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Abstract We address the problem of depth and ego-

motion estimation from omnidirectional images. We pro-
pose a correspondence-free structure-from-motion prob-

lem for sequences of images mapped on the 2-sphere. A
novel graph-based variational framework is first pro-
posed for depth estimation between pairs of images.
The estimation is cast as a TV-L1 optimization prob-

lem that is solved by a fast graph-based algorithm. The

ego-motion is then estimated directly from the depth

information without explicit computation of the opti-

cal flow. Both problems are finally addressed together
in an iterative algorithm that alternates between depth
and ego-motion estimation for fast computation of 3D
information from motion in image sequences. Experi-

mental results demonstrate the effective performance

of the proposed algorithm for 3D reconstruction from

synthetic and natural omnidirectional images.
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1 Introduction

Recently, omnidirectional imagers such as catadioptric
cameras, have sparked tremendous interest in image

processing and computer vision. These sensors are par-
ticularly attractive due to their (nearly) full field of
view. The visual information coming from a sequence

of omnidirectional images can be used to perform a 3D

reconstruction of a scene. This type of problem is usu-

ally referred to as Structure from Motion (SFM) [9] in
the literature. Let us imagine a monocular observer that

moves in a rigid unknown world; the SFM problem con-
sists in estimating the 3D rigid self-motion parameters,
i.e., rotation and direction of translation, and the struc-

ture of the scene, usually represented as a depth map

with respect to the observer position. Structure from

motion has attracted considerable attention in the re-

search community over the years with applications such

as autonomous navigation, mixed reality, or 3D video.

In this paper we introduce a novel structure from

motion framework for omnidirectional image sequences.

We first consider that the images can be mapped on

the 2-sphere, which permits to unify various models of

single effective viewpoint cameras. Then we propose a

correspondence-free SFM algorithm that uses only dif-
ferential motion between two consecutive frames of an
image sequence through brightness derivatives. Since

the estimation of a dense depth map is typically an ill-

posed problem, we build on [3] and we propose a novel

variational framework that solves the SFM problem on

the 2-sphere when the camera motion is unknown. Vari-

ational techniques are among the most successful ap-
proaches to solve under-determined inverse problems
and efficient implementations have been proposed re-

cently so that their use becomes appealing [26]. We

show in this paper that it is possible to extend very ef-
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ficient variational approaches to SFM problems, while

naturally handling the geometry of omnidirectional im-

ages. We embed a discrete image in a weighted graph

whose connections are given by the topology of the

manifold and the geodesic distances between pixels. We

then cast the depth estimation problem as a TV-L1

optimization problem, and we solve the resulting varia-

tional problem with fast graph-based optimization tech-
niques similar to [20,10,27]. To the best of our knowl-
edge, this is the first time that graph-based variational

techniques are applied to obtain a dense depth map

from omnidirectional image pairs.

Then we address the problem of ego-motion esti-
mation from the depth information. The camera mo-

tion is not perfectly known in practice, but it can be

estimated from the depth map. We propose to com-

pute the parameters of the 3D camera motion with

the help of a low-complexity least square estimation

algorithm that determines the most likely motion be-

tween omnidirectional images using the depth infor-

mation. Our formulation permits to avoid the explicit

computation of the optical flow field and the use of

feature matching algorithms. Finally, we combine both

estimation procedures to solve the SFM problem in

the generic situation where the camera motion is not

known a priori. The proposed iterative algorithm alter-

natively estimates depth and camera ego-motion in a

multi-resolution framework, providing an efficient solu-
tion to the SFM problem in omnidirectional image se-
quences. Experimental results with synthetic spherical
images and natural images from a catadioptric sensor

confirm the validity of our approach for 3D reconstruc-

tion.
The rest of the paper is structured as follows. We

first provide a brief overview of the related work in

Section 2. Then, we describe in Section 3 the frame-

work used in this paper for motion and depth estima-

tion and the corresponding discrete operators in graph-

based representations. The variational depth estimation

problem is presented in Section 4, and the ego-motion

estimation is discussed in Section 5. Section 6 presents

the joint depth and ego-motion estimation algorithm,
while Section 7 presents experiments of 3D reconstruc-
tion from synthetic and natural omnidirectional image

sequences.

2 Related work

The depth and ego-motion estimation problems have

been quite widely studied in the last couple of decades

and we describe here the most relevant papers that

present correspondence-free techniques. Correspondence-

free algorithms get rid of feature computation and match-

ing steps that might prove to be complex and sensitive

to transformations between images. Most of the liter-
ature in correspondence-free depth estimation is ded-
icated to stereo depth estimation [22]. In the stereo

depth estimation problem cameras are usually sepa-

rated by a large distance in order to efficiently cap-

ture the geometry of the scene. Registration techniques

are often used to find a disparity map between the two

image views, and the disparity is eventually translated

into a depth map. In our problem, we rather assume

that the displacement between two consecutive frames

in the sequence is small as it generally happens in image

sequences. This permits to compute the differential mo-

tion between images and to build low-complexity depth

estimation through image brightness derivatives. Then,

most of the research about correspondence-free depth

estimation has concentrated on perspective images; the

depth estimation has also been studied in the case of

omnidirectional images in [18], which stays as one of the

rare works that carefully considers the specific geome-

try of the images in the depth estimation. We handle

this geometry by graph-based processing on a spherical
manifold and we introduce a novel variational frame-
work in our algorithm, which is expected to provide a
high robustness to quantization errors, noise or illumi-

nation gradients.

On the other hand, ego-motion estimation approaches

usually proceed by first estimating the image displace-

ment field, the so-called optical flow. The optical flow

field can be related to the global motion parameters by

a mapping that depends on the specific imaging sur-

face of the camera. The mapping typically defines the

space of solutions for the motion parameters, and spe-
cific techniques can eventually be used to obtain an es-
timate of the ego-motion [6,13,16,24]. Most techniques

reveal sensitivity to noisy estimation of the optical flow.

The optical flow estimation is a highly ill-posed inverse

problem that needs some sort of regularization in order

to obtain displacement fields that are physically mean-

ingful; a common approach is to impose a smoothness
constraint on the field [14,5]. In order to avoid the com-
putation of the optical flow, one can use the so-called

”direct approach” where image derivatives are directly

related to the motion parameters. Without any assump-

tion on the scene, the search space of the ego-motion

parameters is limited by the depth positivity constraint.

For example, the works in [15,23] estimate the mo-

tion parameters that result into the smallest amount

of negative values in the depth map. Some algorithms

originally proposed for planar cameras have later been

adapted to cope with the geometrical distortion intro-

duced by omnidirectional imaging systems. For exam-

ple, an omnidirectional ego-motion algorithm has been
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presented by Gluckman in [11], where the optical flow

field is estimated in the catadioptric image plane and

then back-projected onto a spherical surface. Not many,

though, have been trying to take advantage from the

wider field of view of the omnidirectional devices: in

spherical images the focus of expansion and the focus of

contraction are both present, which imply that transla-

tion motion cannot be confused with rotational one. In
our work, we take advantage of the latter property and
directly estimate the ego-motion with a very efficient

scheme based on a least square optimization problem,

which further permits to avoid the computation of the

optical flow.

Ideas of alternating minimization steps have also

been proposed in [12,1]. In these works, however, the

authors use planar sensors and assume to have an initial

rough estimate of the depth map. In addition, they use

a simple locally constant depth model. In our experi-
ments we show that this model is an oversimplification
of the real world, which does not apply to scenes with

a complex structure. In the novel framework proposed

in this paper, we use a spherical camera model and we

derive a linear set of motion equations that explicitly

include camera rotation. The complete ego-motion pa-

rameters can then be efficiently estimated jointly with
depth.

3 Framework Description

In this section, we introduce the framework and the

notation that will be used in the paper. We derive

the equations that relate global motion parameters and

depth map to the brightness derivatives on the sphere.

Finally, we show how we embed our spherical frame-

work on a weighted graph structure and define differ-

ential operators in this representation.

Fig. 1 Left: the original catadioptric image. Right: projection
on the sphere

We choose to work on the 2-sphere S2, which is a

natural spatial domain to perform processing of omnidi-

rectional images as shown in [8] and references therein.

For example, catadioptric camera systems with a sin-

gle effective viewpoint permit a one-to-one mapping of

the catadioptric plane onto a sphere via inverse stere-

ographic projection [4]. The centre of that sphere is

co-located with the focal point of the parabolic mirror

and each direction represents a light ray incident to that

point. We assume then that a pre-processing step trans-

forms the original omnidirectional images into spherical
ones as depicted in Fig. 1.

The starting point of our analysis is the brightness

consistency equation, which assumes that pixel inten-

sity values do not change during motion between suc-

cessive frames. Let us denote I(t,y) an image sequence,

where t is time and y = (y1, y2, y3) describes a spatial
position in 3-dimensional space. If we consider only two

consecutive frames in the image sequence, we can drop
the time variable t an use I0 and I1 to refer to the first

and the second frame respectively. The brightness con-

sistency assumption then reads: I0(y) − I1(y + u) = 0

where u is the displacement field between the frames.
We can linearize the brightness consistency constraint

around y + u0 as:

I1(y + u0) + (∇I1(y + u0))
T (u− u0)− I0(y) = 0, (1)

with an obvious abuse of notation for the equality. This

equation relates the motion field u (also known as op-

tical flow field) to the (spatial and temporal) image

derivatives. It is probably worth stressing that, for this

simple linear model to hold, we assume that the dis-

placement u − u0 between the two scene views I0 and
I1 is sufficiently small.

Fig. 2 The representation and coordinate on the 2-sphere S2.
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When data live on S2 we can express the gradient

operator ∇ from Eq. (1) in spherical coordinates as :

∇I(φ, θ) =
1

sin θ
∂φI(φ, θ)φ̂+ ∂θI(φ, θ)θ̂, (2)

where θ ∈ [0, π] is the colatitude angle, φ ∈ [0, 2π[ is

the azimuthal angle and φ̂, θ̂ are the unit vectors on
the tangent plane corresponding to infinitesimal dis-

placements in φ and θ respectively (see Fig. 2). Note

also that by construction the optical flow field u is de-

fined on the tangent bundle TS =
⋃

ω∈S2 TωS
2, i.e.

u : S2 ⊂ R
3 → TS.

3.1 Global motion and optical flow

Under the assumption that the motion is slow between

frames, we have derived above a linear relationship be-

tween the apparent motion u on the spherical retina

and the brightness derivatives. If the camera undergoes
rigid translation t and rotation around the axis Ω, then

we can derive a geometrical constraint between u and
the parameters of the 3D motion of the camera. Let us

Fig. 3 The sphere and the motion parameters

consider a point P in the scene, with respect to a co-

ordinate system fixed at the center of the camera. We

can express P as: P = D(r)r where r is the unit vector
giving the direction to P and D(r) is the distance of

the scene point from the center of the camera. During

camera motion, as illustrated in Fig. 3, the scene point

moves with respect to the camera by the quantity :

δP = −t−Ω× r. (3)

We can now build the geometric relationship that re-

lates the motion field u to the global motion parameters

t and Ω. It reads

u(r) = −
t

D(r)
−Ω× r = −Z(r)t−Ω× r, (4)

where the function Z(r) is defined as the multiplicative
inverse of the distance function D(r). In the following

we will refer to Z as the depth map. In Eq. (4) we find all
the unknowns of our SFM problem: the depth map Z(r)

describing the structure of the scene and the 3D motion

parameters t and Ω. Due to the multiplication between

Z(r) and t, both quantities can only be estimated up

to a scale factor. So in the following we will consider
that t has unitary norm.

We can finally combine Eq. (1) and Eq. (4) in a

single equation:

I1(y + u0) + (∇I1(y + u0))
T (−Z(r)t−

Ω× r− u0)− I0(y) = 0.
(5)

Eq. (5) relates image derivatives directly to 3D motion
parameters. The equation is not linear in the unknowns

and it defines an under-constrained system (i.e., more
unknown than equations). We will use this equation as
constraint in the optimization problem proposed in the

next section.

3.2 Discrete differential operators on the 2-Sphere

We have developed our previous equations in the con-

tinuous spatial domain, but we have to remember that

our images are digital. Although the 2-sphere is a simple

manifold with constant curvature and a simple topol-

ogy, a special attention has to be paid to the definition

of the differential operators that are used in the varia-

tional framework.

We assume that the omnidirectional images recorded
by the sensor are interpolated onto a spherical equian-

gular grid : {θm = mπ/M,φn = n2π/N}, with M ·

N the total number of samples. This operation can

be performed, for example, by mapping the omnidi-

rectional image on the sphere and then using bilinear

interpolation to extract the values at the given posi-

tions (θm, φn). In spherical coordinates, a simple dis-
cretization of the gradient obtained from finite differ-

ences reads:

∇θf(θi,j , φi,j) =
f(θi+1,j , φi,j)− f(θi, φj)

∆θ
,

∇φf(θi,j , φi,j) =

1

sin θi,j

(

f(θi,j , φi,j+1)− f(θi,j , φi,j)

∆φ

)

. (6)

The discrete divergence, by analogy with the continu-

ous settings, is defined by div = −∇∗ where ∇∗ is the
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adjoint of∇. It is then easy to verify that the divergence

is given by:

divp(θi,j , φi,j) =
pφ(θi,j , φi,j)− pφ(θi,j , φi,j−1)

sin θi,j∆φ
+

sin θi,jp
θ(θi,j , φi,j)− sin θi,jp

θ(θi−1,j , φi,j)

sin θi,j∆θ
.

(7)

Both Eq. (6) and Eq. (7) contain a (sin θ)−1 term that

induces very high values around the poles (i.e., for θ ≃ 0

and θ ≃ π) and can cause numerical instability. We
therefore propose to define discrete differential opera-

tors on weighted graphs (i.e., discrete manifold) as a

general way to deal with geometry in a coordinate-free

fashion.

Fig. 4 Embedding of discrete sphere on a graph structure. The

pixels u and v in the spherical image represent vertices of the
graph, and the edge weight w(u, v) typically captures the geodesic

distance between the vertices

We represent our discretized (spherical) imaging sur-

face as a weighted graph, where the vertices represent

image pixels and edges define connections between pix-

els (i.e., the topology of the surface) as represented in

Fig. 4. A weighted undirected graph Γ = (V,E,w)

consists of a set of vertices V , a set of vertices pairs

E ⊆ V × V , and a weight function w : E 7→ R satis-

fying w(u, v) > 0 and w(u, v) = w(v, u), ∀(u, v) ∈ E.

Following Zhou et al [27], we now define the gradient

and divergence over Γ as :

(∇wf)(u, v) =

√

w(u, v)

d(u)
f(u)−

√

w(u, v)

d(v)
f(v) (8)

and

(divwF )(u) =
∑

u∼v

√

w(u, v)

d(v)
(F (v, u)− F (u, v)) , (9)

where u ∼ v stands for all vertices v connected to u and

d : V 7→ R is the degree function defined as:

d(v) =
∑

u∼v

w(u, v). (10)

The weight w(u, v) is typically defined as a decreasing

function of the geodesic distance between the vertices u
and v. Since each node of the graph represents a point

on the unitary sphere, the geodesic distance between

two nodes is defined as the great-circle distance between

the corresponding points on the sphere.

Even though both discretization methods are appli-
cable to spherical images, the main advantages of the

graph-based representation rely on the definition of dif-

ferential operators directly in the discrete domain. They

reveal a much more stable behavior than their counter-

parts from Eq. (6) and Eq. (7). Indeed, it is easy to see

that, using a simple 4-connected topology, the factor
w(u, v)/d(u) is of order 1/4 at each vertex and can eas-

ily be pre-computed. Hence there is no more source of

instability in the numerical scheme. It should finally be

noted that this generic framework provides flexibility

in the choice of the discrete grid points, whose density

can vary locally on the sphere.

4 Variational Depth Estimation

Equipped with the above formalism, we now propose

a new variational framework to estimate a depth map

from two consecutive frames of an omnidirectional im-

age sequence. We assume at this point that the param-

eters t,Ω that describe the 3D motion of the camera

are known. In addition, we might have an estimate of

the optical flow field u0.

Let us consider again Eq. (5) that relates image

derivatives to motion parameters. Since the image gra-

dient ∇I1 is usually sparse, Eq. (5) does not provide

enough information to recover a dense depth map. Hence,

we formulate the depth estimation problem as a regu-

larized inverse problem using the L1 norm to penalize
deviation from the brightness constraint and the TV-

norm to obtain a regular depth map possibly with sharp

transitions.

We build the following error functional:

J(Z) =

∫

Ω

ψ(∇Z) dΩ + λ

∫

Ω

|ρ(I0, I1, Z)| dΩ, (11)

and we look for the depth map Z that minimizes it. In

Eq. (11) the function ρ is the data fidelity term that

describes the residual image error:

ρ(I0, I1, Z) = I1(y + u0)+

(∇I1(y + u0))
T (−Z(r)t−Ω× r− u0)− I0(y),

(12)
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where we use our assumption that t,Ω and u0 are

known. The regularization function ψ is given by:

ψ(∇Z) = |∇Z(r)|. (13)

With such a choice of the functional J we define a TV-

L1 inverse problem. Several advantages come from this

choice. First the TV-L1 model is very efficient in remov-

ing noise and robust against illumination changes : it

inherits these properties from the Rudin-Osher-Fatemi
(ROF) model [21] and the L1 norm fidelity term ensures

robustness to outliers and also non-erosion of edges [19].

Furthermore the TV regularization is a very efficient

prior to preserve sharp edges. The total variation model

then suits the geometrical features of a real scene struc-

ture where the depth map is typically piecewise linear

with sharp transitions on objects boundaries.

The functional in Eq. (11) is written in terms of con-
tinuous variables, while in practice we work with dis-

crete images. Inspired by the continuous formulation,

we now propose to solve a similar, though purely dis-

crete, problem. With the graph described in the previ-

ous section, we define the local isotropic variation of Z

at vertex (pixel) v by :

‖∇w
v Z‖ =

√

∑

u∼v

[(

∇wZ
)

(u, v)
]2

. (14)

The discrete optimization problem can then be written

as :

J(Z) =
∑

v

‖∇w
v Z‖+ λ

∑

v

|ρ(I0, I1, Z)|. (15)

The definition of ρ is the same as in Eq. (12), where

we substitute the naive finite difference approximation
of the gradient given in Eq. (6). Note that the discrete
problem now uses two different discretizations for dif-
ferential operators on S2. The reason for this choice will

be made clear below.

We now discuss the solution of the depth estima-

tion problem in Eq. (15). Even though the resulting
functional J is convex, it poses severe computational

difficulties. Following [2], we propose a convex relax-
ation into a sum of two simpler sub-problems:

J(Z) =
∑

v

‖∇w
v Z‖+

1

2θ

∑

u

(V (u)− Z(u))2 + λ
∑

u

|ρ(I0, I1, V )|,

(16)

where V is an auxiliary variable that should be as close

as possible to Z. If θ is small then V converges to Z

and the functional defined in Eq. (16) converges to the

one defined in Eq. (15) as shown in [2]. The minimiza-

tion must now be performed with respect to both the

variables V , Z. Since the functional is convex the so-

lution can be then obtained by an iterative two-step

procedure:

1. For Z fixed, solve:

min
V

{

1

2θ

∑

u

(V (u)− Z(u))2 + λ|ρ(V (u))|

}

. (17)

2. For V fixed, solve:

min
Z

{

∑

u

‖∇w
uZ‖+

1

2θ

∑

u

(V (u)− Z(u))2

}

. (18)

The minimization in the first step is straightfor-

ward : the problem is completely decoupled in all coor-
dinates and the solution can be found in a point-wise

manner using this thresholding scheme:

V = Z +



















θλ∇IT1 t if ρ(Z) < −θλ(∇IT1 t)
2

−θλ∇IT1 t if ρ(Z) > θλ(∇IT1 t)
2

−
ρ(Z)

∇IT1 t
if |ρ(Z)| 6 θλ(∇IT1 t)

2.

(19)

The previous result can be easily obtained by writing

the Euler-Lagrange condition for Eq. (17)

1

θ
(Z − V ) + λ∇IT1 t

ρ(V )

|ρ(V )|
= 0, (20)

and then analyzing the three different cases: ρ(Z) > 0,

ρ(V ) < 0 and ρ(V ) = 0. Using the relationship ρ(V ) =
ρ(Z) +∇IT1 t(V − Z) we have:

– ρ > 0:

(Z − V ) = θλ∇IT1 t ⇒ ρ(Z) > ∇IT1 t(Z − V ) =

θλ(∇IT1 )
2

– ρ < 0:

(Z − V ) = −θλ∇IT1 t ⇒ ρ(Z) < −∇IT1 t(Z − V ) =

θλ(∇IT1 )
2

– ρ = 0:

ρ(Z) = −∇IT1 t(V − Z)

Notice that this computation relies on evaluating the

scalar product ∇IT1 t, which can not be evaluated if we
use a graph-based gradient, since the vector t is un-

constrained (in particular it does not correspond nec-

essarily to an edge of the graph). However, this part

of the algorithm is not iterative and the gradient can

be pre-computed, therefore avoiding severe numerical

instabilities as we move closer to the poles.
The minimization in Eq. (18) corresponds to the to-

tal variation image denoising model, for which Cham-

bolle proposed an efficient fixed point algorithm [7]. As

most TV denoising algorithms, it is iterative and both
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gradient and divergence will be computed at each iter-

ation; this is the primary reason for using the graph-

based operators in this part of the variational problem.

Chambolle’s iterations read explicitely:

Z = V − θdivp,

pn+1 =
pn + τ∇(divpn − V/θ)

1 + τ |∇(divpn − V/θ)|
. (21)

where p is the dual variable, whose definition depends

on the image domain. If the domain is the unit sphere

S2, then p ∈ TS, where TS the tangent bundle already

introduced in Section 3. If the image is defined on the

graph Γ = (V,E,w), then p ∈ E. Finally, it should be

noted that the algorithm is formally the same whatever
discretization is chosen, i.e., the discrete operator can
be given either by Eq. (9) or Eq. (7) . Experimental

results however show that the graph-based operators

unsurprisingly lead to the best performance.

5 Least Square Ego-Motion Estimation

We discuss in this section a direct approach to the es-

timation of the ego-motion parameters t,Ω from the

depth map Z. We propose a formulation based on least

mean squares algorithm.

When we have an estimate of Z(r) in Eq. (5), we

have a set of linear constraints in the motion parameters
t,Ω that can be written as :

Z(∇I1)
T t+ (r× (∇I1))

TΩ = I0 − I1. (22)

For each direction in space r we can rewrite Eq. (22) in

a matrix form:

A(r)b = C(r), (23)

whereA(r) = [(Z(r)∇I1(r))
T (r×∇I1(r))

T ], and C(r) =

I0(r)−I1(r) are known matrices, while b = [t;Ω] is the

variable containing the unknown motion parameters.

We formulate the ego-motion estimation problem as

follows:

b∗ = argmin
b

∑

r

(A(r)b− C(r))2. (24)

The solution to this linear least square problem is sim-

ply:

b =

∑

r

ATC

∑

r

AAT
. (25)

There are several aspects that are important for

the existence and the unicity of the solution of the

ego-motion estimation problem. First, the images must

present enough structure. In other words, the image

gradient ∇I1 should carry enough information on the
structure on the scene. In particular, since the gradient

only gives information on motion that is perpendicular

to image edges, the gradient itself will not help recover-

ing motion parameters if the projection of the motion

parameters on the spherical retina is everywhere paral-

lel to the gradient direction. This situation is however
highly unlikely for a real scene and a wide field of view
camera.

Then, there is a possibility of confusion for certain

combinations of the motion parameters. In Eq. (22) we
compute the scalar product between the image gradi-
ent and the vector Z(r)t + Ω × r, i.e., the spherical

projection of 3D motion. For a small field of view, r

does not change much and the two terms Z(r)t and

Ω × r could be parallel, meaning that we cannot re-

cover them univocally. This happens for example with
a rotation around vertical axis and a displacement in
the perpendicular direction to both viewing direction
and rotation axis. Such a confusion however disappear

on a spherical retina thanks to the full field of view.

6 Joint Ego-Motion and Depth Map Estimation

We have described in the previous sections the separate

estimation of a dense depth map and the 3D motion

parameters. The purpose of this section is to combine

both estimation algorithms in a dyadic multi-resolution

framework.

We embed the minimization process into a coarse-
to-fine approach in order to avoid local minima during

the optimization and to speed up the convergence of

the algorithm. We employ a spherical gaussian pyramid

decomposition as described in [25], with a scale factor

of 2 between adjacent levels in order to perform the

multi-resolution decomposition.

Then, we solve the depth and ego-motion estimation
problems by alternating minimization steps. For each

resolution level l, we compute a solution to Eq. ((5))

by performing two minimization steps:

1. We use the depth map estimate at the previous level

Z̄l+1(r) to initialize the depth map Zl
0(r) at the

current level l. Using the least square minimization

from Eq.(25) we can refine the estimation of the

motion parameters tl,Ωl at level l.

2. Using the estimated motion parameters tl,Ωl we

can find an estimate of the depth map at current

level Zl(r) by solving Eq. 15 using the variational

framework described in Section 4.

Since we perform a coarse-to-fine approach we only

need to initialize the algorithm at the coarsest level. Let
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us assume that we use L levels. At the coarsest level L

we make the hypothesis that a constant-depth model of
the scene is sufficient to explain the apparent pixel mo-
tion between the low resolution images IL0 and IL1 , so

we set ZL
0 = K, where K is a positive constant differ-

ent from zero. At the coarsest level, the approximation
that we introduce by flattening the depth map Z is well

posed since all image edges are smoothed out at low
resolution. We also find that the estimation of motion
parameters is very accurate at this level independently
on the choice of K. The reason is that Z and t are only

known up to a scale factor, while Ω is independent of
Z. At each level l we can also obtain an estimate of the

optical flow ul
0 as ul

0 = −Zl
0(r)t

l+1 − Ωl+1 × r, and

use it to warp image I l1, i.e., to estimate I l1(r + ul
0).

The joint depth and ego-motion estimation algorithm

is summarized in Algorithm 1.

Algorithm 1 Computation of Z, t,Ω

1. At the coarsest level L initialize: ZL

0
= K with K > 0

2. For each level l ∈ [L,L− 1, . . . , 2, 1]:
(a) Initialize Z with the solution at previous level

Zl

0 = upsample(Zl+1).

(b) Estimate optical flow ul

0
as:

ul

0 = −Zl

0(r)t
l+1

−Ωl+1
× r

and use it to calculate Il
1
(r+ ul

0
).

(c) Estimate tl and Ωl using Eq.(25):

b =

∑

r

ATC

∑

r

AAT
.

(d) Estimate Zl using the depth estimation algorithm de-
scribed in Section 4 with the current estimates tl and
Ωl.

We would like to conclude the section with some
considerations regarding the complexity of the algo-

rithm. For the depth map estimation part we observe

that the complexity of the algorithm is strongly related

to the number of connections in the graph. Usually a

4-connectivity scheme, where each node is connected at

most to other 4 neighbors, is enough to represent ac-

curately a sphere. This is specially true in the case of

a regular pixelization (e.g., an equiangular grid), where

the 4-connectivity scheme is naturally induced by the

topology of the sphere (see also Fig. 4). In this case

the complexity of the depth estimation algorithm stays

equivalent to the case of planar images. Furthermore,

since each operation in Eq. (19) and (21) can be per-

formed pixel-wise, the algorithm can be efficiently im-

plemented on graphics processing units in a similar way

as described in [26]. The ego-motion estimation algo-

rithm has low complexity since it runs at most in lin-

ear time O(n), where n is the total number of pixels.

Its complexity is in fact dominated by the operation

performed in Eq.(25). Furthermore the quantities A(r)
and C(r) can be computed once at the beginning of

each multi-resolution level. In practice the ego-motion

estimation quickly converges at low resolution levels,

so the algorithm can almost be considered as constant

time O(1).

7 Experimental results

We analyze in this section the performance of the pro-

posed algorithms for two sets of omnidirectional images,

namely a synthetic and a natural sequence. For both

Fig. 5 The 3D model of the scene

Fig. 6 Synthetic omnidirectional images in spherical represen-

tation

sets the images are defined on an equiangular grid, so
they are easily representable on a plane, as shown for
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example in Fig. 7. In this image plane, the vertical and

horizontal coordinates correspond respectively to the θ
and φ angles. The images are represented such that the

top of the image corresponds to the north pole and the

bottom to the south pole.

Fig. 7 The synthetic spherical image in a Mercator map (left)
and the corresponding depth map ground truth (right)

7.1 Synthetic omnidirectional images

The first set of images is a spherical rendering of the

3D model of a living room shown in Fig. 5. We used the

3D content creation suite Blender to model the room

in Fig. 5, while we used the raytracing engine Yafray

to render the omnidirectional images and obtain the

depth map ground truth. The images used in our ex-

periments can be found online1. Since we only use 2
frames in our optimization scheme, in our experiments

with the synthetic images the first frame I0 is always

the same and it is shown in Fig. 6 together with the

associated depth map, that we use as ground truth for

the numerical evaluation of the performance of our al-

gorithm. We generate the other frames by translating

and rotating the spherical camera. The camera trans-
lation has always the same module of 0.1 units, while

the dimension of the room is 24 units by 23 units.

We first study the influence of the discretization

scheme in the variational depth estimation algorithm.

As discussed in Section 4 the TV denoising part of

the depth estimation algorithm is extremely sensitive

to the choice of the discrete differential operators. We

show in Fig. 8 that the use of the differential opera-
tors from Eq. (6) and (7) lead to noisy results around
the poles. We call the resulting algorithm as TVL1-

naive. We compare the results of this implementation to

those obtained by choosing the graph-based definition
of the differential operators from Eq. (8) and (9). The
proposed algorithm, that we call TVL1-GrH, clearly

leads to improved performance, especially around the
poles where it is much more robust than TVL1-naive.

1 http://lts2www.epfl.ch/∼bagnato/datasets/

In Fig. 8 we can observe a black area in the middle

of both estimated depth maps, which is not present in

the ground truth image. This structure is simply due

to an occlusion generated by the reflection of the win-

dow, where the brightness consistency does not hold.

Then, we compare in Fig. 9 the results of the varia-

tional depth map estimation algorithm for four different

camera motions, namely a pure translation or different
combinations of rotation and translation. We compare
our results to a local-constant-depth model algorithm

(i.e., LK ) similar to the one described in [17] and [12].

This approach assumes that the depth is constant for a

given image patch and tries to find a least square depth

estimate using the brightness consistency equation. We

can observe that the TV-L1 model is much more effi-

cient in preserving edges, so that it becomes possible to

distinguish the objects in the 3D scene. The LK algo-

rithm has a tendency to smooth the depth information

so that objects are hardly visible.

These results are confirmed in Table 1 in terms of

mean square error of the depth map reconstruction for

several synthetic sequences. It can be seen that the

local-costant-depth algorithm LK is outperformed by
the variational depth estimation algorithm with graph-

based operators (TVL1-GrH ) It is also interesting to
observe the influence of the choice of the discrete differ-

ential operators. As it has been observed earlier, the dis-

cretization from Eq. (6) and (7) (TVL1-naive) clearly

leads to the worst results, while the graph-based oper-

ators perform best.

Finally, we analyze in Table 2 the performance of
the ego-motion estimation algorithm proposed in Sec-

tion 5. We use the same synthetic sequences as before,

and the depth estimation results are used in the least

mean square optimization problem for motion parame-

ter estimation. We compare the ego-motion estimation

to the true motion parameters, given in terms of trans-

lation (t) and rotation (Ω) parameters. We can see that
the ego-motion estimation is quite efficient for all the se-

quences even if the estimation algorithm is quite simple.

The relative error is usually smaller than one percent.

7.2 Natural omnidirectional images

These images have been captured by a catadrioptric
system positioned in the middle of a room. We then
move the camera on the ground plane and rotate it

along the vertical axis. The resulting images are shown

in Fig. 10, where we also illustrate the result of the

projection of the captured images on the sphere. We

have also measured the depth map in this environment

with help of a laser scanner, and we use these mea-
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Fig. 8 Depth map estimation with different discrete differential operators. Left : ground truth. Center : TVL1-naive. Right : TVL1-GrH

Fig. 9 LK (top) vs TVL1-naive (middle) for four different camera motions. On the bottom we show also t in red and Ω in blue; the
estimated motion vectors are represented with a dashed line

sures for visual evaluation of the depth map estimation

algorithm.

We first analyze the performance of our depth es-

timation algorithm for natural spherical images, and

we compare the estimated depth map to the depth in-

formation measured by the laser scanner. We show in

Fig. 11 that the estimated depth map is quite accurate

when compared to the LK algorithm, since the pro-

posed algorithm is able to detect and delineate clearly

the objects in the scene. It confirms the efficiency of the

variational framework proposed in this paper.

Finally, we show that our depth estimation provides

accurate information about the scene content by using

this information for image reconstruction. We use one

of the images of the natural image sequence as a ref-

erence image, and we predict the next image using the
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Table 1 Mean Square Error (MSE) between the estimated depth map and the ground truth

Seq1 Seq2 Seq3 Seq4 Seq5

LK 0.00117 0.00268 0.00158 0.00611 0.00216

TVL1-naive 0.00447 0.10319 0.10234 0.10824 0.10369

TVL1-GrH 0.00103 0.00169 0.00167 0.00395 0.0017

Table 2 Results for the least square motion parameters estimation

Seq1 Seq2 Seq3 Seq4 Seq5

true-t [-0.1;0;0] [-0.1;0;0] [-0.1;0;0] [0;-0.1;0] [-0.07;-0.07;0]
t [-0.099;0.001;-0.004] [-0.099;0;-0.004] [-0.099;0.002;-0.005] [0.;-0.099;-0.006] [-0.069;-0.07;-0.009]

true-Ω [0;0;0] [0;0;0.0175] [0.0175;0;0] [0;0;0.0175] [0.0175;0;0]

Ω [0;-0.001;0] [-0.0002;-0.0021;0.0167] [0.0177;-0.0025;0.0001] [0;0;0.0182] [0.0181;0;0]

depth information. We compute the difference between

the second image and respectively the reference image,

and the approximation of the second image by motion

compensation. We can observe in Fig. 12 that the es-

timated depth map leads to efficient image reconstruc-

tion, as the motion compensated image provides a much
better approximation of the second image than the ref-
erence image. The depth information permits to reduce

drastically the energy of the prediction error, especially

around the main edges in the sequence. It outlines the

potential of our depth estimation algorithm for efficient

image or 3D reconstruction.

8 Conclusions

We have presented in this paper a novel variational

framework for solving the structure from motion prob-
lem in omnidirectional image sequences. We have de-
veloped a graph-based construction of discrete differ-

ential operators for the processing of images on the 2-

sphere. These operators permit to develop an efficient

algorithm for depth estimation that is robust to the ge-

ometrical characteristics of the spherical manifold. We

have then proposed a simple algorithm that directly
estimates the camera motion from the depth informa-
tion. Finally, we provide an iterative algorithm for joint

depth and ego-motion estimation. The proposed frame-

work provides accurate geometry information for both

synthetic and natural omnidirectional images. The ef-

ficiency and low complexity of the proposed algorithm

positions it as a promising solution for fast depth esti-
mation and scene reconstruction from omnidirectional
image sequences.
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