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Abstract

This paper presents a method for scene flow estimation

from a calibrated stereo image sequence. The scene flow

contains the 3-D displacement field of scene points, so that

the 2-D optical flow can be seen as a projection of the scene

flow onto the images. We propose to recover the scene flow

by coupling the optical flow estimation in both cameras with

dense stereo matching between the images, thus reducing

the number of unknowns per image point. The use of a vari-

ational framework allows us to properly handle discontinu-

ities in the observed surfaces and in the 3-D displacement

field. Moreover our approach handles occlusions both for

the optical flow and the stereo. We obtain a partial differen-

tial equations system coupling both the optical flow and the

stereo, which is numerically solved using an original multi-

resolution algorithm. Whereas previous variational meth-

ods were estimating the 3-D reconstruction at time t and

the scene flow separately, our method jointly estimates both

in a single optimization. We present numerical results on

synthetic data with ground truth information, and we also

compare the accuracy of the scene flow projected in one

camera with a state-of-the-art single-camera optical flow

computation method. Results are also presented on a real

stereo sequence with large motion and stereo discontinu-

ities. Source code and sample data are available for the

evaluation of the algorithm.

1. Introduction

Scene flow was introduced by Vedula et al. [19, 20] as

the 3-D vector field defined on the surfaces of a scene, de-

scribing the motion of each 3-D point between two time

steps. It can be seen as an extension of optical flow to 3-D,

but optical flow can also be seen as the projection of the 3-D

scene flow onto the images, resulting in a 2-D vector field.

Several methods propose to reconstruct scene flow from the

observed optical flow in one or several cameras [20, 21], but

the reconstruction step is either under- or over-constrained,

and the different cameras may give non-consistent opti-

cal flows. To overcome these problems, we use a min-

imal parametrization of scene flow from the optical flow

and the disparity of a stereo image sequence (this view-

dependent description of scene flow is sometimes called

disparity flow [9]). Since this parametrization is done in

image space, the problem becomes close to an optical flow

estimation problem with more unknown and more measures

per image point.

A lot of research has been carried out on using varia-

tional methods to compute optical flow since the pioneer

work by Horn and Schunck [3]. Some methods changed

the regularization term in order to cope with the presence

of discontinuities in the optical flow [7]. Recent work fo-

cused on reducing the computational cost of these varia-

tional methods, leading to real-time performance [6] or par-

allel implementation [5]. However, the best results in terms

of accuracy were obtained by Brox et al. [4]: they avoid

linearization of the different energy terms in the variational

formulation by warping the image at time t+1 onto the im-

age at time t, and the global energy is only linearized inside

the minimization algorithm. That way, they get rid of the

inaccuracies due to the approximation of the energy terms,

especially the data term which had always been linearized

since Horn and Schunck. This method is also robust to il-

lumination changes, and somewhat handles discontinuities

as well as occlusions, although the latter are not treated ex-

plicitly. A work by Slesareva et al. [17] adapted directly this

variational formulation to estimate dense disparity maps.

Concerning the estimation of scene flow in a variational

framework, one method that does both reconstruction and

scene flow estimation was proposed by Pons et al. [14].

Scene flow estimation is performed by alternatively opti-

mizing the reconstruction and the 3-D motion field. The lat-

ter is done by optimizing an energy that takes into account

the difference between consecutive images re-projected on

the computed 3-D reconstruction. Some recent works pro-

pose joint estimation of disparity and motion : the method

by Dongbo Min et al. [13], which nevertheless misses illu-

mination variations and occlusions handling, and the work

by Isard and MacCormick [11] which only computes inte-
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ger disparity and flow values.

We propose a method that computes scene flow by

joint estimation of the reconstructed surface and the mo-

tion field from a calibrated stereoscopic image sequence.

This method takes into account the epipolar constraint be-

tween images taken at the same time, leading to a mini-

mal parametrization of the scene flow. Only 4 variables are

optimized at each pixel in the reference image: the stereo

disparity at time t, the optical flow, and the disparity at

time t + 1 (the 3-D scene flow can be directly computed

from these variables). This leads to a set of highly coupled

non-linear partial differential equations which are solved by

a multi-resolution algorithm. Our method avoids the lin-

earization of the energy minimized by our algorithm. In-

deed, it was numerically proved by Brox et al. that better

results can be obtained by avoiding the linearization of the

optical flow constraint. This is generalized to every con-

straint in our method. Besides the regularization terms can

handle discontinuities both in the reconstruction and in the

motion field, thus allowing fractures to appear on a smooth

surface during time.

The rest of this paper is organized as follows: We first

explain the mathematical formulation which couples opti-

cal flow and stereo, and the different terms of the energy

that has to be minimized. We then expose the numerical

difficulties tied to this problem, and the global algorithm.

Finally, we present numerical results obtained on synthetic

and real stereo sequences with the associated ground truth,

and a real stereo sequence associated with a non rigid scene

, with large motion and stereo discontinuities.

2. A unified variational formulation for optical

flow and stereo

Our goal is to estimate a dense scene flow, while pre-

serving the surfaces and motion discontinuities. Zhang

and Kambhamettu [22] achieve this by first segmenting the

scene, and then applying piecewise regularization, but that

problem can also be solved by using an appropriate regular-

ization functional.

Since we are working on a stereo image sequence, we

first rectify the two image streams so that the stereo dispar-

ity is along the horizontal direction in the images. Gaussian

smoothing (σ = 1.25) is also applied to the images in order

to avoid numerical instabilities [2]. Our method uses the

numerical benefits of the work by Brox et al.: robustness

to changes in illumination thanks to the constant image gra-

dient constraints, and robustness to stereo or optical flow

occlusions by using the Ψ regularization function.

Let Il(x, y, t), Ir(x, y, t) : Ω ⊂ R
3 be the left and right

image sequences (Ω is the rectangular definition domain of

the images). Let (u, v) : Ω → R
2 be the optical flow in the

left image, and (d, d′) : Ω → R
2 be the disparity maps at

time t and at time t+1. w = (u, v, 1)⊤ is the displacement

vector between the left image at time t and Il at time t + 1,

d = (d, 0, 0) is the displacement between Il and Ir at time

t, and d
′ = (d′, 0, 0) is the displacement between Il and

Ir at time t + 1. As shown in Fig. 1, a point (x, y, t) in Il

corresponds to the points (x+u(x, y), y +v(x, y), t+1) in

Il, (x+ d(x, y), y, t) in Ir, and (x+u(x, y)+ d′(x, y), y +
v(x, y), t + 1) in Ir: the reference for the scalar functions

u, v, d and d′ is always Il at time t. It is clear that the 3-D

reconstruction of the scene point observed at position (x, y)
and time t in Il can be obtained from d, and similarly its

reconstruction at time t + 1 is obtained from u, v, and d′.
Scene flow can then easily be computed as the difference

between these two positions.

time t + 1

Stereo(x + u, y + v) (x + u + d′, y + v)

Left flow Right flow

(x, y)
time t

Stereo

Il (left image) Ir (right image)

(x + d, y)

Figure 1. The motion of a projected scene point between two time

steps as seen in the stereo images, and the associated functions.

We write the global energy as a sum of a data term and a

regularization term:

E(u, v, d, d′) = EData + αESmooth, (1)

α being the regularization parameter. EData is composed
of four terms, corresponding to the four relations between
images shown on Fig. 1:

EData =

Z

Ω

(βflEfl + βfrEfr + βstEst + βsEs)dx. (2)

(x, y) : Ω → βfl(x, y) is 1 for non occluded pixels for the
left optical flow and 0 otherwise. The other β functions play
a similar role for the occlusions associated with each part
of Edata. Let us introduce the following notation for the
difference in intensity and illumination between two image
points:

∆(I,x; I ′

,y) = |I ′(y) − I(x)|2 + γ|∇I
′(y) −∇I(x)|2, (3)

where ∇ = (∂x, ∂y)⊤. The four terms in EData can be
written:

Efl(u, v, d, d
′) = Ψ (∆(Il,x; Il,x + w)) , (4)

Efr(u, v, d, d
′) = Ψ

`

∆(Ir,x + d; Ir,x + w + d
′)

´

, (5)

Est(u, v, d, d
′) = Ψ

`

∆(Il,x + w; Ir,x + w + d
′)

´

, (6)

Es(u, v, d, d
′) = Ψ (∆(Il,x; Ir,x + d)) . (7)



Efl is the data term corresponding to the left optical flow,

and Efr corresponds to the right optical flow, which has

the same vertical component as the left optical flow. Sim-

ilarly, Es corresponds to stereo matching between the left

and right images at time t, and Est corresponds to stereo

matching at time t+1. Pixels in the left image may become

occluded in some of the other three images, and quadratic

penalizers would give them too much influence on the solu-

tion. To solve this problem, we use the Ψ function [1, 4], de-

fined by Ψ(s2) =
√

s2 + ǫ2 (with ǫ = 0.001), which leads

to a robust energy, corresponding to L1 minimization, but

is still differentiable everywhere. The Ψ function is applied

separately to each data term, since pixels may be occluded

by stereo, but not by optical flow, and vice-versa. Besides,

eq. (3) incorporates a gradient constancy assumption in all

data terms [4], so that the energy is also robust to illumina-

tion changes (local or global) and non-Lambertian surfaces

(the stereo terms may be highly affected by such surfaces,

since they use images coming from different viewpoints).

The γ parameter should be set empirically, depending on

how much illumination change is expected in the scene.

We could have considered that the disparity d at time t
is given from the previous scene flow estimation (between

time t − 1 and time t), but if the estimated disparity d con-

tains errors, theses errors would propagate to d′, u, and v.

By minimizing the four data terms, we will be able to re-

evaluate all the components of the scene flow: The 3-D re-

construction (from d), and the 3-D motion field (from u, v,

and d′ − d).
The regularization term is:

ESmooth =

Z

Ω

Ψ(|∇u|2+|∇v|2+λ|∇(d′−d)|2+µ|∇d|2)dx. (8)

By reducing the influence of high gradients of the optical

flow or the disparity on the global energy, the Ψ function

has a different role here: it helps preserving the discontinu-

ities of the functions u, v, d, and d′ [6]. Unlike in the data

term, Ψ is applied to the sum of the gradient norms, since

discontinuities usually appear simultaneously in the dispar-

ity d, the optical flow (u, v), and the disparity flow d′ − d
(except in some special cases, as in the synthetic example

used in the results below).

The effect of the regularization on the 3-D scene flow

should not depend on the orientation of the motion field

with respect to the camera, so the λ parameter should be

set properly to scale optical flow versus disparity flow, but

should not be greater than µ to avoid oscillations during

optimization: λ < h/b, where h is the average distance

from the cameras to the scene and b is the baseline of the

stereo setup. The effect of this parameter will be more reg-

ular disparity flow (d′−d) and smaller discontinuities when

the baseline is smaller. The µ parameter tunes the relative

weight between the initial disparity and the optical flow.

Since the typical discontinuities in both terms observed on

the scene should have the same effect on ESmooth, a good

guess is µ = hs/bS where s is the typical expected magni-

tude (in world units) of the 3-D scene flow, and S a typical

size of the scene: if the typical motion between t and t + 1
is small with respect to the size of the scene, then µ should

be small too.

3. Optimization

3.1. Euler-Lagrange equations

According to calculus of variations, an extremum of

the total energy E satisfies the four Euler-Lagrange equa-

tions, ∇E(u, v, d, d′) = 0, which can be rewritten as

(∂uE, ∂vE, ∂dE, ∂d
′ E) = (0, 0, 0, 0). While being nec-

essary, this condition is not sufficient, and the solutions to

the Euler-Lagrange equations may also be local extrema of

eq. (1). We will see later how a multi-resolution approach

helps solving this problem.
The four equations can be computed the same way, using

the variational calculus tools, and have similar terms. Let us
introduce the following abbreviations:

Ilx := ∂xIl(x + w), Ilxz := ∂xIl(x + w) − ∂xIl(x), (9)

Ily := ∂yIl(x + w), Ilyz := ∂yIl(x + w) − ∂yIl(x), (10)

Ilz := Il(x + w) − Il(x), Ilyy := ∂
2
yyIl(x + w), (11)

Ilxx := ∂
2
xxIl(x + w), Ilxy := ∂

2
xyIl(x + w), (12)

I
t+1

l := Il(x + w) (13)

and similar abbreviations for the right image Ir, as well as

the following scalars: The last of the previous notation is

useful to see the time index in the following equations.

Ψ′

fl = ∂xΨ(∆(Il,x; Il,x + w)) (14)

Ψ′

fr = ∂xΨ(∆(Ir,x + d; Ir,x + w + d
′)) (15)

Ψ′

st = ∂xΨ(∆(Il,x + w; Ir,x + w + d
′)) (16)

Ψ′

div = ∂xΨ(|∇u|2+|∇v|2+λ|∇(d′−d)|2+µ|∇d|2). (17)

By computing ∂uE using a Gâteaux derivative, we obtain:

βflΨ
′

fl·
(

IlxIlz + γ(IlxxIlxz + IlxyIlyz)
)

+

βfrΨ
′

fr·
(

IrxIrz + γ(IrxxIrxz + IrxyIryz)
)

+

βstΨ
′

st·
(

(It+1
r −It+1

l )(Irx−Ilx)+γ
(

(Irx−Ilx)(Irxx−Ilxx)+

(Iry−Ily)(Irxy−Ilxy)
))

− α div(Ψ′

div∇u) = 0, (18)

This equation is composed of a data term, coming from

EData, and a diffusion term in which occurs the divergence

operator. By lack of space we will not show the three other

equations coming from ∂vE = 0, ∂d
′ E = 0, ∂dE = 0 but

are similar to the latter.

The boundary conditions for our problem are the Neu-

mann conditions: ∀f ∈ {u, v, d, d′−d},∇f ·n = 0, where

n is the external normal to the borders of image Il.



In this system of partial differential equations, the four

unknown functions of our system, u, v, d and d′, are highly

coupled, but solving these equations will lead to scene flow

reconstruction.

3.2. Numerical solution

As we explained, the energy is not trivially convex, since

the optical flow constraint was not linearized, and the non-

linearities are present both in the data term and in the dif-

fusion term of the Euler Lagrange equations. This makes

the problem ill-posed, and we cannot use gradient descent

to minimize the energy as in [15]. In order to solve these

highly non-linear coupled differential equations, we use an

incremental multi-resolution algorithm, with fixed-point it-

erations on the solution(u, v, d, d′) to improve it at each res-

olution level. A similar method was proposed by Brox et

al. [4] to solve the optical flow problem. The stereo im-

age pyramids are computed with a down sampling factor η,

0.5 < η < 1 to get a smooth transition between pyramid

levels (we used η = 0.9). The multi-resolution approach

ensures that we converge to a global minimum, as demon-

strated in [12]. This algorithm has been shown to work on

many problems, and was recently improved to get near real-

time performance [6].

The data term in the Euler Lagrange equations, e.g. in

eq. (18), is made of image values and image gradients com-

puted with respect to the reference image Il at time t. This

is equivalent to warping the three other images (Il at time

t + 1, and Ir at times t and t + 1) from the same pyra-

mid level onto image Il at time t, using the current solu-

tion (u, v, d, d′), and computing the data terms from these

warped images and their gradients.

We deal with the non-linearities of the equations at a

given pyramid level by using two nested fixed point itera-

tions, obtained by doing a first order Taylor expansion of

the Euler Lagrange equations to transform it into a linear

system. The inside fixed point iterations compute small in-

crements of the solution (du, dv, dd, dd′), and the images

are re-warped using (u + du, v + dv, d + dd, d′ + dd′) at

each iteration. The outside fixed point iterations update the

full solution (u, v, d, d′). We refer to sec. 3.2 of [4] for full

details on how to compute the fixed point iterations from

the Euler Lagrange (although the referred article concerns

the simpler optical flow problem). The inside fixed point

iterations uses the SOR method to solve the final linear sys-

tem (described in [10]). In this method, the system matrix

is separated in three parts: the diagonal, and the upper and

lower triangular sub-matrices. Consequently, different or-

derings of the lines and columns of the system will yield

different results at each iteration. Our implementation uses

alternatively four different orderings, where the image pix-

els are scanned in four different directions, in order to re-

duce the asymmetry induced by each individual SOR iter-

ation, which is not visible on the optical flow problem, but

induced oriented waves in the scene flow numerical solu-

tion.

The stopping conditions for the two fixed point iterations

are measured from the relative L2 norm between consecu-

tive increments. We used 0.05 as the stopping condition for

the inner fixed point iterations, and 0.01 for the outer fixed

point iterations.

Once the optimization is obtained at a given pyramid

level, that solution is scaled by 1/η, up-sampled to the next

resolution level, and the same process is repeated until the

full resolution is reached.

3.3. Occlusions computation

Occlusions are handled by computing the functions βfl,

βfr, βst, βs at each beginning of the outer fixed point iter-

ation. So we take into account each (u, v, d, d
′

) increment

to compute the occlusions maps. The β functions take the

1 value for pixels non occluded and 0 otherwise, so that for

pixels occluded everywhere, only the regularization term is

kept.

We describe the steps of βs estimation, the other functions

are computed using a similar principle:

• We first warp the disparity d to the right image Ir(., t)
using Z buffering.

• We backwarp this disparity map to the left image

Il(., t), and we add a tolerance (1.5 pixel) to the

remapped disparity.

• We compute the occlusion map by comparing d with

the backwarped disparity with its tolerance.

The update of Edata for each pixel of the reference im-

age is then realized.

3.3.1 Full algorithm with initialization

Since the problem to solve is strongly non-linear and non-

convex, it must be carefully initialized in order to avoid lo-

cal minima which correspond to a wrong solution.

For the optical flow problem [4], and especially when

using a multi-resolution algorithm, the coarsest resolution

can be as small as possible, and the optical flow is usually

initialized to 0. The reason for this choice is that the opti-

cal flow is usually small compared to the image dimensions,

and it is easy to find a reasonable image resolution such that

the scaled down optical flow is below 0.5 pixel, which is

usually enough to ensure convergence to the global mini-

mum.

In the scene flow case, we have a mixed problem: it looks

like optical flow if we consider each camera separately, but

we simultaneously try to solve a stereo problem between

the left and right images. The characteristics of the stereo



problem are very different from those of the optical flow:

the amplitude of the stereo disparity is usually comparable

to image size (it is usually even bigger than the size of the

objects as seen in the images), and there are lots of occluded

areas. For these reasons, many multi-resolution approaches

usually fail on stereo if they start at a very coarse resolution,

and our method will probably equally fail in that situation.

Consequently, we chose to start the scene flow algorithm

at an intermediate resolution, and to initialize the four func-

tions (u, v, d, d′) with non-zero values. First, we initialize

d using a stereo algorithm [8] which computes the disparity

from the highest resolution images (level 1 of the pyramid).

The disparity error of a given stereo algorithm can be easily

evaluated using standard benchmarks [16], and we compute

the pyramid level b such that the downscaled nominal dis-

parity error is below 0.5 pixels. We also compute a pyramid

level a, which is higher (i.e. coarser) than b, so that the ex-

pected optical flow at this level is below 0.5 pixels. We

then solve the optical flow problem – by keeping the terms

of eq. (1) dealing with the left optical flow, which bring us

back to [4] – for the left and the right images separately,

from level a to level b, and we obtain estimates for the left

optical flow (u, v) and the right optical flow (u′, v′). The

initial disparity d is then refined from a level c to the level b
(c is often chosen as being equal to b, but can be chosen by

the user), using the same method and keeping only the terms

dealing with stereo at time t. d′ is initialized by adding the

difference between u′ and u to d, and warping the result to

Il at time t (details are given in Algorithm 1).

Finally, the scene flow estimation algorithm is applied to

the four images, from level b to level 1 of the pyramid. The

full scene flow estimation algorithm, including the initial-

ization phase, is detailed in Algorithm 1.

Algorithm 1 Full scene flow estimation

Ensure: Compute scene flow (u, v, d, d′) from t and t + 1 stereo pyra-

mids (each pyramid has a levels)

Require: a, b, c ∈ N, a > b >= 1, a > c >= b >= 1
u← 0, v ← 0, u′

← 0, v′
← 0

for l = a to b do

(u, v)← left optical flow from (u, v) and level l

(u′, v′)← right optical flow from (u′, v′) and level l

end for

d← stereo from [8]

for l = c to b do

d← disparity at time t from d and level l

end for

d
′

(x + (u, v))← d + u′(x + d)− u

for l = b to 1 do

(u, v, d, d′)← scene flow from (u, v, d, d′) and level l

end for

4. Results and evaluation

Whereas there are numerous datasets with ground truth

for various algorithms in computer vision, the scene flow

problem is probably not mature enough to deserve a proper

evaluation benchmark. However, such datasets exist for

sub-problems of the scene flow: optical flow and stereo.

The standard benchmark for optical flow is the Yosemite

sequence, a flight sequence on a ray-tracer-rendered land-

scape, with flow and depth ground truth. Unfortunately, at

that time a single camera was rendered for the sequence,

and though a second camera could be rendered by using the

depth to warp the first image, the quality would be low, and

the occluded areas would be missing.

For the stereo problem, several datasets are available,

each consisting in 8 view of the same scene, where all the

optical centers are aligned and evenly spaced, and the im-

ages are rectified [16]. Incidentally, these images can be

used to benchmark a scene flow algorithm: imagine a set of

two rectified cameras which observe a static scene, and are

translated along the straight line joining their optical cen-

ters. All those images are present in the stereo benchmark

datasets. However, they represent a special configuration

for the scene flow estimation, since the optical flow part is

strictly horizontal (v = 0), and the disparity maps are the

same (d′ = d), but since our algorithm doesn’t know any-

thing about these, it is still a good benchmark. We took

images 2 and 6 of the Venus, Teddy and Cones datasets as

the stereo pair at time t, and images 4 and 8 as the stereo

pair at time t + 1. Ground truth is given as the disparity

from 2 to 6, and the optical flow is half the disparity.

In order to evaluate our algorithm on a more general

scene flow, we also generated synthetic images of a rotat-

ing sphere (Fig. 2). This scene represents the extreme case

where a 3-D reconstruction will not give any information

about what is happening in the scene, and all the informa-

tion is contained in the scene flow: since the sphere is rotat-

ing, the reconstruction remains identical over time. Besides,

the hemispheres are rotating in opposite directions, which

generates a strong discontinuity in the scene flow, and we

will be able to check if the method properly recovers that

discontinuity.

The evaluation is done by computing the RMS error on

the four maps u, v, d, d′. The optical flow maps (u, v)
are evaluated together, and the disparity maps are evaluated

separately: although they are measured also in pixels, mea-

suring the disparity is more difficult because of the disparity

range and the occlusions. Results of these evaluations are

shown Fig. 3. Fig. 4 compares the angular error of the opti-

cal flow components of scene flow, compared to optical flow

computed using our method or [4]. Fig. 5 shows the result-

ing u, v, d and d′ maps for the ball example, showing that

the discontinuity was properly handled by our algorithm,

and the generated occlusion maps. Figures 6 and 7 present

results on a real stereo pair sequence with large motion and

discontinuities.

For further evaluation of our method, we also provide an



Figure 2. The synthetic sample scene is a rotating textured sphere,

where the two hemispheres rotate separately (top-left, image on

top-right)). The 3-D reconstruction remains unchanged by these

rotations The 3-D motion information is only measurable from the

scene flow: (u, v) (bottom left) and d′ − d (bottom right) show a

scene flow discontinuity allow the vertical meridian.

Dataset (u, v) d d′

Venus 0.31 0.97 1.48

Teddy 1.25 2.27 6.93

Cones 1.11 2.11 5.24

Sphere 0.69 3.73 3.81

Figure 3. RMS error in pixels on the four maps computed by our

scene flow algorithm with the different datasets.

Dataset µof σof µsf σsf

Venus 1.06 1.17 0.98 0.91

Teddy 0.43 0.49 0.51 0.66

Cones 0.66 1.21 0.69 0.77

Sphere 1.50 5.65 1.75 6.07

Figure 4. Mean µsf and standard deviation σsf of the absolute

angular error in degrees of the optical flow component (u, v) of

the scene flow, compared to the angular error (µof , σof ) of the

optical flow computed separately.

OpenCV based implementation of the algorithm, with the

sphere dataset1 (other datasets can be downloaded from the

Middlebury stereo page). The sample code can be used to

compute optical flow, stereo, or scene flow, using the unified

approach presented in this paper.

5. Conclusion

In this paper, we presented a variational framework to

compute scene flow from a stereoscopic image sequence.

1The source code is included in the additional material, and is available

on http://devernay.free.fr/vision/varsceneflow/

Figure 5. Top: the recovered u, v, d, d′ maps for the ball example

(−7 < u < 4, −4 < v < 4, −113 < d < 1, −115 < d′ <

2). Notice the vertical discontinuity in d′, due to the fact that the

reference coordinates are those of the left image at time t. Bottom:

the occlusion maps for the data terms corresponding to left flow,

right flow, disparity at t and disparity at t + 1.

This method couples optical flow estimation with dense

stereo matching by minimizing a global energy. The

method handles discontinuities in the 3-D geometry or in

the 3-D motion vector field, is robust to the illuminations

changes and moreover handles the occlusions due to optical

flow and stereo.

Our method extends the work made by Brox et al. [4]

on accurate optical flow estimation, by adding constraints

due to the epipolar geometry, and we showed that the same

kind of numerical solution can be used to solve both prob-

lems. However, the nature of a disparity map is different

from the optical flow, in the sense that occlusions are larger,

and the disparity range is comparable to the size of the ob-

jects in the image, causing many difficulties to many multi-

resolution stereo algorithms. We thus proposed a two-step

algorithm, where the initial solution is bootstrapped by sep-

arate solutions to the optical flow and the stereo problem,

and that initial solution is then refined by our scene flow es-

timation method. This is the first paper on scene flow which

presents a quantitative evaluation of the method, by compar-

ing the optic flow component of the scene flow with the re-

sults of the most accurate variationnal optical flow method

to our knowledge. Moreover, our experiments showed that

the method is able to handle real stereo sequences with large

motion and stereo discontinuities.

In the near future, we expect to have a mathematical

proof for the convergence of this method, and we will also

work on speeding up the algorithm, probably by porting

some recent work on near real-time variational methods [6]

to solve the scene flow problem. Moreover, we would like

to estimate a deterministic continuous function for the β
coefficients handling discontinuities. Previous work uses a

probabilistic formulation [18], but a deterministic continu-

ous approach could be better integrated into our variational

formulation.



Figure 6. An example with real data (images are 854×854 pix-

els). The time interval between the top and the bottom stereo

pair is 1.5s, resulting in illumination variations, large motion (both

in translation and rotation), and a clear motion discontinuity in

the mouth region. The ranges in pixels for the scene flow com-

ponents on this sample set are u ∈ [−131, 1], v ∈ [−49, 33],
d, d′ ∈ [−122,−39].
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