinex methodology was motivated by

Land’s landmark research of the human visual system

(Land, 1977). Through his experiments it was shown

that our visual system is able to practically recog-

nize and match colors under a wide range of differ-

ent illuminations, a property that is commonly referred

to as the Color Constancy Phenomenon. As a mat-

ter of fact, Land’s findings indicated that even when

retinal sensory signals coming from different color

patches under different illuminations are identical, sub-

jects were able to name the surface reflectance color

(Land, 1977). The ability to extract the illumination

image is sufficient but not necessary to achieve this

property.

In this paper we define the Retinex reconstruction

problem for gray-level images through physically mo-

tivated considerations. The proposed formulation is

shown to be a mathematically well-posed problem. A

variational expression is obtained by defining the op-

timal illumination as the solution of a Quadratic Pro-

gramming (QP) optimization problem. It is shown that

different previous algorithms are essentially solutions

to similar variational problems. We introduce an effi-

cient algorithm based on QP solvers and the fact that

the unknown illumination is spatially smooth. Our al-

gorithm uses a multi-resolution reconstruction of the

illumination with few relaxation iterations at each res-

olution layer.

We apply and compare the proposed algorithm in

two color spaces. The first operates in the RGB space,

in which each spectral channel is processed separately.

The second is the HSV color space in which only

the Value (V) channel is processed. Both methods

produce pleasing results in terms of dynamic range

compression. In addition color corrections can be ob-

tained as a by-product of the Retinex algorithm in

the RGB space. The resulting reflectance image usu-

ally appears to be over-enhanced. A relaxation algo-

rithm for this effect is proposed. Tests on images from

various sources produce pleasing images, and sup-

port the assumption that the results of the proposed

formulation are similar to those of the human visual

system.

This paper is organized as follows: In the next sec-

tion we review several different Retinex algorithms.

Some of those were motivated by assumptions based

on the color constancy process in the human visual sys-

tem. Section 3 presents the proposed formulation along

with an efficient numerical algorithm for the illumi-

nation reconstruction. Uniqueness and convergence of

the solution are also discussed in Section 3. Section 4

extends the proposed formulation to color images. In

Section 5 we show a possible application that corrects

the illumination component and then adds it back to the

image. In Section 6 we apply the method to different

images and demonstrate the algorithm’s performances

and the effects of its free parameters. Section 7 gives

concluding remarks.

2. Previous Work

The first Retinex algorithms proposed by Land et al.

were of random walk type (Land, 1983; Land and

McCann, 1971). Subsequent algorithms (Jobson et al.,

1997a, 1997b; Land, 1986) use Homomorphic Filters

(Faugeras, 1979; Stockham Jr., 1972). Yet another

group of Retinex algorithms is based on solving a

Poisson equation (Blake, 1985; Funt et al., 1992;

Horn, 1974; Terzopoulos, 1986). Retinex algorithms by

McCann et al. (Frankle and McCann, 1983; Funt et al.,

2000; McCann, 1999), are an iterative multi-resolution

type of non-linear filter.

A first step taken by most algorithms is the con-

version to the logarithmic domain by s = log S, l =
log L , r = log R, and thereby s = l + r . This step is

motivated both numerically, preferring additions over

multiplications, and physiologically, referring to the

sensitivity of our visual system (Land, 1977). The dif-

ferent Retinex algorithms usually have the same flow

chart as shown in Fig. 1, and the difference between

them concentrates on the actual estimation of the illu-

mination image.

The main motivation of the subsequent overview of

the above-mentioned Retinex algorithm families is to

find similarities in the apparently different approaches,

and thereby to motivate the proposed approach. Thus,

the description of algorithm families should not be

interpreted as a detailed description of any spe-

cific Retinex algorithm but rather as a generalized

description of the family.
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Figure 1. The general flow chart of Retinex algorithms.

2.1. Random Walk Algorithms

A random walk is a discrete time random-process in

which the ‘next pixel position’ is chosen randomly from

the neighbors of the current pixel position. Random

walk type Retinex algorithms are nonlinear variants of

the following basic formulation (Brainard and Wandell,

1986): A large number of walkers are initiated at ran-

dom locations of an input image s, adopting the gray-

value of their initial position. An accumulator image A

that has the same size as s is initialized to zero. As the

walkers walk around, they update A by adding their val-

ues to each position they visit. Finally, the reflectance

image is obtained by normalizing the accumulator im-

age, i.e., its value at each location divided by the num-

ber of walkers visited it. By using many walkers with

long paths, it is easily verified (Papoulis, 1991) that

each accumulator value assimptotically converges to a

Gaussian average of its neighbors. The non-linearities

added to this basic version are:

• As random walks cross strong gradients (larger than

a predetermined threshold) the corresponding walker

updates its value by adding it to the gradient value.

Note that if the threshold is very large the output r is

practically a low pass version of the input image, and

correspondingly the difference l between the input

and the output images contains all the image details.

Conversely, if the threshold is very small, the details

remain in the output image, and the difference l is a

smooth version of the input. In practice, the threshold

is very small—so as to include ‘illumination gradi-

ents’ only.

• walker values can not exceed 255 (or whatever other

value for White), thus making sure no illumination

is whiter than White.

2.2. Homomorphic Filtering

Homomorphic Filtering type Retinex algorithms

(Faugeras, 1979; Jobson et al., 1997a, 1997b; Land,

1986; Stockham Jr., 1972) share the following basic

motivation: The reflectance image corresponds to the

sharp details in the image (i.e. edges), whereas the il-

lumination image is expected to be spatially smooth, a

reasonable guess for l is a low-pass version of s, where

the low pass is usually obtained as a convolution with

a wide Gaussian kernel.

2.3. Poisson Equation Solution

Following the above reasoning, since the illumination

is expected to be spatially smooth, its derivative should

be close to zero everywhere. On the other hand, by the

assumption that the reflectance is piece-wise constant,

its derivative is expected to vanish almost everywhere,

and get high values along the edges. Thus, if we take

the derivative of the sum s = l + r and clip out the

high derivative peaks, we can assume that the clipped

derivative signal corresponds only to the illumination.

Poisson Equation type Retinex algorithms (Blake,

1985; Horn, 1974; Terzopoulos, 1986) rely on Land’s

Mondrian world model. The Mondrian model boils

down to the above assumption on the reflectance as

a piece-wise constant image. Applying the Laplacian,

and the following clipping operation

τ (�s) =

{

�s where |�s| < T

0 otherwise,

we get the following Poison equation

�l̂ = τ (�s).

As to the solution of the resulting Poisson equation,

Horn (1974) suggested an iterative procedure which

effectively inverts the Laplacian operator. Similar to

the previous methods, a low-pass filter is applied in

order to solve the above equation. Blake (1985) intro-

duced an improvement to Horn’s method. He proposed

to extract the discontinuities from the image gradient

magnitude instead of the Laplacian and thereby came
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up with better boundary conditions that deal with less

trivial scenarios along the image boundary. An addi-

tional algorithmic improvement by Funt et al. (1992)

uses the curl to assure integrability.

2.4. McCann’s Algorithm

McCann et al. (Frankle and McCann, 1983; Funt et al.,

2000; McCann, 1999) proposed variants of an algo-

rithm that can be equivalently written as follows: The

illumination image l̂0 is initialized to be s, the original

image. The algorithm performs the following iterative

procedure,

l̂n+1 = max

{

l̂n + s

2
,

l̂n + Dn[l̂n]

2

}

where Dn is a translation operator, shifting the image

by the nth element of a sequence of spirally decaying

translation vectors {dn}, as shown in Fig. 2. The size

of the first displacement is set to be half the minimum

between the image width and height.

Let us link this procedure to the previous methods.

If we remove the max operation we get the simplified

version

l̂n+1 =
l̂n + Dn[l̂n]

2
.
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Figure 2. The sequence of displacement vectors for the Dn operator

in McCann algorithm.

This is a simple averaging operation that smoothes the

image. Actually, it is possible to show that with the

displacements shown in Fig. 2, the effective smoothing

kernel approaches a Gaussian.

The non-linear (max) operation inside the loop

forces the illumination image to satisfy the constraint

l̂ ≥ s. Incorporating the physical nature of reflect-

ing objects which reflect only part of the incident

light. Thus, the reflectance is restricted to the range

R ∈ [0, 1], and L ≥ S, which implies l ≥ s.

A multi-resolution version is also proposed in Funt

et al. (2000) and McCann (1999). A Gaussian pyramid

is constructed for the given image s. The algorithm

starts at the coarsest level, and the size of the displace-

ments for Dn are one pixel in each direction for each

resolution. The multi-resolution version is significantly

faster, yet produces lower quality results compared to

the original version.

2.5. Summary of Previous Work

The discussion in this section suggests that the pre-

vious seemingly different algorithms are actually very

similar. They are all based on the spatial smoothness as-

sumption of the illumination l. All the above algorithms

apply various, potentially nonlinear, smoothing opera-

tors to s in order to extract l̂. Some methods add more

assumptions about the reflectance, such as its limited

range, or its Mondrian form. Eventually, ‘skinning’ the

illumination from the given image yields the reflectance

image, which is expected to be free of non-uniform il-

lumination, have a reduced dynamic range, and be a

more pleasing image.

3. The Variational Framework

3.1. Functional Definition

We start by listing the known information about the

illumination image.

1. The first important assumption about the illumina-

tion is its spatial smoothness.

2. We also know that, since R is restricted to the unit

interval, we can add the constraint L ≥ S. Since the

log function is monotone, we also have l ≥ s.

3. By setting l = Const, where Const is any constant

above the maximal value of s, we get a trivial solu-

tion that satisfies the two previous assumptions. We
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therefore add the assumption that the illumination

image is close to the intensity image s, i.e., it mini-

mizes a penalty term of the form dist(l, s), e.g., the

L2 norm (l − s)2.

4. The reflectance image r = s − l can be assumed to

have a high prior probability (Blake and Zisserman,

1987; Geman and Geman, 1984; Lagendijk and

Biemond, 1991; Marroquin et al., 1987). One of

the simplest prior functions used for natural im-

ages assigns high probability to spatially smooth

images (Lagendijk and Biemond, 1991). Note that

since r + l = s, spatially smooth r contradicts spa-

tially smooth l. In practice adding this penalty term

kicks in mainly on sharp edges and handles situa-

tions where the illumination is not smooth (as well

as cases of direct light sources and specularities).

5. We can assume that the illumination continues

smoothly as a constant beyond the image bound-

aries. This is an artificial assumption required for

boundary conditions that would have minor effect

on the final results.

Collecting all the above assumptions into one ex-

pression we get the following penalty functional

Minimize: F[l] =

∫

�

(|∇l|2 + α(l − s)2

+ β|∇(l − s)|2) dx dy

Subject to: l ≥ s, and 〈∇l, �n〉 = 0 on ∂�, (1)

where � is the support of the image, ∂� its bound-

ary, and �n is the normal to the boundary. α and β

are free non-negative real parameters. In the func-

tional F[l], the first penalty term (|∇l|2) forces spatial

smoothness on the illumination image. This choice of

smoothness penalty is natural, if we keep in mind that

minimizing
∫

(|∇l|2) dx dy translates into the Euler-

Lagrange (EL) equation �l = 0. Its steepest descent

solution is a Gaussian smoothing operation with in-

creasing variance of the initial condition. As men-

tioned in the previous section, several authors proposed

Gaussian related smoothing of s for the illumination

reconstruction.

The second penalty term (l − s)2 forces a proximity

between l and s. The difference between these images

is exactly r , which means that the norm of r should be

small (i.e., R tends to White). This term is weighted by

the free parameter α. The main objective of this term is

a regularization of the problem that makes it better con-

ditioned. Notice that, in addition, we force the solution

l to be l ≥ s. In practice this penalty term should be

weak in order not to pull l down too much towards s.

Note that in contrast to gradient penalty terms which

apply mainly on edges, this term applies potentially

anywhere, and α should therefore be very small.

The third term represents a Bayesian penalty expres-

sion. It forces r to be a ‘visually pleasing’ image. This

term weighted by the free parameter β penalizes gra-

dients in r and forces it to be spatially smooth. Note

that more complicated Bayesian expressions may be

used allowing sharp edges, textures, 1/ f behavior, etc.

(Blake and Zisserman, 1987; Geman and Geman, 1984;

Lagendijk and Biemond, 1991; Marroquin et al., 1987).

As long as this expression is purely quadratic, the above

minimization problem remains fairly simple.

The problem we have just defined has a Quad-

ratic Programming (QP) form (Bertsekas, 1995;

Luenberger, 1987). The necessary and sufficient con-

ditions for its minimization are obtained via the

Euler-Lagrange equations

∀(x, y) ∈ �

×



















∂ F[l]
∂l

= 0 = −�l + α(l − s) − β�(l − s)

and l > s

or

l = s



















(2)

Note that the differential equation does not have to hold

when l = s.

An interesting side-effect of the proposed formula-

tion is an invariance property to a specific yet popu-

lar transformation of the input image, known as the

gamma-correction. In most imaging systems the lin-

ear sensory data is passed through a Look-Up-Table

in order to brighten the values. Such typical transfor-

mation is the Gamma-correction, where Sout = S
1/γ

in

(assuming 0 ≤ Sin, Sout ≤ 1).

In general, if indeed such transformation takes place,

it has to be removed prior to any Retinex algorithm and

redone prior to viewing of the results. However, as we

step into the log-domain, the Gamma-correction be-

comes a multiplication of s = log S by the constant

1/γ . Based on the conditions in Eq. (2), if lopt is the

optimal solution for a specific image s, then lopt/γ sat-

isfies these conditions for an input image s/γ with

r/γ = (s − lopt)/γ . This means that instead of in-

verting the Gamma-correction, applying Retinex and

re-applying Gamma correction, one may simply apply

Retinex to Gamma-corrected images.
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3.2. Numerical Solution

The minimization problem is QP with respect to the

unknown image l. Many algorithms for solving such

problems are known in the literature (Bertsekas, 1995;

Luenberger, 1987). In this paper we chose to focus

on the Projected Normalized Steepest Descent (PNSD)

algorithm, accelerated by a multi-resolution technique.

3.2.1. Projected Normalized Steepest Descent. The

PNSD algorithm requires the application of a Normal-

ized Steepest Descent (NSD) iteration that minimizes

the functional F[l], followed by a projection onto the

constraints. A NSD iteration has the format

l j = l j−1 − µNSD · G,

where l j and l j−1 are the illumination images at step j

and j − 1, respectively, G is the gradient of F[l], and

µNSD is the optimal line-search step size. In our case,

Eq. (2), the gradient of F[l] is given by:

G = −�l j−1 + (α − β�)(l j−1 − s),

and µNSD is given by

µNSD =

∫

�
|G|2

∫

�
(α|G|2 + (1 + β)|∇G|2)

Observe that, by integration by parts,
∫

|∇G|2 =
−

∫

G�G up to boundary conditions.

An alternative approach is the Steepest Descent (SD)

algorithm, where µNSD is replaced by a constant value

µSD, such that

µSD ∈

(

0,
2

λmax{−(1 + β)� + α I }

)

,

where λmax{A} refers to the greatest eigenvalue of

the linear operator A. This alternative method saves

computations at the expense of a slightly slower

convergence.

Finally, projecting onto the constraint l ≥ s is done

by l j = max(l j , s).

Notice that G can be calculated by

G = −G A + α(l j−1 − s) − β(G A − G B),

where

G A
�
= �l j−1,

G B
�
= �s.

Similarly, µNSD is given by

µNSD =
µA

αµA + (1 + β)µB

,

where

µA
�
=

∫

�

|G|2,

µB
�
=

∫

�

|∇G|2.

We approximate the Laplacian by a linear convolu-

tion with the kernel κLAP

κLAP =







0 1 0

1 −4 1

0 1 0






,

and the integrations are approximated by summations

∫

�

|G|2 ≈
∑

n

∑

m

G[n, m]2

∫

�

|∇G|2 = −

∫

�

G�G

≈ −
∑

n

∑

m

G[n, m](G∗κLAP)[n, m],

where G[m, n] = G(m�x, n�y). In order to handle

the boundary conditions, defined in Eq. (1), the above

convolution is applied on an expanded version of the

image G. The extension is done by replicating the first

and last columns and rows. After the convolution, the

additional rows and columns are removed.

3.2.2. Multi-Resolution. The PNSD algorithm usu-

ally converges slowly (Bertsekas, 1995; Luenberger,

1987). Instead of general acceleration schemes, we use

the fact that the unknown image l is assumed to be

smooth. Specifically, we apply a multi-resolution al-

gorithm that starts by estimating a coarse resolution

image l, expands it by interpolation and uses the result

as an initialization for the next resolution layer. This

way, few iterations at each resolution are enough for

convergence.

Summarizing the above, a proposed algorithm for

the solution of Eq. (1) involves the following steps,

1. Input: The input to the algorithm is an image s of

size [N , M], and two parameters α and β.
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2. Initialization: Compute a Gaussian pyramid of the

image s. This pyramid is constructed by smoothing

the image with the kernel κPYR,

κPYR =









1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16









,

and decimating by 2:1 ratio. The process is repeated

p times and produces a sequence of images {sk}
p

k=1.

The image s1 is the original image s, and sp is the one

with the coarsest resolution in this pyramid. Define

the numerical inner product

〈G, F〉 =
N

∑

n=1

M
∑

m=1

G[n, m]F[n, m],

and the numerical Laplacian at the kth resolution as

�k G = G ∗ kLAP2−2(k−1).

Set k = p, i.e., start at the coarsest resolution layer,

and set the initial condition l0 = max{sp}.
3. Main Loop: For the kth resolution layer,

• Calculate G B
�
= �ksk .

• For j = 1, . . . , Tk Do:

(a) Calculate gradient:

G A
�
= �kl j−1,

G ← G A + α(l j−1 − sk) − β(G A − G B).

(b) Calculate µNSD

µA
�
= 〈G, G〉,

µB
�
= −〈G, �k G〉,

µNSD ← µA/(αµA + (1 + β)µB).

(c) Complete NSD iteration

l j ← l j−1 − µNSD · G,

(d) Project onto the constraints

l j = max{l j , sk}.

• End j Loop;

The above loop solves the intermediate problem

Minimize: Fk[l] =

∫

�k

(|∇l|2 + α(l − sk)2

+ β|∇(l − sk)|2) dx dy

Subject to: l ≥ sk and 〈∇l, �n〉 = 0 on ∂�,

4. Update the next resolution layer: If k > 1, the

result lTk
is up scaled (2:1 ratio) by pixel replication

into the new l0, the initialization for the next resolu-

tion layer. The resolution layer is updated k = k−1,

and the algorithm proceeds by going again to Step

3. If k = 1, the result lT1
is the final output of the

algorithm.

3.3. Relation to Previous Methods

Let us revisit the algorithms described in Section 2 and

analyze them in light of the proposed formulation. First,

by setting α = β = 0, and removing the constraint

l ≥ s we get Homomorphic filtering. Adding back

l ≥ s we become similar to random walk algorithms

and the McCann algorithm.

The Poisson Equation approach seems to be unre-

lated directly to our formulation. However, if we let

α(x, y) = τ (�s) and set the second distance term to
∫

α(x, y)(l − s), keeping the constraint l ≥ s, we

get that the optimal illumination should satisfy the

equation

�l = τ (�s), (3)

subject to l ≥ s, which is identical (up to the constraint)

to Horn’s formulation.

3.4. Uniqueness and Convergence

In this section we prove the uniqueness of the solution

to Eq. (1), and the convergence of the proposed nu-

merical algorithm. The following theorem shows that

the convexity of the problem guarantees existence and

uniqueness of the solution.

Theorem. The variational optimization problem P,

given by

Minimize: F[l] =

∫

�

(|∇l|2 + α(l − s)2

+ β|∇(l − s)|2) dx dy

Subject to: l ≥ s, and 〈∇l, �n〉 = 0 on ∂�,

with α > 0 and β ≥ 0, has a unique solution.
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The proof is given in the Appendix.

Regarding the convergence of the numerical scheme,

the core of the proposed algorithm is the Projected Nor-

malized Steepest Descent (PNSD) algorithm, which is

known to converge for convex optimization problems,

such as our case (Bertsekas, 1995; Luenberger, 1987).

The pyramidal shell of the algorithm can be considered

as an efficient method for creating a good initialization

for the highest resolution layer stage. We found that

few iterations at the finer resolution layer are sufficient

for effective convergence.

4. Color Images

Thus far we dealt with a single channel. In this section,

we apply our method to color images. When we process

color images the traditional approach is to deal with

each color channel separately. We refer to channel-by-

channel processing as ‘RGB Retinex’. Treating the R,

G, and B channels separately usually yields a color cor-

rection effect. For example, RGB Retinex on a reddish

image is expected to modify the illumination in such

a way that the red hue is removed so that the result-

ing image is brightened and corrected. Therefore, for

some images, RGB Retinex actually improves the col-

ors. Nevertheless, in other cases, such color correction

can cause color artifacts that exaggerate color shifts, or

reduce color saturation.

Another approach is to map the colors into a dif-

ferent color space, such as HSV, apply the Retinex

correction only to the intensity layer, and then map

back to the RGB domain. We refer to this method as

the ‘HSV Retinex’. Color shifts in such cases are less-

likely. A major advantage is that we have to process a

single channel. We refer to Barnard and Funt (1998) for

S’

Image
Input 

S

Correction

Gamma

L

S

S

L

R

Retinex

reconstruction)
(Illumination

L’

Figure 3. Returning part of the illumination to the reflectance image.

further analysis of color constancy issues in a Retinex

algorithm.

5. Alternative Illumination Correction

The reflectance image obtained by the Retinex process

is sometimes an over-enhanced image. It might be ar-

gued that (i) the human visual system merely reduces

the dynamic range of scenes rather than removing the

illumination altogether, namely, shaded areas are defi-

nitely perceived as such. (ii) removal of all the illumi-

nation exposes noise that might exist in darker regions

of the original image.

We propose adding a corrected version of the re-

constructed illumination back to the reconstructed re-

flectance image. Figure 3 describes this operation.

The proposed scheme computes the illumination im-

age L = exp(l) from the intensity image S = exp(s),

and the reflectance image R = S/L , as discussed in

previous sections. Then, we ‘tune up’ the illumination

image L by a Gamma Correction operation with a free

parameter γ , obtain a new illumination image L ′, and

multiply it by R, that gives the output image S′ = L ′ ·R.

The Gamma correction is performed by

L ′ = W ·

[

L

W

]
1
γ

, (4)

where W is the White value (equal to 255 in 8-bit

images).

The final result S′ is given, therefore, by

S′ = L ′ · R =
L ′

L
S

= W
(L/W )1/γ

L
S =

S

(L/W )1−1/γ
. (5)
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For γ = 1, the whole illumination is added back,

and therefore S′ = S. For γ = ∞, no illumination is

returned, and we get S′ = R · W , which is the same re-

flectance image, R, as obtained by the original retinex,

stretched to the interval [0, W ]. The later case can also

be considered as tuning up the illumination to a maxi-

mal valued uniform illumination W .

Adding part of the illumination to the final image

can also be found in the homomorphic filtering ap-

proach. In Oppenheim and Schafer (1975, ch. 10), the

proposed linear filter for the illumination calculation

in the log domain, removes high-pass spatial compo-

nents of s, yet also attenuates the low-pass components

by a factor of γi (where i stands for illumination).

This is analog to a gamma correction of the illu-

mination with γ = γi , since Eq. (5) can be written

as

S′

W
=

(

L

W

)1/γ

· R, (6)

and therefore

s ′ − w =
1

γ
(l − w) + r

=
1

γ
(low-pass components)

+ (high-pass components). (7)

Figure 4. The original images used in the experiments.

6. Results

In our experiments we applied the numerical algorithm

of Section 3 to several test images, two of which are

shown in Fig. 4, other examples may be viewed at

Kimmel et al. (1999). All results correspond to α =
0.0001 and β = 0.1, unless indicated differently. Four

resolution layers were used with Tk = 1, 2, 3, and 4 iter-

ations at each layer, 1 iteration at the finest (k = 1) and

4 at the coarsest resolution (k = 4). This idea of using

more iterations at coarser scales is known by the name

‘Cascadic Multigrid’ (Bornemann and Deuflhard,

1996) and is used in order to gain convergence at

coarser scales where complexity is much lower. All

images appear in color in the electronic version.

Note that since we do not know the origin of the

images we work with, we assume them to be linear up

to Gamma-correction, and as explained earlier, we do

not need to invert this transformation as our algorithm

is in fact invariant to it.

Figure 5 demonstrates the invariance to gamma-

correction. It shows the results of the RGB-retinex

process in two different paths: (i) Apply RGB retinex

directly on the input image; and (ii) Apply inverse-

gamma-correction to the input image (γ = 2.2), then

apply RGB-retinex as usual, and finally apply gamma-

correction (again −γ = 2.2) to better view the results.

As can be seen, the results are very similar. Differ-

ences are due to the discretization effects and the small

number of iterations used.
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Figure 5. Invariance to gamma-correction: (i) Top row—direct application of the Retinex procedure, with illumination in (a) output with γ = 3

illumination return in (b), and output with γ = ∞ illumination return in (c); (ii) Bottom row—inverse gamma correction before and gamma

correction after the Retinex procedure using γ = 2.2, with illumination in (d), output with γ = 3 illumination return in (e), and output with

γ = ∞ illumination return in (f).

In the next test, we apply the RGB and the HSV

Retinex algorithms to two input images. The results

are shown in Figs. 6 and 7.

The second test (Fig. 8) presents the influence of

the β and T values on the reconstructed reflectance

image. Our goal is to show that the algorithm is stable

in the choice of these parameters which can change

in a wide range with minor effects on the outcome.

We apply the HSV retinex process, with fixed γ = 3.

The β values change from 1e-5 to 1 with relatively

minor effect on the output quality. As for the number

of iterations, the number of iterations per resolution
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Figure 6. RGB retinex results: Illumination in (a) output with γ = 3 in (b), and γ = ∞ (i.e. reflectance image) in (c); HSV retinex results:

Illumination in (d) output with γ = 3 in (e), and γ = ∞ (i.e. reflectance image) in (f).

level is T · k, where k = 1 is the finest resolution level.

We vary the value of T between T = 2 and 32 with

slight apparent differences.

In Fig. 9, we restore the illumination through Gamma

correction and add it back to the reflectance image. We

compare illumination correction with γ = {2, 6, 24}
to standard Gamma correction on the image. Cor-

responding γ values were tuned to approximate the

overall mean brightness of the illumination corrected

images. Again, HSV retinex process was used.

Finally, we demonstrate the convergence of the pro-

posed numerical algorithm. Figure 10 shows the values

of F[l], the functional in Eq. (1), as a function of the

number of iterations, and the influence of using the

multi-resolution methodology. For this simulation we

use the RGB-retinex that applies the optimization pro-

cess to each of the three layers separately. In the first

part of the experiment we use the non-pyramidal ap-

proach and plot the value of F[l] as a function of the

number of iterations. We refer to each iteration as a
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Figure 7. RGB retinex results: Illumination in (a) output with γ = 3 in (b), and γ = ∞ (i.e. reflectance image) in (c); HSV retinex results:

Illumination in (d) output with γ = 3 in (e), and γ = ∞ (i.e. reflectance image) in (f).

single unit of operation. We see convergence after 10

such operations (iterations). When applying the same

algorithm with N layer pyramidal approach, each sin-

gle iteration becomes one iteration in the original res-

olution, 2 iterations on the next resolution later, and

generally, k iterations on the kth layer. However, the

kth layer is 0.52(k−1) smaller in size, thus reducing by

the same factor the computational complexity. To sum-

marize, for N -layer pyramid we have that one iteration

is equivalent to

N
∑

k=1

k · 0.25k−1 =
1

0.752

(

1 − (1 + 0.25 · N )0.25N
)

≤ 1.78 Operations.

For 2-layer pyramid the above factor becomes 1.5

while 4-layer pyramid gives 1.75 operations/iteration.

Plotting F[l] results as a function of the number of
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Figure 8. The influence of β and T : Constant T = 2 and β = 0.00001 in (a), β = 0.1 in (b), and β = 10 in (c); Constant β = 0.1 and T = 2

in (d), T = 8 in (e), and T = 32 in (f).

operations, we see that the convergence with the pyra-

midal method is much faster, getting to near-steady-

state after 2 operations only. We also see that in-

creasing the number of resolution layers improves

the overall convergence. Note that in this analysis

we do not take into account the construction of the

pyramids, as we have found this to be redundant.

We also do not take into account the initialization,

which tends to be much simpler in the pyramidal

approach.

We conclude that

1. As we see in Figs. 6 and 7, both the RGB

and the HSV Retinex algorithms provided the

desired dynamic range compression. The output

images are indeed enhanced versions of the original
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Figure 9. The influence of γ (illumination return) compared to standard Gamma correction; The proposed algorithm with γ = 2 in (a), γ = 6

in (b), and γ = 24 in (c). Standard Gamma-correction with γ values tuned to fit corresponding output of the proposed algorithm: γ = 1.4 in

(d), γ = 2.1 in (e), and γ = 2.4 in (f).

one, although in some versions they are over-

enhanced.

2. The illumination feedback through Gamma correc-

tion seems to improve both the RGB and the HSV

Retinex results. However, they have different ef-

fects: In the RGB Retinex this process restores some

of the colors, whereas in the HSV Retinex, the result

is merely darker.

3. When we compare the RGB and the HSV Retinex al-

gorithms our preference depends on the input image.

Generally speaking, for images with colored illumi-

nation, the RGB usually performs better, whereas

for images with a milder illumination hue, the HSV

is better.

4. The Retinex approach obviously performs better

than a simple Gamma correction. The latter indeed
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Figure 10. The functional value F[l] as a function of the number of operations, and the influence of the multi-resolution method.

improves the overall illumination of the image, but

also decreases details contrast and flattens the ob-

jects. Retinex, on the other hand, usually increases

both detail contrast and depth sense of the image,

as well as improving the overall illumination.

5. The proposed algorithm is robust to the choice of

its parameters.

6. The proposed numerical method converges very

fast to its steady-state solution which is also the

minimizer of the defined functional in Eq. (1).

Also, the pyramidal method is found to speed-up

convergence.

7. Concluding Remarks

In this paper we surveyed several algorithms for image

illumination correction and dynamic range compen-

sation, based on a common motivation known as the

Retinex theory. We have shown that in spite of their

different formulations, these algorithms can be derived

from the same variational principle.

We introduced a comprehensive Retinex analy-

sis, motivated by the different Retinex algorithms.

Our variational approach provides solid mathematical

foundation, that yields efficient and robust numerical

solutions.

We introduced a fast multi-resolution solution to the

corresponding variational problem, resulting in an al-

gorithm whose computational complexity amounts to

less than 11 convolutions of the full size image with a

3 × 3 kernel plus a few addition algebraic operations

per pixel. The advantages of the proposed algorithm

are:

1. Computational efficiency.

2. Good image quality.

3. Parameter robustness. It was shown that for a wide

range of the involved parameters, the output quality

is practically the same.

As part of the proposed Retinex enhancement al-

gorithm, we proposed a new method to control the

overall brightness of the image. Traditionally, after re-

moving a non-uniform illumination via the Retinex,

standard point operations like the γ -correction are

required. According to the proposed method, the
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overall illumination correction is coupled with par-

tial illumination removal. Instead of removing the il-

lumination from the original image, the illumination

is corrected via a standard point operation like the

γ -correction, and returned to the reflectance image.

Thus, dark regions in the image which have been poorly

illuminated are better illuminated, as if the actual illu-

mination conditions in the image were improved.

Appendix: Uniqueness of the Solution

Theorem. The variational optimization problem P,

given by

Minimize: F[l] =

∫

�

(|∇l|2 + α(l − s)2

+ β | ∇(l − s)|2) dx dy

Subject to: l ≥ s, and 〈∇l, �n〉 = 0 on ∂�,

with α > 0 and β ≥ 0, has a unique solution.

Proof: First, we show that the functional F[l] is

purely convex. The Hessian of the quadratic functional

F[l] is given by

∂2 F[l]

∂l2
= −(1 + β)� + α I,

where I is the identity operator. The multiplica-

tion of the Laplacian operator by the negative value

−(1 + β) < −1 yields a positive semi-definite op-

erator −(1 + β)� ≥ 0. Since α > 0, α I > 0, i.e., it

is positive definite. Therefore, the Hessian is also

a positive definite operator. Thereby, the functional

F[l] is a strictly convex functional (Bertsekas, 1995;

Luenberger, 1987). If α = 0, the Hessian is semi-

positive definite, and the convexity of F[l] is not strict.

Define the set C = {l | l ≥ s and 〈∇l, �n〉 = 0 on

∂�} such that the constraints of P are equivalent to

requiring l ∈ C . For every l1, l2 ∈ C , ∀θ ∈ [0, 1], we

have θl1 + (1 − θ )l2 ∈ C , or in other words, C is a

convex set. This is true since C is the intersection of

two convex sets (one per each original constraint).

Let us denote the minimum of the functional F[l] as

l̂opt . This solution is unique since F[l] is strictly con-

vex. If l̂opt ∈ C than l̂opt is the solution of P , and there-

fore we get a unique solution as the theorem claims.

On the other hand, if l̂opt /∈ C , the solution to P

is obtained on the boundary of the constraint set

C = {l | l ≥ s}. We prove this property by contradic-

tion. Assume that the solution is given as l0 ∈ Inte-

rior {C}. Define l1 = (1 − θ ) l0 + θ l̂opt for θ ∈ (0, 1).

Due to the convexity of F[l], it is clear that F[l1] <

(1 − θ )F[l0] + θ F[l̂opt ] < F[l0]. Since l0 ∈ C , for θ

sufficiently close to zero it can be guaranteed that

l1 ∈ C as well. This way we get l1 as a better solution,

which contradicts our assumption. Thus, the solution

for P is obtained on the boundary of C .

Let us now assume that two solutions are possible,

and prove that this assumption leads to a contradiction.

The two optimal solutions l1 and l2 must satisfy the

following set of conditions

1. The solutions should be feasible: l1, l2 ∈ C .

2. Based on the previous results, the solutions should

be on the boundary of C : l1, l2 /∈ Interior{C}.
3. The functional value of the two solutions should be

the same: F[l1] = F[l2].

4. The solutions are optimal: ∀l ∈ C, F[l] > F[l1].

5. The solutions should not be equal to l̂opt , i.e., F[l]:

l1, l2 �= l̂opt .

Since C is convex, ∀ θ ∈ (0, 1), l0 = (1 − θ )l1 + θl2

∈ C . Moreover, by the strict convexity of F[l], we

have that F[l0] = F[(1 − θ )l1 + θl2] < (1 − θ )F[l1] +
θ F[l2] = F[l1] and again, we got a better solution l0.

This contradicts the previous assumptions, and there-

fore, there is a unique solution to P .
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