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Abstract. In this paper the delamination problem for laminated plates is studied.
A nonmonotone multivalued law is introduced in order to describe the interlaminar
bonding forces. This law is written as the generalized gradient in the sense of F. H.
Clarke of an appropriately defined nonconvex superpotential. Moreover, monotone
boundary conditions of the subdifferential type are assumed to hold. The problem
is formulated as a variational-hemivariational inequality expressing the principle of
virtual work in inequality form. By using compactness and monotonicity arguments,
the existence and the approximation of the solution of this inequality are investigated.

1. Introduction. In the present paper we deal with laminated plates, allowing for
debonding of the laminae. The developed theory also holds for any type of layered
plates or sandwich plates. The interaction between the laminae is described by a
nonmonotone, possibly multivalued law connecting the interlaminar bonding forces
with the corresponding relative displacements. This law permits the formulation of
the problem as a hemivariational inequality (cf. [ 1 ]—[3]) if classical boundary con-
ditions are assumed to hold. In the case of more complicated boundary conditions
but of monotone type, which are derived through subdifferentiation from a con-
vex superpotential [4], we obtain a variational-hemivariational inequality [5]. This
variational-hemivariational inequality is studied here from the point of view of the
existence and the approximation of his solution.

The considered problem is a unilateral one since its variational formulation is an
inequality. Unilateral problems in the theory of plates were first studied (see, e.g., [6,
3]) in the context of convexity and they give rise to variational inequalities. Here the
nonmonotone interlaminar law is expressed in terms of a nonconvex superpotential
[1] by forming its generalized gradient (see, e.g., [7]). Hemivariational inequalities
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in the framework of Kirchhoff and von Karman plate theory, but for a single plate,
have already been studied in [8, 9],

Due to the lack of monotonicity of the interlaminar law, we cannot use generally
the monotonicity arguments widely applied in the theory of variational inequalities
[6, 3]; here compactness-average value arguments are applied, combined with the
well-known monotonicity argument of the theory of variational inequalities. It is
worth noting that these two arguments are completely independent, which might be
useful in other areas, such as in the case of nonmonotone perturbations of multival-
ued equations involving monotone operators.

2. Derivation of the variational formulation of the problem. Let us consider a lam-
inated plate consisting for the present of two laminae (Fig. la). Each lamina is an
elastic plate and is referred to a right-handed orthogonal Cartesian coordinate sys-
tem Oxix2x3 (Fig. lb). The two plates have constant thicknesses h\ and hi, and the
middle surface of each plate coincides with the 0xtx2-plane. Let Qi and Q2 be two
open, bounded, and connected subsets of R2 and suppose that their boundaries r,,
r2 are appropriately smooth (Lipschitzian boundaries C0,1 are sufficient). f2i and
Q2 are occupied by the middle surfaces of the plates in their undeformed state. On
Q' c Qi n Q2 (^' such that Q n r, =0 and Q n T2 = 0) the plates are bonded
together in such a manner as to act as an integral structural element. We denote by
C,(x) the deflection of the point x = {X1.X2.X3} and by f = {0,0, fa), fa = fa{x)
(hereafter called f for simplicity) the distributed load of the /th plate per unit area
of the middle surface, where / = 1,2 denotes the upper and the lower plate Qi, fi2>
respectively (Fig. la).

The classical (Kirchhoff) theory of plates gives rise to the following system of
differential equations:

KjAACi = f in fi/, / = 1,2, for the two plates. (2.1)

Here Kt — E,hf/( 12(1 - uj)) is the bending rigidity of the /th plate with E, and
v, the modulus of elasticity and the Poisson ratio, respectively. We consider here
for simplicity isotropic homogeneous plates. However, for further study we need
only the bilinear form a(C,. z,) of the elastic forces of each plate, and the whole
study is independent of the specific form of «(£,-. z,): only its coerciveness and its
boundedness are needed. Therefore, we can replace (2.1) by the respective equation
for orthotropic or anisotropic, homogeneous or nonhomogeneous plates, as is often
the case for laminated plates. It is well known (e.g., [10], p. 220) that the interlaminar
normal stress 033 is responsible for the delamination effects in laminated, layered, or
sandwich plates. Therefore, we split f into /, e L2(Q;), which is the given external
loading acting on the /th plate, and into /,, which describes the interaction between
the two plates due to the binding material, i.e.,

I = 7, + 7i in i = 1.2. (2.2)
To describe the bonding effect from the phenomenological point of view we can

consider diagrams I, II, III of Fig. 2b, which take into consideration local cracking
and crushing effects (cf. [1-3]) at the interface, characterized by brittle or semibrittle
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Fig. 1. On the geometry of the laminated plate

(dashed line) behavior (debonding effects). This graph corresponds to the adhe-
sive contact of two laminae having negligible initial thickness of adhesive material
between them. According to the assumption of plate theory, the two laminae are in-
compressible in the direction Ox3 and thus the condition of nonpenetrability should
be described by a vertical branch AB. However, here, in order to take into account
the possibility of elastic deformations of the laminae in the direction Ox3, we allow
the line AB to have a small slope (line AB'). Analogously, the graph of Fig. 2c
corresponds to the more realistic case of a bonding sheet between the two laminae
of thickness h > h'. It is worth noting that the developed theory here simulates the
action of the adhesive material only in the direction normal to the plate. Interlayer
slip, which together with the debonding normal to the laminae constitutes the main
cause of the degradation of laminated plates, may occur in the framework of the
theory presented here as a result of the Bernoulli assumption for each plate. A more
complete study of the connection of debonding due to bending and that due to plane
interlaminar stresses could be achieved only in the framework of von Karman plate
theory and will be attempted elsewhere. In the present paper we make the general
assumption that /, is generally a multivalued nonmonotone function (cf. Fig. 2d) of
the relative displacement of two plates.
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Fio. 2. Interlaminar force diagrams
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fC] = Ci - C2 (see Fig. 2). (2.3)
We write that

-7, 6 ! - C2) on £2' c Q, n Q2 (2.4a)

(where Q.' n T, = 0),

+/2 G /?(£i — C2) on Q' c Q| fl Q2 (2.5a)

(where Q' n T2 = 0),
7, = -f2 = f (2.6)
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and
7i = 0 on Q, - Q', (2.4b)
f 2 — 0 on Q.2 - Q'. (2.5b)

The graph of /? may include vertical "filled in" gaps of finite length (Fig. 2b,c,d).
Further, we assume generally that /?:/?-+ P{R) is a nonmonotone multivalued

function, which is obtained in the following way. Let /? be a locally bounded, mea-
surable function /? : R —> R, i.e., p e L™C(R). Moreover, for any e > 0 and £ e R we
define the numbers

/?£(£i) = ess sup /?(£),
lfi-{|<e

and
^4({1) = |essinf/?(<f). (2.7)
—e |{i-£|<e

which are increasing and decreasing functions of e, respectively. So as e —► 0 we may
formulate limy?£(<^) = /?(£) and = /?(£), and we define the multivalued
function ft : R —> P(/?) by setting

m = (2.8)
According to [11], if /?(£±o) exists for every £ € R, then a locally Lipschitz function
j : R —► i? can be determined such that

m = dm- (2.9)
Here j is defined up to an additive constant by the relation

m= f* p(t)dt (2.io)
Jo

and d denotes the generalized gradient of F. H. Clarke [7], Thus we write (2.4a) in
the form

-7i e m = dm, (2.ii)
which is equivalent by definition to the hemivariational inequality

y°K,z-^)>-7,(z-<f) for all z e R. (2.12)
Here j°(% •) denotes the directional derivative in the sense of F. H. Clarke defined by

■Off \ r Jii + h + ^z) _ Jd + h)ju{£,z)= lim sup — ~—— -
,1—o+.A-^o ^

1 r(+h+Xz
= lim sup J (2.13)

A—O+.A—0 ^ J(+h

Note here that Eq. (2.11) may be interpreted physically as a nonconvex superpotential
relation [1,3] describing the behavior of the adhesive material between the plates.

Now we can proceed to the derivation of the variational formulation of the prob-
lem. From (2.1), assuming sufficiently regular functions, we get the expressions

«(C/. z,) = j fz, dQ, + j Qj{Ci)Zi dTi - j M,(C,) dYh Vz, e Z„ i = 1, 2.

(2.14)
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Here n, denotes the outward unit normal vector to T,,

a(£,z) = K f[{l-v)Ciafiz,ap + i>ACAz]d£l, a,(1=1,2, (2.15)

is the bilinear form of the elastic energy of each lamina,

M(Q = -K[vAC + (1 - i>)(2/7,«2C,12 + nU.u + n1^)] (2.16)
is the bending moment and

5(0 = 2(0-^ = -* 'Mt" + (1 - ") 4;[»l"2(C,22 - C.I 1) + (»; - "|)C.12]
dn dr

(2.17)
is the total shearing force on the plate boundary T. Equation (2.14) expresses the
"principle of virtual work" for each lamina; Z, denotes the appropriate vector space
for the deflections which will be defined later. We write Eqs. (2.14) for i — 1,2
and add. Then from (2.12) we get, by setting [£] = Ci - £2 and [z] — z\ - z2, the
hemivariational inequality

<*,(£,. z, — Ci) + a2(C2,Z2-C2)+ [ j0m,[z]-[t])dn
J Q'

>J QdZi-C^dr + j Q2(z2-t2)dr-J M, dZx~ndT

+ [ ?2(Z2-C2)dn, Vz, GZ|, Vz2eZ2. (2.18)
Jn2

Further, we specify the boundary conditions of each plate: let us assume that
general monotone boundary conditions [12, 3] hold on the boundaries of the two
plates r,, r2.

°nV]' (2'19)

-Qi € b[(Ci) on r,, (2.20)

M2eb2(onr2, (2.21)
. ,

-Qi e %(C2) on r2, (2.22)

where b\, b[, b2, b2 are maximal monotone operators from R into P{R). Then
convex, l.s.c., proper functionals <p\, <p\, <p2, <p2 (convex superpotentials [4]) can be
determined such that

i = l'2' (2'23)

and
b'iiCi) = drift), i = 1,2, (2.24)

where d denotes the subdifferential [13]. These general subdifferential boundary con-
ditions include all the classical (bilateral) and all the unilateral monotone boundary
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conditions [3, 6] (e.g., unilateral contact, friction, plastic hinge effects, prevented
rotation effects). Concerning the appropriate choice of <p, and cp\ for each specific
boundary condition we refer to [3], Further, the functional

(£)"■■ ,2.25)
otherwise, i = 1,2,

and

11{oo othei
<D;.(z,) = { jrjn-.ldT, if ,{(*,) eL'dU (226)

otherwise, / = 1,2,

are introduced. They are convex, l.s.c., and proper on //2(Q,), i — 1,2. Thus we are
led to the following problem:

Problem 1. Find Ci e Z|, £2 e Z2 such as to satisfy the variational-hemivariational
inequality.

Qi(Cl> z\ -C\) + a2(Ci, Z2-C2)

+ [ y0([am-[c])^+<i>'1(z1)-o'1(cJq'
+ <D'2(z2) - 0'2(C2) + O,(z,) - 0), (C,) + 02(z2) - cD2(C2)

> f f \(Z[ - d£l + f f 2(z2 - C2) dQ, Vzi 6 Zi, Vz2 e Z2.
^ Qi

Equation (2.27) constitutes a variational-hemivariational inequality expressing the
principle of virtual work in its inequality form.

Obviously, all combinations of classical boundary conditions with boundary condi-
tions of monotone type resulting from convex superpotentials give rise to variational-
hemivariational inequalities analogous to (2.27). Only modifications of the range of
the integrals in (2.25) and (2.26) will be necessary. Further, we shall study (2.27)
on the assumption that the boundary conditions guarantee the coerciveness of the
bilinear forms; i.e., a "rigid lamina" displacement (polynomial of first degree in x\
and x2) is not permitted. Moreover, we include the classical boundary conditions in
Z,-. For homogeneous boundary conditions Z, is a closed linear subspace of //2(fi,),
whereas for inhomogeneous boundary conditions Z, is a closed linear subvariety of
H2(Q.j). In the latter case an appropriate translation transforms the boundary con-
ditions into homogeneous ones. For simplicity we first study the following problem
(problem 2). We assume that

c2 = 0 and dC2/dn = 0 on T2 (2.28)

and that

f,=0 and (2.19) holds on T,. (2.29)

These boundary conditions guarantee the coerciveness of the bilinear forms. Then
Z, = //2(Q,)n //'(Q,) and Z2 = HZ(Q.2).
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Problem 2. Find £1 e Zx and £2 e Z2 such as to satisfy the variational-hemivaria-
tional inequality

ai(C,,z,-Ci) + «2(C2,22-C2)+ [ 7°([C].[r]-[f])rf« + <I>,(r,)-«»i(fi)
Jq'

> (/l. Z1 ~~ Cl ) + (/2. z2 — C2). 6 Zi, Vz2 € Z2.
(2.30)

The above is a model problem: the method applied to its study remains the same
if other more general boundary conditions are considered provided that the coercive-
ness of the bilinear forms is preserved. Such more general problems will be examined
in the sequel.

3. Existence and approximation results; the differentiable case. We assume that for
some £ e R

esssup /?(£) < essinf /?(£), (3.1)
(-oo,-{) (+6+00)

i.e., that P "ultimately" increases. Obviously we can assume without loss of generality
(appropriate translation of the coordinate axes) that

esssup /?(£) < 0 < essinf /?(£). (3.2)
(—00,—{) (+£.+°°)

Note that it is possible that /?(±oo) = ±00. We shall distinguish two problems with
respect to Op in the first case we assume that gradOi(-) exists everywhere ("dif-
ferentiable" case), while in the second case <t>i is generally l.s.c., not everywhere
differentiable, and may take values in (-00, +00], C> ̂  00 (the "nondifferentiable"
case).

Let us denote by (■, •} the duality pairing between the spaces Z, and Z\. Note that
(2.30) is equivalent to

a 1(Ci.z, -C,) + a2(f2.Z2-f2)+ [ 7°([f]- [-] — [CD dQ. + (graded, (£,), z, — £,)
J Cl'

> (f\. zi - C\) + if2' z2 ~ C2). € Z|, Vz2 e Z2.
(3.3)

Here (•, •) denotes the L2(Q,)-inner products. Indeed (2.30) implies (3.3), as it results
easily by setting z, = £, + A(w, - £,), X e (0, 1), and letting A —» 0+. Here we use the
fact that £ —* 7°([C], £) is positively homogeneous. It is obvious that (3.3) implies
(2.30) because of the convexity of <I>.

We consider the regularized problem 2e, which is defined as follows. Let p be a
mollifier, i.e., p E Q?(-l, + 1), p > 0, with p{£)d£ = 1 and let

Pe = Pe * P, e > 0, (3.4)
where pe{£) = (1 /e)p{£/e) and * denotes the convolution product. Then problem 2£
reads

Problem 2e. Find Cie € Z\ and C2c G Z2 such as to satisfy the variational equality

a,(Ci£> zi) + a2{C2£, z2) + (gradO,(Ci£), z\)

[ Pe([C*n])[z]dn=(7l.Zl) + {72,Z2), Vz, S Z,. Vz2GZ2.(3.5)
Jci'

+
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We consider a Galerkin basis of Z,, i = 1,2, and we denote by Z,„ the correspond-
ing ^-dimensional subspace of Z,. Then the following finite-dimensional problem is
formulated.

Problem 2m. Find CiM e Z|„, C2e„ s Z2„ such as to satisfy the variational equality

«i(Cien, + a2(£2£„, z2) + (grad <I>| (Ci£«)> zi> (3.6)

+ [ Pe{[£,cn])[z]d£l = (fZ\) + (f2, Z2), VZ) G Z[„, VZ2 € Z2„.
J SI'

Besides assumption (3.1), we assume further that

grad<5|(0) = 0. (3.7)

Proposition 3.1. Under assumptions (3.2) and (3.7) and for /, € L2(Q,), i = 1,2,
problem 2 has a solution.

Proof. We write (3.6) in the form

(A(Cen). z) — 0, for z = {z\, z2), Vz[ € Z\n, Vz2 e Z2„. (3.8)

Because of (3.2) we may determine p\ > 0 and /?2 > 0 such that /?<,(<!;) > 0 if £ > p\,
Pe{£) < 0 if f < —/?i, and |/?£(£)l < />2 if |£| < pu and we may write

[ Pe([Cen]Men]dCl = [ MC£„])[Gn] d&
■IV J\KinW>P\

+ [ Pe([Cen])[Cen]dQ

> 0 - p\pi rnesQ'. (3.9)
Because of the boundary conditions the bilinear forms are coercive, i.e.,

MC/. £/) > C/HC/H2, V£, e Z„ a const. >0, 1 = 1, 2. (3.10)
Here || • || denotes the H2-norm.

Because of the monotonicity of gradOi and assumption (3.7) we have

(grad <t>! (Cun) — grad <t>i (0), C\en — 0) > 0, Vf,M € Z,„. (3.11)
From (3.9), (3.10), and (3.11) we find that

(A(fM),W = ai(Cie».fien) + a2(C2 £A?> C22rt)

+ (gradOi (Ci£«). Cien) + [ MW)[C».]^ - (7i-Ci««) - (72. C2™)
Jn'

><-,||C,£„||2 + c2|K2£„||2
+ 0-/?iy92mesQ'-c3||Ci£„||-C4||C26«I|. Ci,c2,c3,c4 const. > 0.

(3.12)
By Brouwer's theorem (3.8) has a solution C£„ with ||C£„|| < c.

Further, we shall investigate the behavior of the solution C£„ of the finite-dimen-
sional problem 2e„ as e —> 0 and n —» 00. Due to the fact that {(I£«} is bounded in
Zj, i = 1, 2, we may extract a subsequence, again denoted by {£,«}, such as to satisfy
for e —► 0, n —* 00

Cien —> Ci weakly in Z„ i = 1,2. (3.13)
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But since the imbeddings H2(Sl,) c L2(Q(), i — 1,2, are compact, we obtain

Cien -> Ci strongly in L2(ft,), / = 1,2, (3.14)

and accordingly
C,£„ —► £,■ a.e. in Q,, / = 1,2. (3.15)

Further, we show that, under the assumption (3.2), {y?£([Ce«])} is weakly precom-
pact in L'(Q'). By the Dunford-Pettis theorem ([14], p. 239) it suffices to show that
for each p> 0 a S(/u) > 0 can be determined such that for co cfl' with mes<y < S

[ mKen])\dQ<fi. (3.16)
J to

The inequality (cf. [15])

Zomt)\<mm+Zo suP \p£(o\ (3.17)
|{|<«0

implies that

f |MC«])|dO< 1 [ \MZ*n])[Cen]\dCl+ f sup |MW)I dSl. (3.18)
J CO Co J to J CO |rCe/iU)ll<^0

But

[ \/3e([ten])Ken]\dSi' = f IPeiKenMen]] dSl
J a' J\Uc,Ax))\>P\

+ [ \MCen])[Cen]\dQ'
J lrCr»fx)ll<P.

= [ |-| dtt-f
J\\CF„(x)]\> D\ J\\c

| • • • | dSl'

+ 2 [ I■ ■ ■ IdSl' < f \---\dSl'

+ [ I • • • I dSl' + 2 [ I • • • I dSl'
J\KcM]\<p, J|[UW]|<p,

= [ Pe([Cen)Men]dSl'+ 2 f \MKen})[Cen]\dSl
J fi' JllCrJxHKo,la- JIK,^)]!^,

= (/l> Clen) + if2' C2,en) ~ "l(Clen^ Clen) ~ a2(C2en. C2en)

- (gradOi (Clen), Clen) + 2 [ |A([C«,])K«] \dSl'
J\l

< c + lp\p2 mes SI' - (gradOi(Cl£„) - gradO, (0), £Un - 0)
< c + 2p\pi mesQ', (3.19)

where again (3.11) has been applied (see also (3.9)). Further, we use the relation

sup \pc{£)\ < esssup|y?(£)|. (3.20)
lil<io ICI<fo+i

We can choose £0 such that for all e and n

^ JjPe([ten])[Zen]\dSl' < -^-(c + 2p\p2 mesQ') < \ (3.21)
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and 8 such that (cf. (3.20)) for mesw < 8

esssup|/?(£)|<4- (3-22)
|{|<«o+l ld

Then

/ sup \pe{[Cen])\d£l < ess sup |/?([££])| mesa>
Jco irc4/iU)ii<dio irc»u)ii<&+i

< = f (3.23)
Equations (3.18), (3.19), (3.21), and (3.22) imply (3.16), i.e., that /?c([Ce«]) is weakly
precompact in L'(Q'). Thus, as e —> 0 and n —> oo, a subsequence again denoted by
{&[Cen]} can be determined such that

&([&«]) -* X weakly in L'(Q'). (3.24)

From (3.6) we get

|(gradOi(Cie„), z\)\ < c\\z\\\z\, Vz, e Zb (3.25)

which implies that
||gradO,(Cien)llz^ < c- (3.26)

Thus we can determine a subsequence again denoted by {grad<I>i (Ci£«)} such that as
s —> 0, n —♦ oo

gradO,(Cien) -+ ¥ weakly in Zj. (3.27)
Thus by passing to the limit « —♦ oo, e -» 0 we get from (3.6) (note that [z] €
//2(Q') c L°°(Q') for Q' c /?2)

a,(Ci.z1) + a2(C2.z2) + («P,zl)+ [ x[z]d£l
JO.'

= (?i,zi) + (?2.z2), VZ, ez,p Vz2eZ2. (3.28)

The proof will be complete if we show that

4* = gradOi(Ci) in Zj (3.29)

and that
x e £([{]) a.e. on Q'. (3.30)

To prove (3.29) we proceed as follows. We form the nonnegative—because of the
monotonicity—expression

Xn — (gradO, (Cu«) - gradO, (6), Ci£n - 0) >0, VtfeZ,, (3.31)
which by means of (3.6) becomes

Xn ~ ~ a\ (Clen: Clen) ~~ a2(C2£n> Clen)

- [ A([CM])[fei.]</a + (7..Ci™) + (72.C2.i.)
Jsi'

- (gradO,(Cun), 6) - (gradO, (0), Ci£« - 9) >0, V0eZ,. (3.32)
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We assume at present (the proof will be given in Lemma 3.1 separately) that

lim f fie{[Cen)Men]da= f *[£]</£! (3.33)

Then (3.32) gives as e —> 0, n —» oo

0 < lim sup X„ < -ai(Ci.Ci) -Q2(C2-C2)

- [ *[C]rfn + (7,.C.) + (72.C2)-<^0)-(gradO1(0),Ci-e). (3.34)
Jq'

From (3.28) and (3.34) we get

<y,C, -0)-(gradO,(6>),Ci -^) >0, V0€Z,, (3.35)

which implies by the well-known monotonicity argument or Minty's method (see,
e.g., [6], p. 55) that

4* = gradO,(Ci) in Z{. (3.36)
It remains for us now to show that

X&m\) a.e. in Q'. (3.37)
From (3.15) by applying EgorofFs theorem we can find that for every a > 0, co\ and
u>2 with mesoj; < a and mesft)2 < a can be determined such that

Cicn —> C/ uniformly in Q,- - ft),, i = 1,2, (3.38)

where £,- e L°°(Q, - ft),-). (Actually (,en —► £,- strongly in L°°(fl,-) because of the com-
pact imbedding //2(Q,) c C°(Q,) and the imbedding C°(Q,-) c L°°(Q,).) Because
of the uniform convergence for any p > 0 we can determine £o < p/2, no > 2/ p such
that for £ < e0, n > n0

\Cien ~ Ci\ < p/2, Vx e Q, - ft)/, i = 1, 2. (3.39)
Therefore for every a > 0 we can determine ft) with mesft) < a such that for any

p > 0 and for e < e0 < p/2 and n > no > 2/p

|[C«] - [C]| < Hi2, vx e Q' - ft). (3.40)

We can easily verify that

fieii) = {Pe * P){Z) = [ P(£-t)Pe{t)dt<esss\ipP($-t) (3.41a)
J-E |f|<£

and analogously
essinf 0{Z-t)<pe{Z). (3.41b)

|(|<£
Thus from (3.40) (see also (2.7))

Pe{[Cen]) < ess sup /?(£)
|[C™]-il<c

< esssup /?(£) < esssup /?(£) = P ([£]). (3.42a)
IKt„]-4|<^/2 |[C]—i I<j"
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Analogously,
/?([£])< essinf/?(£)< (3.42b)
—f l[C]-il<A

Choosing e > 0 a.e. in Q' - co with e e L°°(Q' - co), we obtain from (3.42)

[ pM])edn<[ MC*n])edn < f fi ([C])ed£l (3.43)
JQ'-co ' iQ'-M

and taking the limits e —► 0 and «-»oowe find

[ fiM])edCl< [ xedd< [ p^edSl. (3.44)

Lebesgue's theorem implies as p -* 0 that

f m])edQ< f XedQ< f fi{[C\)edQ. (3.45)
JQ'—oj J CI'— co JQ' — co

Since e > 0 is arbitrary, (3.45) implies that

X £/?([£]) a.e. in Q' - a; (3.46)

and by taking a as small as we wish we obtain (3.37). □

Lemma 3.1. As e —► 0, n —► oc, (3.33) holds.

Proof. We form the difference

[ {M[Cen]Men]-X[C]}dn= f MKMCen] ~ [C]) dSl
Jci' J n1

+ [ [Cm([Cen])-x)da = A + B. (3.47)

Since H2(Q.') is imbedded into L°°(Q'), (3.24) implies that limi? = 0. This imbed-
ding is also compact. On the other hand, (3.24) implies that

WMiCeMvin') < c. (3.48)
Therefore

Ml < IIA(K™])IL.(n)l|[C«] - [C]|k~(n')' (3-49)
which yields that lim.4 = 0. □

4. Study of the nondifferentiable case. In this case gradOi does not exist every-
where. In order to regularize the convex superpotential O we assume that a sequence
of convex Gateaux-differentiable functionals {Oi^} exists, depending on a parameter
p, with the properties:

(i) As p —» 0, <D 1/,(z)-0,(z),VzeZl, (4.1)
(ii) grad 0^(0) = 0, and (4.2)

(iii) if zp —> z weakly in Z\ for p —+ 0, and if 0|p{zp) < M, where M is a constant,
then

liminfOi^z^) > O(z). (4.3)
p~* o

We now define the following regularized problem.
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Problem 2'cp. Find Ciep € Z(, i — 1,2, such as to satisfy the variational equality

a\{£iep, Zl) +a2{C2ep. z2) + f pe{[Cep])[z]d£l
JQ.'

+ {%T&<\<bp(ZUp),z{) = (J{,z\) + {f2,z2), Vz, e Zj, i = 1,2. (4.4)

The corresponding discretized problem reads
Problem 2'epn. Find e Z,„, i = 1,2, such as to satisfy the variational equality

(C1 > Z\) + Ot2{^2epn, Z2) + / Pe(\.t*ePn\)\.z]d£l
J Q'

+ (gradOi/)(Ci£/,n). Z\) = (Jx, Z\) + (J2, z2), Vz,- e Zin, i = 1, 2. (4.5)

Proposition 4.1. Under assumption (3.1) and if satisfies (i), (ii), and (iii), prob-
lem 2' has a solution.

Proof. For problem 2'epn we can prove, as in Proposition 3.1 by means of Brouwer's
fixed-point theorem, that a solution exists and that

WtiepnWz, < Ci, i = 1,2, (4.6)

where c,, / = 1, 2, are independent of e, p, and n. Then as e —> 0, n —► oo,

Ciepn Cip weakly in Zit i = 1,2. (4.7)

Further, we can show as in Proposition 3.1 that (3.16) holds for {/?£([Ce/>]}. Thus

PeiKepn]) — weakly in L'(Q'). (4.8)

As p —► 0 we have
C;> —1• Ci weakly in Z;, / = 1,2, (4.9)

and
Xp —> X weakly in L'(Q'). (4.10)

As in Proposition 3.1, we show that

||gradQ>\p{Zup„)Wz[ < c, (4.11)

where c is independent of e, n, p and thus as e —► 0, n —► oo,

grad®\p{&\epn) -> weakly in Z{ (4.12)

and
weakly in Zj. (4.13)

By means of the monotonicity argument for O, we obtain as in Proposition 3.1

Vp = grad <&„(£„), (4.14)

where we use

lim [ pe(lCepn])[Ctp„]dCl= f Xp[Cp]dn. (4.15)
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The proof of (4.15) is the same as the proof of Lemma 3.1. By passing to the limits
e —► 0, n —* oo in (4.5) we obtain the variational equality

«i (Cip.zi) + a2{C2p, z2) + / Xp[z]d£l + (grad<Di/,(Ci/)), z,)
J O'

= (fi.zi) + (f2,z2), Vz, eZ,, Vz2eZ2. (4.16)
Now we pass to the limit p -+ 0. From (4.16) and (4.14) we find that because of the
convexity of 01/;

*!,(*.) ~~ ̂^(Cl/?) + <X\{Clp> Z1 - Cl/)) + a2{^2p< z2 - C2/))

+ [ Xp{[z]-Kp])d£l>(fx,Zi-i;\p) + (J2,Z2-t2p), Vz, € Z,, Vz2 G Z2.
J"' (4.17)

Let us introduce in (4.17) z, such that O^z,) < 00. Then from (4.1) an M\ exists
such that Oi^z,) < M{ and from (4.17) we obtain

*>iptt\p) < M[. (4.18)
(4.18) and (4.9) imply (4.3). (4.17) is written in the form

A = Q>\p(z\) + a\(£\p, z\) + a2(C2/?> z2) + [ Xp[z]dQ.
J a.'

> <*>.,(£ip) + «1 (Cip. Cip) + «2(C2p. c2,) + [ XpKp\ da

+ (Ti.zl-Clp) + (f2.Z2-C2p) = B. Vz, ez,, Vz2eZ2, (4.19)
which as p —♦ 0 gives

lim inf= lim{0^(21) + a,(Cl/,, z,) + a2(C2/>, z2) + /
/>-►() /?— 0 Jq/

> lim inf B = lim inffO^C^) + a, (Ci/», Ci„) + a2{C2p, hp)
p—*\j p—* 0

+ [ Xp[£,p\dQ] + lim{(7i, z\ - Cip) + (J2, z2 - C2/»)}.
Vz, e Z,, Vz2 € Z2. (4.20)

From (4.3), (4.10), and the relation (proof as in Lemma 3.1)

lim [ Xp[(p)dn= [ X[Qdn, (4.21)
p^oJw J a'

we get from (4.20) by means of

lim inf a,(C,P, Cip) > "/(£/. C/). /' = L 2, (4.22)

the following:

1»1(z,)-01(C,) + a1(C1.Zi-Ci) + a2(C2.z2-f2)+ [ *([z] - [£])
JQ.'

>(7i^i-Ci) + (72.z2-C2). Vz, € Zj, Vz2 e Z2. (4.23)
It remains for us to show that

X € /?([C]) a.e. on Q'. (4.24)
The proof of (4.24) is the same as in Proposition 3.1. □
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5. On the strong convergence of the approximate solution. In Sees. 3 and 4 we
have shown that C,£„ —» £,• weakly in Z,, i = 1,2. We shall study here the strong
convergence of the solution by means of additional assumptions. We treat directly
the nondifferentiable case.

Proposition 5.1. Suppose that there exist q > 1 and a constant c > 0 such that

|/?(£)|<c(l + |£n for all £ £ R. (5.1)
Moreover, let b(£) e d(p\(Q and bp(£) — grad^i^(^) and let us assume that they
satisfy the conditions

W£)l<c,(l + |{|) (5.2)
and

IM«I<c2(1 + I«I). (5.3)
Then for ( = 1,2

Cienp —1 Ci strongly in Z,- as e —> 0, n —* oo. (5.4)

Proof. First we write (2.30) in the equivalent form

a\(C\,Z\ -C,) + a2(C2,Z2-C2)+ [ j°([ai=]-[C])dn
Jci'

+ 0',(Ci.zi - Ci) > (fi.zi -C,) + (72.-2-C2). v.-.ez,, Vz2eZ2,
(5.5)

where
0'(C,w)= lim (&(C + ^^) ~^(C) (5 6)

A—A

is the one-sided directional Gateaux differential at C in the direction w. It is well
known that for O(C) finite 0(C. •) always exists [16]. To show the equivalence of
(5.5) to (2.30) we note that setting in (2.30) z, - (, = A(z,- - (,) for 0 < X < 1 implies
(5.5). Conversely, (5.5) with the inequality

0,(z,)-0,(Ci) >0',(Ci.z. -Ci), Vz, e Z, (5.7)
implies (2.30). Equation (5.5) implies by setting z, = , / = 1,2, that

a,(Ci.Ci) + a2(C2.C2)<«i(Ci.C ) + «2(C2,C2 epn)

+ f AKUM-KDda-ffi.hepn-Ci)
Jci'

-(L.c^-w + ouci.c.^-ci). (5.8)
From Problem 2cpn (Eq. (4.5)) we obtain

^I (Cl£/)«' C\epn ) &2(C2epn> ^2epn) — ̂ 1 (Cl
+ ft2(C2£/»j. Z2,,) + (grad 0|^(Ci epn): Z|„ Clepn)

+ [ PMe.pn])([Zn] ~ [Ct/«,]) " (/,. -7I« " ClVi.)
J a'

~ if2'z2n ~ C2epn)' ^z\n € Z\n, Vz2„ € Z2„. (5.9)
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Because of the coerciveness of the problem, we obtain from (5.8), (5.9)

ClUCl - Cl£/m||2 + C2IK2 - &epn\\2
Sl Of 1 (£l — £|epn< £| — C\epn) + ^2(C2 ~' C>2epn> C2 ~ C2epn)
= Of 1 (Cl• Cl) + <*1 (C1 Epn> Clepn) + Oi2(C2> C2) ~l~ ̂liClepm ^2epn)
— 2ai (Ci. Clepn) — 2a2(^2, Clepn)

<al(CuCupn)+a2(C2,C2epn)+ [ 7°(tC]. Kepn] ~ [C]) d£i
J Q'

- (7,. Cl epn - Cl) " (J2. C2 epn ~ Cl) + <J>',(Cl. Cl epn " C.)
"t" (Cl epn' ^ln) + ^2 (C2 £/)«> ̂2n) + {§rad ^[^(Cle/wi)) ^ln — Clepn)

+ f Pe{[Cepn]){[^n)-[Cepn])dQ.-(j„Zu-^pn)Jq'

~ if 2' -2 n ~ C2 £/?n) — 2q 1 (CI > Cl epn) ~~ 2c*2 ( C2 > Clepn)< ^ -\ n G Z] n, VZ2n G Z2„.
(5.10)

We take z,„, / = 1,2, such that as « —> oo

z,„ —> £,• strongly in Z, c H2(Q.j), i = 1,2. (5.11)

From (5.10) by considering the limit £ —> 0, /? —» oo, /? —*■ 0 we have to calculate

lim f([a [Cepn] - [C]) dn +J Pe([Cepn])([z„] - Kepn]) dQ

+0',(Cl,Cl epn - Cl) + <grad0lp(Cl^„).^,« - Cl epn)}- (5.12)

Using hypothesis (5.1) and the definition of j°, we have

I fltt+h+mcr^-K]}/* f 1 rKJ+"+*USe/wJ~lsj/
j0([aiCepn]-[C])dQ= lim sup j / fi(t)dtdSl

Jn' JQ' *—0+ A 7[{]+A
h—0

f 1 f[(< c / lim sup — /
■Ai< ^ro X J[Qh—>0

= c j (l + IcndM-ICDrfn. (5.13)
Jq'

'[Cl+h

' {\+\t\")dtdQ
ic\+h

Since H2{£1,) is compactly imbedded into Lq(£lj), q > 1, i = 1, 2, we obtain, since
£2' c Q, and using Minkowski's inequality, [Cepn] -+ [C] strongly in Lq(Cl'), q > 1.
Thus for £—♦ 0, « —» oo, /?—>0

Hm [ 7°([C]. [Ce/>«] - [C]) dtl = 0. (5.14)
JQ'

From (4.8), (4.10)
WPMtnnMvW) < c. (5.15)

Moreover, the compact imbedding //2(£2,) C C°(Q,), i = 1,2, implies that

Kepn] -> [C] strongly in L°°(Q'). (5.16)
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Therefore, we have that

Pe([tePn])([zn]-[tePn])dn

— I (/^([Ccpn]) II/.1 (£)') I |[^n] — [Ce/>n]||L°°(n')

< c\\[zn] - [C]||Loe(a,, + c||tC] - [Mk~(n,). (5.17)

From this inequality we obtain as e —> 0, n —> oo, p —> 0

lim f Pe(Kepn])([zn] - [^pn]) d£l = 0. (5.18)
Jq'

We examine the term &\{C,\Xupn - (1). From assumption (5.2) we easily obtain
cp\(dC/dn) e L'(r), by applying the trace theorem and using the fact that up to an
additive constant <P\(£) = b{£,)dit, (b(£o) finite), where b is a measurable selection
of b. Moreover, O] is regular in the sense of Clarke and therefore 0°(w, z) = <!>', (w, z).
Using assumption (5.2) and the continuity of the trace mapping, we obtain by apply-
ing Proposition 2.3.6 of [7] (see also [3], Proposition 4.3.1)

OK., z) = •?(„. *)-/>(£. g) or = / « (£. g) rfr. (5.19)

But
r /dw az\ r .. if

r i rdw/dn+Adz/dn r /

< / lim j / (l + |/|)<fc = c / ( 1 +
^ Jdw/dn Jr V

dw/dn+kdz/dn
b(t) dt

dw/drt

dw
dn dn

< c
dw I1 + —

lL2(r>

dz
(5.20)

z.2(D

We note that Ci£/)« —1• Ci weakly in H2(Q\) implies that d£icpn/dn —► d^\/dn strongly
in L2(ri) for a Lipschitzian boundary T). Indeed, Ciepn —> Ci weakly in H2(Qi)
implies that C\ePn.i —> Ci./ weakly in //'(Qi) and, because w e //'(Qi) —> w|r e £2(Ti)
is compact and n = {rij} exists a.e. on Y\ where rij is a measurable bounded function,
we get the strong convergence of the normal derivatives on T!. Thus as e —► 0, p —> 0,
n —► oo

limO'1(Ci.Ci£/,«-Ci) = 0. (5.21)
We now examine the term (gradOi/,(Ciep„), z\n - C,\epn). Using the same arguments
as in the previous case, we find using (5.3) that

(gradO^w), z) = J^grad<p\p (^j ^dT
r i rdw/dn+kdz/dn r /

= / lim — / bp(t)dt <c I 1 +
JpA—>0+ k Jijw/ijn Jr \

dw
dn IK' dw/dn

, dw dz ^<C 1 + — . (5.22)
dn v_{r) dn L2(r)
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Thus

| (grad ^\p^\Epn)t Z\n Clepn)

< c

< c

dti epn
i + „

an
dzin dCi

m n
dzXn aCiepn

+ C
LHT)

dn dn
dC, dClepn
dn dn

12 (r)

(5.23)
V(T)dn dn

which implies that as e —► 0, p —»■ 0, n —* oo

lim(gradOip(Cu^„), z\n — C1 e/>«) = 0- (5-24)

Thus (5.12) tends to zero, and this implies with (5.10) the strong convergence of Ci£pn
to Ci in H2(Q.j) for i = 1,2. □

Because of this strong convergence we will also have convergence of Ciepn to Ci in
the C°(Q;)-norm.

6. Related general boundary-value problems and remarks. Analogous results may
be obtained if other types of subdifferential boundary conditions hold. Suppose for
instance that on F, c Tj (2.20) holds and that the remaining boundary conditions on
T i and T2 guarantee the coerciveness of the bilinear forms. We denote by Z, , i = 1,2,
the closed subspaces of //2(Q,-), i — 1,2, defining the kinematically admissible sets of
the plates. The resulting variational-hemivariational inequality is analogous to (2.30)
but with Oi replaced by O',, which is given by (2.26). Again Propositions 3.1 and
4.1 hold and the problem admits a solution. The proof of Proposition 5.1 is slightly
modified since the imbedding //2(Q) —> L°°(r) is compact. Moreover, assumptions
(5.2) and (5.3) can be replaced by the assumptions

TOi^i + m, <?i>i (6.i)
and

Wl<c2(l + m, ft >1, (6.2)
where b'(g) € d<p\(£) and b'p{£) — grad^j.(^). Moreover, instead of (6.2) we may
assume that

<s - &;(<*) € c°(R).
Also, combinations of subdifferential boundary conditions can be dealt with. Sup-

pose, e.g., that on T' c T, and r; ' c r, the plates Q, are subjected to the boundary
conditions' (2.19) and (2.21) on T' and (2.20) and (2.22) on T", respectively, and
that on the remaining parts T'" of their boundaries they are subjected to classical

'Various types of boundary conditions may simplify some parts of the proof. (The proof of Problem 2 is
the most general possible.) For instance, due to the imbeddings c C°(fl) C C°(T) C L°°(r) and
the smoothness of /?£ the part of the proof (3.16-3.23) is superfluous for the variational-hemivariational
inequality (2.30). However, the L'-weak precompactness of {Pc(C,et])} has to be shown in any problem
for which the previous imbeddings do not hold, e.g., for a hemivariational inequality formulated in the
//'-space (see [3], p. 272). This is also the case in our problem if a nonmonotone boundary condition
holds, i.e., if (2.19) is replaced by

M e b\ ( ) = dip, ( ) on T
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boundary conditions which guarantee the coerciveness of the bilinear forms. Then
we may pose the problem in the general form (2.27). We may also define, for / = 1,2,
the convex, l.s.c., and proper functionals

<Pi{Zi) = '
and (p'tizi) e L\T"), (6J)

oo otherwise

and pose the problem again in a form similar to (2.27) but now including the terms
2

(o,(z,) - <£>,-(£,■)) given by (6.3).
/=!

To study this problem we make the same assumptions as in Propositions 3.1 and
4.1 but now for each <!>,. The same proofs (with only slight modifications) as in
Proposition 3.1 and Proposition 4.1 yield the existence of the solution for both the
differentiable and the nondifferentiable case. The strong convergence is shown under
the growth assumptions (5.1) and (5.2), (5.3) where now the latter have to be assumed
for the b\s corresponding to <p, and <p'r i = 1,2. As noticed before, the growth
assumptions with respect to the (p\s may be replaced by (6.1) and (6.2) whereas the
latter may also be replaced by ^ —> b'ip(C) € C°(R).

We may also obtain existence and approximation results if subdifferential condi-
tions hold in fi" c fi,, / = 1, 2, of the following form. Suppose that

fi — ft + f", where f' is given in L2(fi,) and

-7p € dtp'/iCi) onQJ'cO,, (6.4)
J? = 0 on fi, - fi;',

where fi, n T, = 0. Here <p'' is a convex, l.s.c., proper functional on R. It is well
known (cf. [3], p. 91) that (6.4) describes the unilateral contact problem for each
plate (cf. Fig. 3) for a deformable or a rigid support. In this case 0,(z,) in (6.3)
will also contain the term {fQ„ $>"(&) d£2 if <p"{Ci) E L] (fi), oo otherwise}. Again
Propositions 3.1 and 4.1 hold under the same assumptions as before, and analogously
strong convergence may also be shown. In this case b"(£) e d<p"{^) has to satisfy a
relation of the form (6.1) and 6",(^) = grad(p"pi{£) a relation analogous to (6.2) or
that £ —► b'pj{£,) e C°(R). The method developed can also be applied to orthotropic
or anisotropic plates by changing appropriately the bilinear forms a, (C/. z,).

Until now we have considered a laminated plate consisting of two laminae. The
same results can be obtained for a laminated plate consisting of n laminae which

Then we take the Galerkin approximation

i): |Z„, c Z, = Z, n € Z).
<)n

e Z-^tr,
n

where Z, is dense in Z|; (3.14) is replaced by <K\,:nl<>n —► H£\/i)n strongly in L2(T|) and then the ZJ -weak
precompactness of } has to be proved (cf.(3.19-3.24)).
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are bonded by interface laws of the nonmonotone possibly multivalued form (2.4)-
(2.6). Let us assume that all the subdifferential boundary conditions of each plate
are included in a functional <J>; defined as in (6.3), whereas the classical boundary
conditions are taken into account in the definition of the subspaces Z, , i = 1,2
Then we may formulate the following problem.

Fig. 3. On the obstacle problem for a laminated plate

Problem 3. Find (, e Z,, i = 1,2,such as to satisfy the variational-
hemivariational inequality

n-1

£ MCi. Z, - C/) + Y. f JilMi- Wi - [«/)dn'i=i i=i ̂
« n r  

+ £(<D/(z,) - 0,(C,)) >J2 f'(z> - W Vz,- 6 z; (6.5)
;=l (=1

Here [z], = z,+! - z,, / = 1,2,...,n — 1.
Following the same methods as in Propositions 3.1, 4.1, 5.1 we can prove the

following proposition on the assumption that the boundary conditions guarantee the
coerciveness of the bilinear forms. (For example, let us assume for simplicity that
on r; c r, each plate is clamped, i.e.,that (2.28) holds for each plate.) Moreover, we
assume that /, e L2(Q,).

Proposition 6.1. Let (3.2) hold for the /?, corresponding to jj, i = 1,2, and
assume that for each <!>,, i = 1, 2,..., n, assumptions (4.1)—(4.3) hold. Then problem
3 admits a solution.

The proof is the same as the proof of Propositions 3.1 and 4.1 and therefore
is omitted here. Analogously, we obtain the strong convergence and therefore the
convergence in the C°(Q,)-norm, if growth assumptions (5.2), (5.3) and/or (6.1),
(6.2) hold.

It is worth noting that by applying the method of [3], p. 150 all the studied prob-
lems can be formulated as substationarity problems of the potential energy. More-
over, because of the lack of convexity the problem does not have a unique solution.
Each local minimum of the potential energy is a substationarity point and there-
fore a solution of the variational-hemivariational inequality—and therefore of the
problem—but not conversely.
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The method applied to the study of the existence and approximation of the solu-
tion of laminated plates in Propositions 3.1 and 4.1 can also be applied to the study
of the existence and approximation of the solution of more abstract mathematical
problems. We mean here nonmonotone perturbations (expressed in terms of general-
ized gradients) of multivalued equations of the form / - Au e 30(w), i.e., the study
of multivalued equations of the form

f - Au € d<&(u) + d £(u). (6.6)
Here dC, introduces the nonmonotone perturbations of the equation, O is a convex,
l.s.c., and proper functional on a Banach space V, f e V, and A: V —► V is a linear,
bounded coercive operator.
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