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Introduction 

The main input in computer vision is the image of a scene, given by the grey level of 

each point of the screen. This determines a real valued measurable function g on a 

plane domain ff~, which, in general, is discontinuous along the lines corresponding to 

the edges of the objects. Other discontinuities of g can be caused by shadows, surface 

markings, and possible irregularities in the surface orientation of the objects. 

For all these reasons, when one wants to regularize g in such a way to eliminate 

the details of the scene which are too small and meaningless, one can expect to obtain a 

better approximation by means of a piecewise smooth function rather than by a globally 

smooth function. 

This motivates the so called "segmentation problem", which is one of the main 

problems in image analysis: find a closed set K, made up of a finite number of regular 

arcs, and a smooth function u on ~ \ K ,  such that 

(S1) u varies smoothly on each connected component of f l \ K ,  

($2) u is a good approximation of g on Q \ K .  

The set K will be the union of the lines which give the best essential description of 

the image. The parameters which make such a description more or less good are the 

way in which (S1) and ($2) are satisfied and the minimality of K, expressed by the 

further requirement that 

($3) the total length of K is sufficiently small. 

For a general treatment of this subject we refer to A. Rosenfeld and A. C. Kak 

[24]. Many problems in image segmentation can be solved by minimizing a functional 

depending on K and u, as pointed out by S. and D. Geman [15] for a similar problem 

defined on a lattice instead of a plane domain. The role of the functional to be 

minimized is to measure to what extent conditions (S1), ($2), and ($3) are satisfied. 
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This variational idea was developed by D. Mumford and J. Shah (see [21] and 

[22]), who proposed the following functional, defined for every closed subset K of (2 

and for every uECI(~\K):  

(o.1) J(u,K)= fn ]Vul2dx + fn (u-g)Zdx + ~I(K) 
\ K  \ K  

where Vu is the gradient of u and ~1 denotes the 1 dimensional Hausdorff measure (see 

[13], 2.10.2). The first term in (0. I) takes condition (SI) into account, the second one is 

related to ($2), and the third one concerns ($3). 

D. Mumford and J. Shah [22] studied the properties of a minimum point (u, K) of 

(0.1), assuming that K is made up of a finite number of smooth arcs which intersect only 

at their endpoints. The existence of such a minimum point, conjectured in [22], was 

proved only under the additional constraint Vu=0 on g2 \K.  For a constructive proof of 

the same result we refer to J. M. Morel and S. Solimini ([19] and [20]). 

Variational methods based on similar ideas are used in edge detection (see [17]). 

Minimum problems for functionals like (0.1) are typical examples of a larger class 

of variational problems, called free discontinuity problems (see [8]), which include a lot 

of interesting situations arising from mathematical physics, where the functional to be 

minimized is the sum of a surface energy and a volume energy (see [5], [6], [7], [12], 

[261). 

For problems of this kind E. De Giorgi and his school have proposed a unified 

approach based on the use of a new function space, named SBV(~2) (see [9] and [2]), 

whose elements admit essential discontinuities along sets of codimension one. More 

precisely, a function uELl(g2) belongs to SBV(•) if and only if its distributional 

derivative Du is a vector measure which admits the Lebesgue decomposition 

Du = (Vu) dx + (u+-u-)Vu ~l]s u, 

where Vu E Ll(f2, R2), S, is the set of all jump points of u, vu is the unit normal to Su, and 

u § u- are the approximate limits of u from both sides of Su (see Section 1 for the 

precise definitions). 

The general method proposed by E. De Giorgi is a typical application of the 

classical direct method of the calculus of variations and consists in the following steps: 

- weak formulation of the minimum problem in the space SBV(g2); 

- proof of the existence of a minimum point in SBV(g2) by relying on a general 

compactness and semicontinuity theorem due to L. Ambrosio [1]; 
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- study of the regularity properties of the solutions, such as the smoothness of the 

discontinuity set S, and the differentiability of the solution u on its continuity set 

f~\Su.  

In our case, the weak formulation of the minimum problem for (0.1) is the 

minimum problem in SBV(f~) for the functional 

(0.2) J(u)=flVul2dx+f(u-g)2dx+ el(s). 
For simplicity we shall assume that f~ is a rectangle and that Igl~<l a.e. in ft. 

Using the lower semicontinuity theorem of L. Ambrosio, mentioned before, it is 

easy to prove that the functional (0.2) achieves its minimum on SBV(f~). 

The aim of this paper is to prove that the functionals (0.1) and (0.2) have (essential- 

ly) the same minimum points and that these points can be approximated by the 

solutions of more elementary minimum problems of the same kind, with an additional 

constraint on the number of arcs which compose the set K. 

To be precise, for every k fi N we consider the functional 

fo fo (0.3) Jk(U;71 ..... 7k)= IVu[2dx + (u-g)2dx + ~2(Ti) ,  
\ K  \ K  i= 1 

where 71 ..... 7 k are Lipschitz maps from the interval [0, 1] into the rectangle ~ ,  

k 
K = 13 7i([0, 1]), 

i=l  

2(y i) is the length of the curve ),i, and u E H I ( f ~ \ K ) .  

The functional Jk presents the energy (0.1) in a parametric form which seems to be 

more suitable for the numerical analysis of the problem. 

By using the Ascoli-Arzel~ Theorem, it is easy to prove that for a given k ~ N the 

functional (0.3) attains its minimum value. For a similar problem, where the bound k is 

imposed on the number of the connected components of K, we refer to T. Richardson 

[23]. 

Our main results are given by the following theorems, which we consider a first 

step in the direction of the proof of the conjecture of D. Mumford and J. Shah [22] on 

the existence of a minimum point (u, K) of the functional (0.1) with K composed by a 

finite number of regular arcs. 

THEOREM 0.4 (Existence Theorem). The functional (0.1) attains its minimum. 
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Moreover the minimum values o f  (0.1) and (0.2) are equal and are achieved at 

(essentially) the same minimum points, in the following sense: 

(a) i f  u E SBV(f~) is a minimum point o f  (0.2), then (u, S,) is a minimum point o f  

(0.1) and ~ I ( S , \ S , ) = 0 ;  

(b) if(u, K) is a minimum point of(0.1), then u (arbitrarily extended to Knf~) is a 

minimum point of(0.2) on SBV(Q); moreover S , ~ K  and ~I (K\Su)=O.  

TrIEOREM 0.5 (Convergence Theorem). For every kE N  let (uk;? 1 .. . . .  7~) be a 

minimum point for  (0.3). Assume that the sets 

k 
i 

K k = LI )'k([0,1]) 
i= 1 

have no isolated points. Then there exists a subsequence of  (uk, Kk) which converges to 

a minimum point (u, K)  o f  (0.1) in the following sense: 

(a) Kk--~K in the Hausdorff  metric, 

(b) uk--+u strongly in L~(Q), 

(c) Jk(uk; ;'~, k __, .... 7k) J(u,K).  

TrIEOREM 0.6 (Approximation Theorem). For every minimum point (v, H)  o f  (O. 1) 

there exists a sequence (v~;q0~ . . . . .  q~) such that, if  we set 

k 
i H~ = tJ ~0~([0,1]), 

i=1 

then 

(a) H~--~H in the Hausdorf f  metric, 

(b) vk--->v strongly in L2(f~), 

(c) Jk(vk," cpk,l .... rp~ )--->J(v, H),  

(d) gft(HAHk)--->O, where A denotes the symmetric difference o f  sets. 

The first proof of the Existence Theorem 0.4 was obtained by E. De Giorgi, M. 

Carriero, and A. Leaci [10] by relying on a Poincar6--Wirtinger inequality for SBV(t)) 

and on regularization techniques developed for the study of minimal oriented bound- 

aries. 

The proof we shall give in this paper is limited to the dimension 2 and is based on 

completely different ideas and techniques. The (~Lessential) closedness of S, will be 

obtained from the following elimination lemma, whose statement was suggested to us 

by E. De Giorgi. Let us denote by ~r=o(s the length of the shortest side of the 

rectangle ft. 
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LEMMA 0.7 (Elimination Lemma). There exists a constant fl>0, independent o f  f2 

and g, such that, i f  u is a minimum point in SBV(f2) for the functional (0.2) and 

Dn=D(xo, R), O<R <min{1, or}, is any disc with Xo E (2 and 

~ l ( s  u n DR) < fiR, 

then S,, fl D(xo, R/2)=•. 

The (Y(l-essential) closedness of S, is now an easy consequence of the Elimination 

Lemma and of the following well known result of geometric measure theory (see [13], 

2.10.19(4)): if ~ ( E ) < + ~ o ,  then 

lim ~(I(END(x' Q)) -- 0 
Q--,o + 20 

for ;7(1-a.e. x E R2~E, where D(x, O) denotes the open disc with center x and radius 9. 

In Theorem 0.5 the proof of (c) follows from the Approximation Theorem 0.6, 

which is based only on the Elimination Lemma 0.7 and on the fact that the set Su is 

(y(l, l) rectifiable in the sense of H. Federer (see [13], 3.2.14). 

Property (b) of Theorem 0.5 follows easily from (a) and (c). As for (a), the most 

delicate point is to prove that the Hausdorff measure Y(~ is lower semicontinuous on 

the sequence (Kk), i.e. 

(0.8) ff(l(K) ~< lim inf ff(l(Kk). 
k---~ o~ 

This property is clearly false for an arbitrary sequence of compact sets (Kk) which 

converges to K in the Hausdorff metric (see example (5.1)). 

To prove (0.8) we use the fact that our sets Kk satisfy, uniformly with respect to k, 

the concentration property introduced in the definition below. The proof of this fact is 

based on a refinement of the methods used in the proof of the Elimination Lemma. The 

same proof will show that the set K corresponding to a minimum point (u, K) of (0.1) 

enjoys the concentration property. This result improves the statement of Lemma 0.7, 

which can also be seen as a consequence of the concentration property. 

Definition 0.9. Let B be a Borel subset of (2. We say that B satisfies the concentra- 

tion property in g) if for every e>0 there exists a=a(e)>O such that, if Dn=D(xo,R) is 

any disc contained in f2 with :Co E B and 0 < R < l ,  then there exists a disc D=D(x, r) 

contained in DR such that 
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diam(D) ~> a diam(DR), 

~l (D OB) I> ( l - e )  diam(D). 

Roughly speaking, this property says that any disc centered on B contains a 

subdisc, with comparable diameter, where B is concentrated. 

To obtain our inequality (0.8) we use the following lower semicontinuity result. 

LEMMA 0.10 (Lower Semicontinuity Lemma). Let (Kk) be a sequence of  closed 

subsets o f  ff~ which converges in the Hausdorff  metric to a closed subset K o f  O. 

Assume that the sets Kk satisfy the concentration property in f2 (Definition 0.4) 

uniformly with respect to k (i.e. with a(e) independent o f  k). Then 

(0.11) gE~(K fl f2) ~< lim inf gE~(K k fl s 
k----) ~ 

The proof of (0.8) can now be concluded by using a reflection argument which 

yields ~ ( K f l  af~)=0. 

A short insight into the main proofs. It can seem redundant to give now, in a 

particular case, an idea of the techniques which we shall use in the next sections. 

However, we think it necessary in order to help the reader to orient himself in the 

rather technical proofs and to distinguish what are the main arguments. What makes 

the proofs long is first the lack of regularity of the set of "boundaries" K: for instance, 

each integration by parts has to be made cautiously. A second difficulty, classical in 

geometric measure theory, arises from the complexity of the possible K, which necessi- 

tates the localization of all estimates and then the use of covering techniques due to 

Besicovitch [4]. Now, all of these drawbacks can be avoided if we consider a particular 

and simple example still presenting the nontechnical difficulties of the general case. We 

announced that most of our results follow from an "elimination" technique whose 

results are summarized in Lemmas 0.7 and 0.10. We shall now give an example of such 

an elimination technique which results in a proof, in a very particular case, of the 

"concentration property".  The kind of estimates used in this particular case give a 

good and short account of the general estimates to be developed in the next sections. 

Suppose that the rectangle f~ contains the square with center 0 and side 2. For any 

integer m~>l let 

m - 1  

Kin= t.J S/ ,  
i=O 
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where S~ denotes the segment on the xraxis with endpoints x1=2i/2m and 

Xl = (2i+ 1)/2rn. 

PROPOSITION 0.12. I f  m is large enough, then the set K=Km cannot be the set of  

the minimizing contours of any function g uerifying Ig(x)l~<l a.e. in ff~. In other terms, 

the set Km is "eliminable" for large m. 

Proof. Let us consider, by contradiction, a function g defined on f2 for which K is 

a miminizing set of contours. Denote, for simplicity, by J(u, Km)=J(u, K) the minimal 

energy associated with g and by J(v, 6) the minimal energy associated with the'empty 

segmentation of g. Thus the function u verifies - A u + u = g  in f 2 \ K  with Neumann 

condition 8u/Sv=O on the boundary of f2 and on both sides of the segments of K. The 

function v verifies the same equation in f2 with Neumann boundary conditions on the 

boundary of f2. 

Let us compute the "energy jump" of the functional J as K is removed. The length 

of K is 1/2, and a straightforward use of Green's formula and of the above equations 

yields 

1 +fo [(IVul%(u-g)2)-(IVvl2+(v-g)Z)]dx J(u, K)-J(v ,  f~) = -2 _ ..\K 

= - - +  ((u+_v+)_(u__v-)) O(u+v) ds, 
2 8v 

where u +, u-, v +, v- are the traces of u and v on both sides of K. Thus 

1 + f ( u + _ u  _) 8v ds. 
(0.13) J(u, K)-J(v ,  (~) = --2 Jr 8v 

Since K is made of finitely many segments, there is no difficulty in applying Green's 

formula. Indeed, by classical regularity theorems, both u and v are C 1, and the normal 

derivatives Ou/Ov and Ov/Ov are well defined on both K and the boundary of f~. The first 

integration is made with respect to the space variable x in f2 and the second one with 

respect to the space variable s in [0, 1]. 

In order to get a contradiction with the minimality of K, it is enough to prove that 

the integral term in (0.13) is greater than - I / 2  for large m. Indeed, the minimality of K 

implies that J(u, K)<.J(v, 6). We shall thus estimate the absolute value of this term. 

Notice first that, by classical regularity properties of the solutions of elliptic equations 

on a smooth domain, there exists a constant C depending only on ~ such that 

IOv/Ovl<<.c. 
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Let us now estimate the jump u + - u -  of u across K. We shall do it, without loss of 

generality, for the points of the first segment S ~ of K, corresponding to the interval 

[0, 1/2m]. Let D be the disc with center 0 and radius 1/2m. 
We begin by estimating the energy of u inside this disc. Set K'= (K tJ 8D) \S  ~ and 

u'=O in D, u'=u outside D. This defines a new segmentation (u ' ,K ' )  and, by the 

minimality of (u, K), we have J(u', K')~J(u, K). By a straightforward calculation, from 

this inequality we obtain that 

folVul= dx <~ 2:r n 2n -+-  <~ 
2m (2m) 2 rn 

Let us finally deduce from this estimate an upper bound for I/2+(x)-/2-(x)l for x in S ~ 

We shall use polar coordinates (Q, 0) around the origin. If 69=1xl, then u+(x) (resp. u-(x)) 
coincides with the limit of u(~, 0) as 0--,0 + (resp. 0---~2rC). Since the circle with center 

0 and radius 0 meets K only at x, by H61der's inequality we have 

I/2+(X)__U_(X)I~(2~rlS)I/2[s 01A 2 -]1/2 -]1/2 

This implies the integral estimate 

s ds \-~: m [ f  D 

hence 

1/2 717 

IVulZ dx <~ m3/2, 

s u + - u - l d s < ~  S-~-- m 1/2" 

Returning to the identity (0.13) proved above, we obtain 

J(u ,K)-J(v ,  f 3 )>~ l -  f x , u+-u -  I O-~v ds >> - 1 Cn 

2 m 1/~ " 

This contradicts the minimality of K if rn is greater than (2czt) 2. [] 

The plan of the paper is as follows: 

- in Section 1 we fix the notation and recall some preliminary results concerning 

the space SBV(~2); 
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- in Section 2 we prove the Elimination Lemma 0.7 and the Existence Theorem 

O.4; 

- in Section 3 we prove the Concentration Property (Definition 0.9) for the set K 

corresponding to a minimum point for the functionals (0.1) or (0.3); 

- in Section 4 we prove the Approximation Theorem 0.6; 

- in Section 5 we prove the Lower Semicontinuity Lemma 0. l0 and the Conver- 

gence Theorem 0.5. 

Acknowledgements. This work began during a workshop on Nonlinear Problems 

Related to Liquid Crystals organized in Trento by I. Tamanini and was completed while 

the second author was visiting the S.I.S.S.A. (Trieste) and while the first and third 

authors were visiting the CEREMADE (Paris). The authors are grateful to E. De Giorgi 

for useful discussions and especially for having suggested the statement of the Elimina- 

tion Lemma. 

w 1 .  P r e l i m i n a r i e s  

Let f~ be a bounded open subset of R 2. By BV(fl) we denote the space of functions of 

bounded variation in Q, i.e. the functions u ELl(E) whose distributional gradient Du is 

(representable as) a bounded Radon measure on f~ with values in R 2. For the general 

theory of functions of bounded variation we refer to [14], [16], [18], [25], [27]. 

Let us fix u E BV(~). We say that x E Q is a Lebesgue point of u if there exists 

a(x) E R such that 

lu(y)-a(x)l dy = O, lim Q-2 

Q--->0 + .]/~D e 

where De(x)=D(x, Q)= {y E R2: ly-xl<q}. 
By Su we denote the singular set of u, defined as the set of all x E Q which are not 

Lebesgue points of u. By the Lebesgue derivation theorem the set Su has Lebesgue 

measure 0 and u=~ a.e. on O \ S , .  Note that S~, as well as the value of~  at each point 

of f l \ S , ,  are uniquely determined by the equivalence class of u with respect to 

equality almost everywhere. 

In the following we shall always consider u as defined everywhere on f l \ S ~  by 

choosing u(x)=~(x) for every x E f l \ S u .  

Since u E BV(~), the set S~ can be written as 

o o  

(1.1) S,,=NU t.J v/.(K.) 
n = l  

7-928182 Acta Mathematica 168. Imprim6 le 6 f~vrier 1992 
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where 2~l(N)=0, ~Pn: R--*R 2 are Lipschitz maps, and Kn are compact subsets of R (see 

[13], Theorem 4.5.9(16)). It is not restrictive to assume that the sets ~p~(K~) are pairwise 

disjoint and that ~Pn is a bijection of K~ onto ~p~(Kn) (see [13], Lemma 3.2.18). 

Moreover, for ~ - a . e .  x E Su there exist two real numbers u-(x), u+(x) and a unit 

vector v,(x) E R 2 such that 

(1.2) u-(x) < u + (x) 

(1.3) lim 0 -2 f lu(y)-u+(x)l dy = O, 
o-~o § Jo~ 

(1.4) lim Q-2 f lu(y)-u-(x)ldy=O, 
Q--,0 + Jo~ 

where D~(x)=DQ(x) 0 { y E R2: ( y - x ,  +v~(x))>0} (see [13], Theorem 4.5.9(22)). It is clear 

that u-(x), u§ v,,(x) are uniquely determined by (1.2), (1.3), (1.4) and do not depend 

on the choice of u in its equivalence class with respect to equality almost everywhere. 

The integral of a vector field q0: f~---~R 2 with respect to the vector measure Du will 

be denoted by 

u cP Du. 

From the trace theorems (see [16], Theorem (2.10)) it follows that, if D is a relatively 

compact open subset of f2 with Lipschitz boundary and S~ N aD has only a finite 

number of points, then 

daD 

for every vector field q~ E C1(/9, R2), where v denotes the outward unit normal to aD. 

The measure Du can be decomposed as 

(1.6) Du = (Du)a +(Du)s, 

where (Du)a is absolutely continuous and (Du)s is singular with respect to the Lebesgue 

measure. By Vu we denote the Radon-Nikodym derivative of (Du)a with respect to the 

Lebesgue measure, i.e. Vu E LI(Q, R 2) and 

= I i  Vu dx (Du)a (B) 

for every Borel subset B of Q. 
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The singular part (Du)s can be further decomposed as 

= ( (u+-u-)v,d~gl+flu(B) (Du)s (B) 
.IB fl S u 

for every Borel subset B of ~2. The measure/3,, introduced in this way, turns out to be a 

bounded Radon measure on f2 with values in R 2 such that 

~ t ( B )  < + ~ => /~.(B) = 0 

(see [1], Proposition 3.1). 

Following [9] and [1], we say that u is a special function of bounded variation if 

/3u=0. The space of all special functions of bounded variation in ~2 is denoted by 

SBV(~2). In other words, u E SBV(f~) if and only if u E BV(f~) and 

(1.7)  fo oU= fo VU  + fs 
for every bounded Borel vector field ~p: ~----~R 2. 

Let us fix u E SBV(fl) and let D be a relatively compact open subset of f~ with 

Lipschitz boundary. From (1.5), (1.6), (1.7) it follows that, if SuNOD has only a finite 

number of points, then 

(1.8) -fDudiv dx+f ou vd e'=fo Vuax+foosu(U+-U-) vudX ' 

for every vector field q9 E C 1(/~, R2). 

Let us fix x0 E g2 and, for every r>0, let Dr=Dr(xo). Let u E SBV(g2) and let S be a 

given Borel set. Given R>0,  with DR_~2, assume that 

(1.9) I IVul: dx+ Y(I(S N D R) < + oo.  

,)D R 

Then for every O<.r<R we have 

(1.10) card(S N OD e) do <~ NI(S N ( D , \ D ) )  < + ~, 

where card(E) denotes the number of elements of the set E (see [ 13], Theorem 2.10.25). 

In particular 
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(1.11) card(S n aDr) < + oo 

for almost every 0<r<R.  

If r satisfies (1.11) and if S,,c_S, we shall consider the restriction of u to the one- 

dimensional manifold a D r \ S ,  composed by a finite number of arcs of circles. This 

restriction will be denoted by 

(1.12) Ur = UlOOr\S. 

From Theorem 3.3 of [1] it follows easily that, under the assumption (1.9), for almost 

every r>0 we have 

(1~13) 

(1.14) 

II r ~ H I ( O D ~ \ S ) ,  

au r 
= Vu'r  YgLa.e. o n  aDr\S, 

ar  

where r(x) denotes the tangent unit vector to aD, at x (oriented counterclockwise) and 

aur/ar denotes the weak derivative of Ur on the manifold a D r \ S .  Therefore 

(1.15) Lz~,~s au, 2d~ 1 ~ Lz~rlVUl2d~l ar 

for almost every r>0. 

We finally point out that, if S is a closed subset of [2 with ~1(S)<+oo and if 

u E C I ( f 2 \ S )  n W 1' l ( f~\S)  f~ L| then u E SBV(f2) and S,~_S (see [10], Lemma 2.3). 

w 2. The Elimination Lemma 

The main purpose of this section is to develop some estimates on the singular set of 

functions u in SBV(f~) which satisfy certain assumptions as happens, in particular, for 

the minima of the functionals that we are considering. 

The estimates in this section will then be used for the proof of the Elimination 

Lemma stated in the introduction. However, they are obtained by a suitable approach 

which presents more technical details than what we really need, but this will be 

required by further applications in the following sections. We consider the functional in 

(0.1) defined for K not necessarily closed and for u E SBV(f2). The functional J can be 

defined formally in the same way by the equality 
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(2.1) J(u,S)=f IVul2dxq-~(u-g)2dxq-ff(l(s) 
(there is no difference between this notation and that used in the introduction, where 

the integrals are taken over Q \ S ) .  In this case we consider pairs (u, S) with 

u E SBV(Q) and S~_(2 with the condition 

(2.2) S , ~ S  

(we prefer to write S instead of K as far as we are not assuming that it has to denote a 

closed set). Of course, for a given u, the functional J will be minimized with respect to 

S by taking S=S,, therefore ~(I(S\Su)=0 for every minimum point (u, S) of (2.1). In 

some sense, u can be considered the only meaningful variable, but we shall find some 

convenience in keeping the possibility to add to Su some sets of one dimensional 

measure zero and to get in this way some other minimizers (u, S). Anyway, we shall 

write sometimes J(u) instead of J(u, S) when S=Su. 

Let fl be a bounded open subset of R 2 and let gELS(f2) with IlgllL~.)~l. The 

minimum problem 

(2.3) min J(u) 
u E SBV(~) 

admits a solution by a lower semicontinuity result due to L. Ambrosio (see [1], 

Theorem 2.1). Moreover, it can be proved, by an easy truncation argument, that each 

minimum point u of (2.3) satisfies 

infg <~ infu ~< sup u ~< supg, 
Q Q Q Q 

hence, in particular, u EL| 

(2.4) 

We are going to establish two properties of the minima of J which will be used as 

assumptions in many of the following statements. 

We shall say that a constant c which appears in an estimate is an absolute constant 

if c does not depend on the data of the problem (in the range of validity of the estimate). 

LEMMA 2.5. Let (u, S) be a minimum point of  J. Then the following integral 

estimate holds: 
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for every disc Dr=D(x~,r) contained in [2 with xoES and 0 < r < l  we have 

(XE) ( IVul 2 dx < cr, 
I j O t  

t.where c is an absolute constant. 

Proof. Let us define 

(2.6) v(x)=(U(X) if x E f ] \ D  r, 
t 0  if xED r. 

Then v E SBV(fl) and So=_(S,,\D,) U aDr, hence 

j(o)  fo [vul2 +x,(s.\o,)+fo ,u-gl2dx +X'(OD)+ f [glZdx. 
\ D  r ~ D  r D r 

Since J(u)<J(v) we obtain 

f~no lVul2 dx + ~l(SunDr) + fnno [U-g[2 dx <~ ~l(OD) + fDrlgl 2 dx ~ 2m + :rr2 <~ Berr' 

which concludes the proof of the lemma with c=3:t. [] 

Remark 2.7. We point out that the condition that the center x0 of the disc Dr 

belongs to S is in no way used in the above argument. So we could establish an 

improved form of (IE) by removing such a restriction. However the form we have 

considered will be strong enough to be used as an assumption in the following lemmas 

and it is satisfied by the minima of other functionals which we are going to consider. 

More precisely, for the functional Jk defined in (0.3) we have the following result. 

LEMMA 2.8. Let (u; Fl, 7 2, ..., ~ )  be a minimum point of  Jk. Then, for 

k 

s = u / ( [ 0 , 1 ] ) ,  
j=l  

property (IE) of  Lemma 2.5 holds. 

We omit the proof because it is formally equal to the previous one. We have just to 

replace Su by S. However, in this case, the condition x0 E S is crucial. In fact, with the 

notation considered in Lemma 2.5, we have now two possibilities: 

(1) Dr contains at least one of the Lipschitz curves which form S; 

(2) aD~ intersects at least one of those curves. 
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In each case the set ( S \ D r )  U 8Dr turns out to consist of at most k Lipschitz curves 

and this fact allows us to get the conclusion of the proof in the same way as before. 

We now write the weak form of the Euler-Lagrange equation satisfied by a 

function u which minimizes J for a fixed S. 

LEMMA 2.9. Let S~_~2 be given and let u ~ SBV(ff2) be such that (2.2) holds and 

for every v ESBV(fl) such that So~_S. Then u satisfies the weak Euler-Lagrange 

equation: 

I u E SBV(f~), S u ~ S, Vu E L2(t2,R2), and 

(EL) ) f VuVvdx+fn(u-g)vdx=O 
Lfor every v E SBV(~) such that S o ~_ S and Vv E L2(~, R2). 

In particular we have u E C l ( Q \ S )  N H I ( ~ \ S )  and 

(2.11) - A u + u = g  in Q \ S  

in the usual weak sense o f  H l ( D \ S ) .  

Proof. Let vESBV(D) with VoEL2(~,R 2) and Sv~_S. For every tER we have 

Su+tv~_ S, hence 

by the minimum property of u. Therefore the function 

t--, falVu+tVvlZdx + fa(u+tv-g)Zdx 

has a minimum for t=0. By differentiating with respect to t we obtain 

f VuVvdx+f(u-g)vdx=O. 

Since Vu E L2(fl, R2), we have u E H I ( Q \ S )  and (EL) clearly implies (2.11). The 

further regularity of u on f l \ S  follows from the classical theory of elliptic equations. [] 



104 G. DAL MASO ET AL. 

In our estimates of the minimum points of (2. I) we shall use the solutions o of some 

auxiliary Dirichlet problems of the form 

( - A v + v = g  in D,, 
(2.12) [v=~O on OD~, 

where D,=D(xo, s) is a disc contained in g2 and ~o E HI(OD,). Now we give some 

estimates for the solution v of (2.12). 

LEMMA 2.13. Let D~=D(xo, s) be a disc contained in if2 with 0 < s < l  and let 

VjEC1(ODs) with II~OI[L| Then the solution v o f  (2.12) belongs to C1(19~) and 

satisfies the estimates 

[VV(X)[ <~ c k(lp) (s-[x-Xo{) -1/2 V x e  D s, 

fa lTvlZd~l ~< c[k(W)]2' 
Ds 

(2.14) 

(2.15) 

where 

(2.16) [k(~0)] 2 = 1 + ( 0~p 2 d ~  1 

aD s W Ja 

and c is an absolute constant. 

Proof. We assume without any restriction that x0=0. Since we have an L | bound 

for o and g, by standard regularity estimates for solutions of elliptic equations we get a 

C 1 bound on the function w which solves 

- A w =  (g - v )  lo, on D, 

w = 0 on aD, 

where D is any disc of radius 1 containing Ds and Io, is the characteristic function of Ds. 

Such a bound is independent of v and Ds. So, if we replace ~0 by ~0-w on ~Ds, we just 

change by a fixed additive constant the value of k0p). Also, if we prove (2.14) and (2.15) 

for o - w ,  we get the desired estimates for v by only adding another constant which does 

not affect the inequalities, provided we make a suitable choice of c. So, writing now v 

instead of v - w ,  the first equation in (2.12) becomes Av=0 in D~. 

After this remark, we start by proving how (2.14) follows from (2.15). Since v is 

assumed to be harmonic on Ds, the function IVvl 2 is subharmonic. So we can estimate 

Vv by using the Poisson's kernel and we find for every x in Ds 
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iVv(x)l 2 ~ < 1  f iVv(y)l 2 s2-lxl 2 d~'(y) 
zzl Jab, six-y[ 2 

<1__1_ ; Vv(v)z(s+lx[)(s-[x[) dgl(y ) 
2zt JaD, "-- s(s- x )2 

<~ 1 r ivy(y)[2 d~l(y) .  
•(s-lxl) J0o, 

Therefore (2.14) follows from (2.15). 

In order to prove (2.15), we set for 0<O<s 

= o-' s ( a. it(o) 

where 8v/80 denotes the radial derivatives of v and Or~Or the transversal derivative. 

Note that, if Vv is a constant function, then for every value of O we would have 

ir(p)=i~(o). For the same reason for every C ~ function v we have that 

(2.17) lim (i,(o) - i , ( e ) )  = 0. 
0---,0 

By easy computations we find 

d i , (~)=2~_, f 82VOVd~(', 
@ Jao, aO 2 80 

-~o i~(o)= 2e-' fa ae a2var oraV d~,=_2o_, f a 02v av d~,+2e_,(ir(e)_i~(o)), 
Do Do 0~'2 ~0 

where the last step follows from an integration by parts on ODe. So we have 

(2.18) d = 2Q -1 I Av ~8--F--~ d~'-2Q-'(i~(0)-i~(Q))" "-@P (i'(e) -i'(e)) ]~o~ ~ 

By (2.17) and (2.18) we see that for every harmonic function v the equality 

(2. I9) ir(e) = i~(e) 

holds for every O<s. Since v is a C ~ function on/)s ,  we can take O=s in (2.19) and 
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therefore 

fa [Vvl2= i'(s)+i~(s)= 2i~(s)<~2 f~ 
D s 01) s 

so (2.15) holds. 

or-r/ =2  aD, ( 0~p ]2d~l  ~< 2 [k0p)] 2, 

[] 

LF.MMA 2.20. Let Ds be as in Lemma 2.13 and let ~pEHI(aD,) with [[~PlIL~(0D,)~I. 

Then the solution v of(2.4) belongs to Ht(Ds) lq Ct(D,) f) C~ and satisfies the estimate 

(2.21) IVo(x)l ck( )(s-lx-xol) VxED,, 

where kOP) is defined by (2.16) and c is an absolute constant. 

Proof. Let 0Ph) be a sequence of functions of C| converging to ~p in H~(aD,) 

and with IJV,htlL.(ao,)~<l. Let us denote by vh the solution of(2.12) with ~p replaced by ~Ph. 

By Lemma 2.13 we have 

IVvh(x)l ck0Ph) (s-lX-Xol) VxE D, . 

Since (Oh) converges to o in HI(D~) and (~Ph) converges to ~p in HI(aDs) we obtain 

IVv(x)l~ckOp)(s-lX-Xol) - ~  a.e. in D s. 

By the regularity theory for elliptic equations v belongs to C~(Ds)NC~ thus the 

previous inequality holds everywhere in Ds and (2.21) is proved. [] 

The final goal of the next lemmas will be the proof of the concentration property 

(Definition 0.4). The proof will be obtained by contradiction, so we prepare some 

auxiliary results which show some consequences of the fact that the concentration 

property does not hold for a set S such that (u, S) is a minimum point for J. Therefore, 

given a subset S of f~ and two positive constants a and e, we say that a disc DR of radius 

R < I ,  contained in Q, satisfies the atomization condition if 

(AC) 

every disc D contained inD R with 

diam(D) I> aR 

satisfies ~ ( S  N D) < (1 - e )  diam D. 

One clearly sees how the assumption (AC) comes (with a suitable choice of the 

constants) from assuming by contradiction that S does not satisfy the concentration 

property. 
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LEMMA 2.22. Let u E SBV(ff2) and let S be a Borel subset o f  ~.  Assume that the 

integral estimate (IE) of  Lemma 2.5 holds for the pair (u, S). Let  DR=D(xo,R) be a disc 

contained in ~ with Xo E S and 0 < R < I .  Assume, in addition, that the atomization 

condition (AC) holds for some 0 < e < l  and 0 < a < l / 4 .  Let Ra =(1-2a)R  and let x be a 

point o f  S fiD(xo, Ra) such that 

(2.23) lim ~t(S f~D(x, 0)) = 1. 
~o__.0 + 2Q 

Then there exists a disc D=D(x, r) contained in DR such that 

(a) 0< r<2aR ,  

(b) card(S n aD)~< 1, 

(c) fa ~u Zd~l<~ faolVul2d~'<~ c ,  
D \ S  ~'t" e 

(d) [u(y)-u(z)[<.c e-l/2r v2 Vy, z E a D \ S ,  

(e) ~l (S flD)~>(1-e) r, 

where c denotes various absolute constants. 

Proof. Let  ro be the supremum of the set of all 0>0 such that D(x, O)~-_DR and 

~1 (S n D(x, 0)) >~ (1 - e) 20. 

By (2.23) we have ro>0, and by (AC) we have 

(2.24) r 0 ~< oR, 

hence D(x, 2r0)~_DR. From the monotonicity properties of the Hausdorff  measure we 

obtain 

(2.25) ffl~ al (S N O(x, ro)) = (1 - e) 2r o, 

and by the definition of  ro we have 

~l(S N D(x, 2to)) < (1 - e) 4r o, 

hence 

(2.26) 

Let us define 

~7(l(S n D(x, 2ro)\D(x, ro)) < (1 - e) 2r o. 
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E 1 = (p E ]r o, 2ro[ : card(S N aD o) ~< 1 }, 

E2 = {e E ]r o, 2ro[ : card(S N aD o) ~ 2}, 

By (1.10) and (2.25) we have 
r2ro 

2lEvi ~< Jr. card(S N aDo) d• < (1 -e )  2r o, 

hence 

(2.27) IEll I> er o. 

By the integral estimate (IE) of Lemma 2.5 we have 

(2.28) fe, [ fao(x,e)lVulZd~l] de <~ fo(x,2,o)lVul2dy<~cro. 

From (1.15), (2.27) and (2.28) it follows that there exists rEEl such that 

faD(x,r)\S d~l <~ fa lVUl2d~l ~ C' ~ 2 D(x, r) e 

which proves (c). Since ro<r<2ro, we get (a) from (2.24), (b) from the definition of El, 

(d) from (c) and from H61der inequality, and (e) from (2.25). [] 

LEbIMA 2.29. Assume that (u, S), De, e, a, Ra satisfy the hypotheses o f  Lemma 

2.22. Assume, in addition, that ~(l(S)<+~ and that S is (~) ,  1) rectifiable. Then there 

exist 

- a family Fi, iEI, ofpairwise disjoint connected open subsets o f  DR, 

-- a family Di=D(xi, ri), i E I, o f  discs contained in De, 

such that 

(a) I is finite or countable, 

(b) 0<r;<2aR, 

(c) SND(xo, Ra)~_NU t.I F i, with ~CI(N)=0, 
iEl 

(d) Fic_Di, 

(e) ~l(aFi)<~cri, 
(f) ~Fi is the union o f  a finite number o f  arcs o f  circles o f  radius less than 2aR, 

(g) card (S N aFi)<.c, 

(h) fa IVulEd~l ~< c '  
ri e 
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(i) lu(y)-u(z)l<~c e-1/Zr~/2 Vy , z E OFi\ S, 

(j) ~ ri << 9 ~l(sn U D i) V H c I ,  
iEH 1 - - e  iEH - -  

where c denotes various absolute constants. 

Proof. Let us denote by N the Borel set of all x E S N D R  where (2.23) is not 

satisfied. Since S is countably (~1, 1) rectifiable and ~l(S)<+oo,  we have ~ I (N)=0  

(see [13], Theorem 3.2.19). 

With every xE ( S \ N ) N D ( x o ,  Ra) we associate a disc D(x, r(x)) which satisfies all 

properties of Lemma 2.22. By the Besicovitch covering lemma (see [4] and [11], 

Chapter III, Lemma 3.1) there exists a finite or countable family (x~)ie t of points of 

( S \ N )  N D(xo, Ra) such that 

(2.30) ( S \ N )  N D(x o, R~) ~ U D(x i, r(xi)), 
iEl  

and for every x E R  2 the number of indices i E I  for which xED(xi,  r(xi)) is less than or 

equal to 9. 

We set ri=r(xi) and Di=D(xi, ri). By condition (e) of Lemma 2.22 we have 

r i <~ (1 --e)  -1 ~al(s  nD/). 

Since each point of R 2 belongs to at most 9 discs Di, for every H ~ I  we have 

9 a,q~l(Sfl U D i ) ,  
iEH r i~  1--e iEH 

which proves (j). 

The last inequality shows in particular that 

~ ri< +oo. 
i~.l 

Therefore it is possible to well order I so that 

j ~ i  => rj>~ri. 

We prove that each disc Di meets at most 80 discs Dj with j<i.  To this aim, let 

I,= 
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For eachjEIi we have rj~ri, hence 

meas(Di) ~< meas(Dj n D(xi, 3ri)). 

Since each point of D(xi, 3r~) is contained in at most 9 discs Dj and each point of 

Di=D(xi, ri) is contained in at most 8 discs Dj, we have 

card(/,.) meas(Di) ~< 9 meas(D(x i, 3ri)\D(x i, O)+8 meas(D(x i, r/)) = 80 meas(D i) 

which yields card(Ii)<~80. 

For every i E I we now define 

Fi= D i \ U / )  j. 
j<i 

Then (d) is trivial and (c) follows from (2.30) and from Lemma 2.22 (b). Condition (f) 

follows from the fact that Di meets at most 80 discs Dj withj<i ,  while (e) comes from 

the elementary inequality 

(2.31) ff(l(/)iNaDj) <~ ~ l ( a D j )  = 2ytr i for rj>~r i. 

The estimates (b), (g), and (h) follow from the corresponding estimates (a), (b), and (c) 

in Lemma 2.22. 

Let us prove (i). Take two points y, z in aFi \S .  Now y is in some aDj, j<.i, and u 

has a single jump point on this circle by Lemma 2.22. Therefore there exists a point y* 

on (aDjflaDi)~S such that u has no jumps on the arc of aDj contained in/)/ joining y 

and y*. By the estimate (c) of Lemma 2.22 and by HOlder's inequality we have 

lu(y)- u(y*) I <~ c e-1/2 [ ~1 (/)i n aDj.)] 1/2, which, together with (2.31), yields 

(2.32) lu(y) -u(y*) ] <. ce-tl2r~/2. 

Similarly we find a point z* on a D i \ S  such that 

(2.33) lu(z) -u(z*) [ ~< ce-l/2r~/2. 

By condition (d) of Lemma 2.22 we have also 

(2.34) lu(y*)  - u ( z * )  I ~< ce-l/2r~/2. 

Inequality (i) follows now from (2.32), (2.33), and (2.34). 

The sets Fi we have constructed may be disconnected. In this case we split each of 

them into its connected components (whose numbers can be bounded a priori by an 
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absolute constant) and to conclude the proof of the lemma we have only to relabel this 

new family of connected open sets. [] 

LEMMA 2.35. Let u E SBV(ff~) NL=(ff~), with Vu EL2(f~, R2), and let Ds=D(xo, s) be 

a disc such that 0<s<l,/5~cff~, card(SuNaDs)<+oo, and 

(2.36) f (s-lx-xoD-V2dy(l(x) < +oo. 
./s u flDs 

Let ~p E Hi(aDs) with ]Iv][L~(~D,) ~< 1 and let v be the solution of  (2.12). Then 

(2.37) fo (vo-vu)vo, = f " + -" ~176 tu - u  ) .  d~(l + ( v -g ) (u -v )dx  + ~,  
s dSuflDs ~ V u  JDs 

where the remainder ~ satisfies the estimate 

(2.38) I~1 ~< c k0p) ( u - l p ) 2 d f f (  I , 

L .1 aD s 

u +, u-, v, are defined by (I .2), (1.3), (1.4), k0p) is defined by (2.16), and c is an absolute 

constant. 

Proof. Let (gh) be a sequence in C~(/),) converging to g in L2(D,), with 

[[gh[[s Os) ~<1, and let (~0h) be a sequence in C| converging to ~p in Ht(aD~), with ~( 

IlWhllL~(aOs)~<l. Let us denote by Oh the solution of (2.12) with g replaced by gh and ~p 

replaced by ~Ph. By the regularity theory for elliptic equations we have Vh E C~(1)~). 

By applying (1.8) to cp=VVh we obtain 

fo fo f, (2.39) - UAOhdX + uOVh dg( 1 = Vu Vo h dx + (u +-u ) OVu d ~  1, 
.I OD s O V  s s DsflSu 

where v denotes the outward unit normal to ~D,. Moreover 

(2.40, fo ~h'~--d~l= f lVVhlZdx+f ohAvhdx. 
Ds ~'11 Jo, J D  s 

By using the equation satisfied by Vh, we obtain from (2.39) and (2.40) 

s d 8D s s Ds 

s Dsf~Su 
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hence 

(2.41) 

where 
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fo (Vvh-Vu) Vv h dx= fo (u +-u-) a v-~hd~(l+((Vh--gh) (U--Vh)dx + ~h, 
s sfiSu O$/u JD.~ 

~h = fad 0Ph- u) ~---~h dYfl- 

By the estimate (2.15) of Lemma 2.13 we have 

hence by H61der's inequality [,~a j'11/2 
(2.42) I~hl ~< ck(~h) lu--V'hl2dX' [ �9 

Ds 

By the estimate (2.14) of Lemma 2.13 we have 

IVvh(x)l <- ck(Wh) (s -IX-Xol)-,,2 vx E Ds. 

Vv(x) = lira VVh(X) Vx E D s, 
h--,oo 

by (2.36) and (2.43) we have 

f D  " + - "  ~ v  I (H+--U-)~-~d~ el. tu - u  )~ d ~  ~= lim 
s n S u ~'lt  u h.-..* ~ J D  s n S u ~ " u  

Since (Oh) converges to v in HI(Ds) and Vu EL2(Ds), the other terms of (2.41) pass easily 

to the limit. Thus we obtain (2.37) with 

= lim ~h" 
h...-> oo 

The estimate (2.38) follows now from (2.42) and from the fact that (~h) converges to ~p 

in H l(ODs). [] 

LENNA 2.44. Let DR=D(xo, R) be any disc and let S be any Borel set such that 

Yg1(SNDs)< +oo. Then for almost every sE]0,R[ we have 

(2.43) 

Since u EL| and 
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fsn o, (s-I  x -x0[) - I/2d~! (x) < + oo, 

Proof. Let 2 be the Radon measure on [0,R[ defined by 

Z(B) = n {x R': Ix-x0l 

for every Borel subset B of [0,R[. Then 

fsno (S-lX-Xol)-l/2d~l(x) = fto,st(s-t)-lr2d2(t) 

for every s E ]0, R[. Therefore 

<~ 2Rt/2~.([0, RD 

= 2Rl/2~i(S n D R) < + ~,  

which implies the thesis of the lemma. 
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[] 

LEMMA 2.45. Assume that (u, S) and Dn satisfy the hypotheses of  Lemma 2.22 

and the Euler-Lagrange equation (EL) of  Lemma 2.9. Assume, in addition, that 

~l(s)<+oo and that S is (~1, 1) rectifiable. Let k>0 and fl>0 be two constants such 

that 

(2.46) ~1(S n D n) < fiR, 

(2.47) 144fl(1 +k) < 1. 

Then there exist a disc Ds=D(xo, s) and a function us E SBV(f2) such that R/2<s<R, 

SNaDs=(~, us=u on ~ 2 \ D  s, S, nDs=f~, and 

where c is an absolute constant. 

8-928182 Acta Mathematica 168. Imprim~ le 6 f~vrier 1992 



114 G. DAL MASO ET AL. 

Proof. First we observe that the atomization condition (AC) is satisfied by S with 

e=l/2 and a=fl. In fact, ifD=D(x, r) is any disc contained in DR with 

then by (2.46) 

diam(D) I> fl diam(DR) = 2fiR, 

~l (S  tq D) ~< ~ l (S  N D R) < fir ~< 2 diam(D). 

Let Fi and Di=D(xi, ri), iEl, be the families of sets given by Lemma 2.29, with 

e=l/2 and a=fl. Let us denote by Ek the union of all intervals with endpoints 

[xil-(l+k)ri and Ixi[+(l+k)ri. Then by (2.46), (2.47), and by condition (j) of Lemma 

2.29 we have 

IEkl <<. 2(1 + k) ~ r i ~ 36(1 +k) ~ l ( s  I"1D n) < 36(1 + k) flR < R[4. 
iEl 

Since Ra=Ra=(1-2fl)R>(7/8)R, the set E'=]R/2,Ra[\Ek satisfies IE'I>-R/8. 
By the integral estimate (IE) of Lemma 2.5 we have 

so there exists a Borel set E~_E', with IE]>-R/16, such that 

(2.49) f IVul2d~ ~-< 16c VsEE. 
Ja Ds 

Let N be the Borel subset of DR which appears in condition (c) of Lemma 2.29. Since 

~l(N)=0,  we have 

(2.50) NnaD,=f3  for a.e. sE]0,R[. 

From (1.15), (2.49), (2.50), and Lemma 2.44 it follows that there exists s E E such that 

(2.51) NNaD~ = f3, 

(2.52) fs a u  2 d ~  l 
f3Ds\S ~ ~ C, 

fo (S--lX--X~ < +~" 
Ds 
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Since s~Ek,  for every i s  we have 

(2.53) dist(Fi, aD,) >i dist(Di, OD,) >>- kr r 

From (2.51), (2.53), and from condition (c) of Lemma 2.29 it follows that 

SHOD, = (3, 

so (2.52) yields u ~ ~l(0D~) and 

fo Ou 2 d ~ t  (2.54) 0r ~< c. 
Ds 

Let us denote by o, the solution of the problem 

( - A v , + v  s = g  in D s, 

(2.55) I o , = u  on OD,. 

By Lemma 2.20 and by (2.54) we have v, E C~(D,)O C~ and 

(2.56) IVv,(x)l <- c(s- lx-xol )  -'~ Vx~  O,. 

Let u, E SBV(f~) be the function defined by 

(2.57) 

Then S, = S , \ D ,  c_ S. 

Let us prove that 

~ v,(x) if x ~ D  s, 

us(x) = Lu(x) if x E ~ \ D  s. 

(2.58) 
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, D s D, D, ~Vu 

where u +, u-, and v, are defined by (1.2), (1.3), and (1.4). 

First we write 

(2.59) 

s s 
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By the weak form of the Euler-Lagrange equation (EL), taking v=u,-u, we obtain 

(2.60) fo tvo.-v,) vu =- fo 

By Lemma 2.35, applied with %V=uJoo, we have 

(2.61, Jo. 

From (2.59), (2.60), and (2.61) we immediately obtain (2.58). 

We now decompose the integration domain S, ND,, which appears in (2.58), by 

means of the disjoint sets Fi given by Lemma 2.29. Let 

By (2.53) we have 

H= {i61: FinDs*O}. 

FicDic_ Ds ViEH, 

thus conditions (c) and (d) of Lemma 2.29 give, since S, =_ S, 

(2.62) S,,nD.=N'U U (S.nF~)=N"U U (S.nDi) 
iEH iEH 

where ~1(N')= ~l(N")=O. Therefore the right hand side of (2.58) can be split as 

+ aVs 
(2.63, fs.no (u+-u-)a~v-~d~'=~fs.~r, -u-)~v.d~'" 

Assume for a moment that g s C~(/),). Then we can apply (1.8) with q~=Vv~, D=Fi, 
and we obtain 

(2.64) fs, nFi(u+-u-)aVsd~l=-friVuVvsdx-feuAvsdx+foei u o ~  av 

where v denotes the outward unit normal to aFi. By approximating g in the equation 

(2.55), as in the proof of Lemma 2.35, we can show that (2.64) continues to hold in the 

case g E L| 
Let zi be an arbitrary point of  aFt\S,. Then 
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fo g Or, I : Or, u O~ d~ l = u(z,) I - -  d~(  + | d ~ l ( x )  
~, ov Joe, ol, ja~ [u(x)-u(z')]TYv (x) 

hence (2.63) implies 

fs a~ " (u+-u-)~---d~(' <" c[k-l/z +fl] Z ri' 

unDs CJVu iEH 

By (2.62) and by condition (j) of Lemma 2.29 we obtain 

(2.65) 

f o, = u(zi) Avsax + [u(x)-u(z i ) l~(x)d~e' (x) .  
Jei F, 

By (2.64), (2.65), and by the equation (2.55) satisfied by o, we have 

fs. + avs I (u -u-)-~v d~ = - fF vuVv, ax + s (u-u(z,)) (g-v) ax 
fl ei 

foe, Or, d~l(x)" + [u(x)-uCzi)]-~v (x) 

We recall that [[U[IL.~D,)~I, IIg[lL,~o,)~<l, and [Iv, llL.co,)~<l. Therefore (2.56) and condition 

(i) of Lemma 2.29 yield 

I fs: (U+-U-)~ d~(' <-cfF lVu(x)l(s-lx-xol)-'aax+4meas(F,) 

C r:/2 ~ (s-[X-Xol)-'~d~'(x). 
+ . aOFi 

Since Fic_D~=D(xi, ri), by (2.53) we obtain 

f.s:F, (u" -u-)ff~vud~OV" , <~ck_VZr,/2[meas(D~)],/2[~L.n, 'Vul2d'x] '/z 

+ 4meas(Di) + c k-V2~l(aFi). 

By conditions (b) and (e) of Lemma 2.29 and by (IE) of Lemma 2.5 we have 
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fs + aOs i (U - u - ) - - d ~  <<. c[k-V2+fl] ~(1(S ADs), 
.no, Ovu 

which, together with (2.58), gives the proof of (2.48). [] 

We can easily deduce from the previous lemma the first result of the type of 

Lemma 0.3. The following version is concerned with the case of a general open set 

O~_R 2 and gives an interior regularity estimate. 

THEOREM 2.66. Let (u, S) be a minimum point o f  J with Suc_ S~_Su. There exists an 

absolute constant fl>0 such that, i f  DR=D(xo, R) is any disc contained in f~ with 

0<R<I  and 

(2.67) ~l(S nD R) < fiR, 

then 

(2.68) S flD(x 0, R/2) = f~. 

Proof. We first remark that, since (u, S) is a minimum point of J ,  we have 

~ i (S \S~)=0  (see the discussion at the beginning of this section), hence ~l(S)<+oo 

and S is ( ~ ,  I) rectifiable. Let c be the absolute constant (independent of k and fl) 

which appears in the estimate (2.48) of Lemma 2.45. We can choose k>0 and fl>0 so 

that 144fl(l+k)<l and c(k-~/2+fl)=co<l. We claim that this constant fl satisfies the 

property required in the theorem. In fact, if (2.67) is fulfilled, by Lemma 2.45 there 

exists s E ]R/2, R[ such that, if us is the function defined in (2.57), then (2.48) holds. This 

fact implies, by easy computations, 

(2.69) J(u s, S \ D s ) - J ( u ,  S) <~ (c o-  1) ~'l(S NDs). 

Since (u, S) is a minimum of J and Co< 1, this implies ~I(s N Ds)=O. By (1.7) it follows 

that 

fo fo fo - u div go dx = go Du = goVu dx Vgo E C o (D s, R ). 
s s s 

Since Vu E L2(fl, R 2) by the minimum property of u, we have that u E Hl(Ds) and Vu is 

the distributional gradient of u on Ds. Therefore the Euler-Lagrange equation (EL) 

implies 

- A u + u = g  in Ds 
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in the usual weak sense of HI(Ds), hence u E Cl(Ds) by the regularity theory for elliptic 

equations. It follows that SNDs=~.  Since S~_Su, we have also S n D , = ~ ,  which 

concludes the proof of the theorem. [] 

In the same way we get the analogous result for the minima of the functional Jk 

defined by (0.3). Let (u; 71 . . . . .  ~ )  be a minimum point for Jk and let 

k 
S = LI ~J([0, 1]). 

j= l  

If each function ~J is nonconstant, then clearly S has no isolated points. If some of the 

functions ~/J a r e  constant and at least one, say ~ ,  is nonconstant, then we may obtain a 

minimum point of Jk whose set S has no isolated points simply by replacing each 

constant function ~ with a different constant function with image in yl([0, 1]). There- 

fore it is not restrictive to assume that either S reduces to a single point or S has no 

isolated points. 

THEOREM 2.70. Let (u; yl . . . . .  yk) be a minimum point for Jk. Assume that the set 

k 

s = o y J([0, 11) 
j= l  

has no isolated points. Then there exists an absolute constant fl>0 such that (2.67) 

implies (2.68)for every disc DR~_f2, with 0<R<I .  

Proof. For the proof of Theorem 2.70 we just need to observe that by Lemmas 2.8 

and 2.9 we get (IE) and (EL), so we are in a position to apply Lemma 2.45. Then we 

conclude as before, after pointing out that the number of curves which form S \ D ,  is 

less than or equal to the number of curves which form S because S n OD~= f~. [] 

When f~ is a rectangle, from the interior estimate expressed by Theorem 2.66 we 

can deduce the estimate in Lemma 0.3 which involves also the case of a disc centred on 

a point of aft.  The case of a boundary estimate for a smooth domain f~ would require 

the extension of our methods to the case of operators with nonconstant coefficients. 

Proof o f  Lemma 0.7. Let f2* be the rectangle with the same center as • and sides 

with triple length. We denote by F the union of the straight lines containing the sides of 

f~ and we denote by u* and g* the extensions of u and g to Q* obtained by reflection. It 

is clear that u* minimizes 

* jf~* 
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on SBV(~2*). Moreover S , . \ F  is obtained from Su by reflection and ~t(S~. OF)=0 by 

the trace theorem in BV (see [16], Theorem (2.10)). If DR=DR(xo, R) is a disc centred at 

a point x0 E ~) and with radius R less than the length of the shortest side of f~, then 

DRc_t2* and DR intersects at most four reflected copies of ft. Moreover the intersection 

of DR with any reflected copy of ~ is contained in the reflection of DR N ~2, therefore 

(2.71) ~ ( D  R n S..) <~ 4 ~ ( D  R n Su). 

At this point Lemma 0.3 follows from Theorem 2.66, applied to the functional J* and to 

the minimum point (u*, Su.), provided one fixes the constant/3 four times smaller. [] 

Finally, when t2 is a rectangle, we also have an analogous result to Lemma 0.7 for 

the functionals J ,  defined by (0.3). We recall that cr=o(f~) denotes the length of the 

shortest side of ft. 

THEOREM 2.72. Let (u;y l, ..., F k) be a minimum point for Jk and let 

k 

s = u ~([0, x l) ~_ ~ .  
j=l  

Assume that S has no isolated points. Then there exists an absolute constant fl>0 such 

that, if DR=D(xo, R),O<R <min{1, a/4}, is any disc with XoE (2 and 

then S N D(xo, R/2 )=f3. 

Proof. We use the same 

~(S  n DR) </3R, 

reflection method as in the previous proof, but the 

argument is more delicate in this case. Let f2* and u* be as in the proof of Lemma 0.3 

and let S* be the extension of S by reflection. In general (u*, S*) is not a minimum of a 

functional like Jk on f~*. So, in order to apply the lemmas in this section, we start by 

observing that (u*, S*) satisfies, in f~*, the Euler-Lagrange equation (EL) of Lemma 

2.9 (with g replaced by g*) and the integral estimate (IE) of Lemma 2.5 (only for r<o/4, 

but this is enough for our purposes). 

Property (EL) in f~* follows from the fact that it holds on w and one can trivially 

verify that it is preserved by our extension by splitting the test function o into the sum 

of its restrictions to the reflected copies of fL 

To prove (IE) in t2* we consider a disc Dr=D(xo, r) contained in f2*, with O<r<o/4, 

and we distinguish three cases: 

(1) Dr is contained in one of the copies of f2; 
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(2) D, is contained in a disc D' of radius 2r which intersects two copies of ~ and 

centred on a side of one of them; 

(3) Dr is contained in a disc D" of radius 4r centred on a vertex of the rectangle g). 

In the first case (IE) follows from Lemma 2.8. In the second case one proves (IE) 

by applying the argument used in that lemma to the two half-discs given by the 

intersection of D' with the two copies of ft. In the third case one applies the same 

argument to the four quarters of disc given by the intersection of D" with the four 

copies of fl having a vertex in the center of D". 

So we are in a position to apply Lemma 2.45 to (u*, S*), provided R<o/4. We 

choose the constants k>0 and fl>0 so that 144 f l ( l+k)<l  and c(k-I/2+4fl)=Co<I/4. Let 

DR=D(x o, R), 0<R<min{ 1, o/4), be any disc with x0 E ~ and 

~l(S A DR) <fiR. 

Then DR intersects at most four reflected copies of ~ and the intersection of DR with 

any reflected copy of ~ is contained in the reflection of DR n f~. Therefore 

~gt(S* ADR) < 4~t(S  nDR) ~< 4/~R. 

By Lemma 2.45 there exist a disc Ds=D(xo, s) and a function u* E SBV(ff2*) such that 

R/2<s<R, S* A aDs=O, u*=u* on Q * \ D  s, Su7 AD,=O, and 

E(~*)  ~< c o ~l(S* nDs), 

where, for every Borel subset A of ~* we put 

e A)=f ,v.z,2ax+fA  *Us-g*2aX-fa,VU*,2dx-fa u*-g*)2dx) 
Since S*OD~=G, for every reflected image f~' of Q the set S*A(2'\D~ can be 

expressed as a union of k Lipschitz arcs. By the minimality of u in D, hence of u*ln, in 

f~', we have E(f~')~>0 for every reflected image t) '  of f~. Therefore the inequality 

E(f~*)<<-Co ~1(S* ADs) implies 

E(ff~') ~< c o ~g~(S* nD~) 

for every reflected image f~' of ~2. 

Since D~ intersects at most four reflected images of t), there exists one of them, 

f~', for which 

Y(I(s* A Ds n ~ ' )  >I 1 ~ ( S *  n D~). 
4 
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This implies that 

, . , ( l )  jk(u~, q~ . . . . .  q~k)_jk(u; ~,1 . . . . .  ~,k) ~< co_ ~ ~o,(S, riD), 

where 91 ..... 9k are suitable Lipschitz functions such that S* N t)'\Ds=LIk=l tpi([0, 1]) 

and J~ is the functional which corresponds to Jk in s By the minimality assumptions 

the left hand side of the last inequality is non-negative, hence the hypothesis c0<1/4 

yields ~ ( S *  ND~)=0. Since S* has no isolated points, we conclude that S* NDs=O, 

hence S n D(xo, RI2 )=f3. 

As an immediate consequence of Theorem 2.66 we obtain the following result, 

which holds for an arbitrary bounded open set V~R 2. 

THEOREM 2.73. Let  u be a minimum point o f  J. Then ~1((~r N f~)=0. 

Proof. For A~l-almost every x E ~ \ S ,  we have 

(2.74) lim ~l(s~ nD(x, Q)) 

o__,o + 2~ 
=0  

(see [13], 2.10.19(4)). By Theorem 2.66, if x E f~ satisfies (2.74), then there exists ~>0 

such that Su N D(x, ~)=~,  hence x ~ ~r Therefore ~l-almost every x E f~\S~ belongs to 

f~\~r and this implies ~ ( (S~ \Su)N Q)=0. 

In the same way, when f~ is a rectangle, from Lemma 0.3 we obtain the following 

result. 

THEOREM 2.75. Let  u be a minimum point for  J. Then ~I(S~\S~)=0.  

Remark 2.76. Let u be a minimum point for the functional J. By Theorem 2.73 the 

set ~r N f~ is (~1, 1) rectifiable and X~1(~r N ~ ) <  + oo. If f~ is a rectangle, then S, is (~1, 1) 

rectifiable and x~l(~r by Theorem 2.75. 

We conclude this section with the proof of Theorem 0.4. 

Proof  o f  Theorem 0.4. As we said at the beginning of this section, the minimum 

problem (2.3) for the functional (0.2) admits a solution by Theorem 2.1 of [1]. 

If u E SBV(f~) is a minimum point of (0.2), then ~l(~r by Theorem 2.75, 

thus 

J(u, Su) = J(u, Su) = J(u). 
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If K is a closed subset of [2 with Z I ( K ) < + ~ ,  then there exists a solution z of the 

minimum problem 

rain J(v, K ), 
v E H t ( Q \ K )  

and, by classical arguments, we have zEC~(~ \K)NL~( f~ ) .  As we observed at the end 

of Section -1, this implies that z E SBV(V~) and Sz=_K. Therefore for every v E C 1 ( ~ \ K )  

we have 

J(u, ,.~u) = J(u) <~ J(z) <~ J(z, K) <~ Y(v, K), 

hence (u, S~) is a minimum point of (0.1) and the minimum values of (0.1) and (0.2) are 

equal. 

Conversely, if (u, K) is a minimum point of (0.1), then clearly u E C I ( ~ \ K )  and 

IlullL=r by an easy truncation argument, hence u ESBV(f~) and S , ~ K  as we ob- 

served at the end of Section 1. This implies S~_K. Since the minimum values of (0.1) 

and (0.2) are equal, we have 

J(u, K) = min J(v) <~ J(u) = J(u, S,), 
v E SBV(fJ) 

hence ~I(K)<~1(Su), which, together with the inclusion S ~ K ,  gives ~I(K\S~)=O. [] 

w 3. The concentration property 

In this section we shall use a similar method to the one we have just employed to prove 

the Elimination Lemma. As before, we are going to find a disc D~ such that the level of 

J in a pair (u, S) decreases if one eliminates the part of S contained in D~. The 

construction will now be based on the assumption, leading to a contradiction, that the 

concentration property is not satisfied by a larger concentric disc DR. 

In order to do that, we have to develop some sharper estimates than those 

considered in the previous section. This will be obtained by the use of several technical 

lemmas. 

LEMMA 3.1. Let S be a closed subset o f ~  and let u E SBV(fl) be a function which 

satisfies the Euler-Lagrange equation (EL) of  Lemma 2.9. Let Ds=D(xo, s) be a disc 

such that 0<s<  1,/)~_~, card(S N aD~)<+ ~,  and 

(3.2) f IVu[ 2 d ~  1 < + o~. 

Ja Ds\S 
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Let v E SBV(f~) with v EL| Vv EL2(~, R2), and Soc_S. Then 

, . ,  oa.,,... 

where v denotes the outward unit normal to aD~. 

Proof. Let S Iq ~Ds = {Yi . . . . .  Yk}, and for every/7>0 let cpi, ~ E Co(D(y i, rl))~ O~q~i, ~<~ 1 
on D(y. t/), qh, 7 = 1 on D(y i, ~/2), ID~, ~1~3/~ for i= 1 . . . . .  k. We set 

~o~ = ~ q~j.~, % = (l - ~ )  e, 
i = !  

we define 

~ =  d i s t ( S \  QtD(y i, r/ilL OD,), 

Since 

- A u = g - u  on f 2 \ S  

and the boundary of [2\(SU/)~) is regular in a neighborhood of the support of 

~ E H l ( f ~ \ ( S  U i)~)), we have 

fn\t~,VuV(v~zT)dx+f~u\~, (u-g)v~zTdx=-lJao,\s vTaUd~fl'av 

which, together with (3.4), gives 

I ,. Vu Vv 7 dx + (u-g) v 7 dx = v70v 
s Ds $ 

This implies 

jo r f - vVuVqJ~dx+ ( l -q~)VuVvdx+ (u-g)(1-cP7)vdx= (1-  q%) v--~-v d~ l .  
s JDs Ds Ds 

and we choose xTECo(D(xo, S+6~)) with xT=l in a neighborhood of Ds. Then 

supp(vTg ~) N (f~\Ds)~_f2\(Ds U S). By the weak form of the Euler-Lagrange equation 

(EL) of Lemrna 2.9 we have 

(3.4) f~ VuV(vTx~)dx + f (u-g)vTxTdx=O. 
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To conclude the proof of the lemma it is enough to show that 

(3.5) lim f oVuVgi,~dx = 0 
~7~0 + JDs 

for i= 1 ..... k. By the boundedness of v we have 

fDsUVUVq)itldx, ~3[fll LdD(Yi ,~1) l)2dx]l12[fD(yi, tl, l~u12dx]li2 

which clearly gives (3.5) as a consequence of the absolute continuity of IVul 2. [] 

LEMMA 3.6. Let (u, S), DR, e, a, R~, Fi be as in Lemma 2.29 and let D,, ~p, v be as in 

Lemma 2.35 with 

(3.7) 2aR < s < Ra. 

Assume that S is closed. Then 

, 

(3.8) 

( s - l x - x o l ,  -'/2 IVu(x,I dx + c a r  ~ 

where kOp) is defined by (2.16), 

~o(u)=sup osc u, 
iEl O(F I flDs)\S 

and c is an absolute constant. 

Proof. Let gh, ~h, oh, be as in the proof of Lemma 2.35. By applying (1.8) to q0=Vvh 

we obtain 

(3.9, fs (U+--U-'~V----~'hd~'=--fF VvhVudx-f~ UAvhdx+fa OVhd~'" 
u flFiflD s ~u  if3D s FinD s a(FinD s) a~ 

Let zi be any point of a(F~aD~)\S. Then 
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(3.10) 

ao. d~' = ~" oF. dX'+ i" ao. d~C' 
/d(Z i) [.-u(z;)] 

(FinDs) 012 Ja(FinO, ) Ol: Ja(FiflO s ) O'F 

= U(Zi) fF Aoh dx + f~ [u--u(zi)] aOh d ~  '. 
i n D, O(F i O Ds)\S ~lt 

By (3.9), (3.10), and by the equation of the form (2.12) satisfied by Oh we obtain 

fs ,nFinD , (U +--U-) O~O~-h d~I  = -- fF nD, Vvh Vu dx + fFi no, (u--u(zi)) (gh--Vt') dx 

Ov h + [u-u(z;)]-ffv d~. 
a(FinO)\S 

We recall that [[UIIL| I, [[ghllr=(O,)~ I, [IVhllL=(O,)~ 1. Therefore the estimate (2.14) of 

Lemma 2.13 gives 

(3.11) 

fs. nF i riD, (u+ -- U-) ~ dff( I 
ck(%) fF, (s--lX--XoI) -'/z IVU(X)I dx 

riD s 

+ 4 meas(Fi)+to(u) f~ Ovh d~ I. 
a(Fino,) av 

Since O(Fi n D s ) =  (D s fl OF i ) O (F i 0 aD s) u (OF; n aD s) and ~1 (aFi n aD s) = 0 by (3.7) and by 

condition (f) of Lemma 2.29, we have 

(3.12) L ~Ovh d~t= fo Ovh d~l+~ avh d~( 1. 
(eino.) v .  av 0v snOFi JFinOD s 

By (3.11), (3.12), and by condition (c) of Lemma 2.29 we have 

+ 4 E meas(Fi) + w(u) OF, dX + ( - -  d~' 
;~i ,0ar, av  Jv l  av ' 

where F=Uie~(FinaDs). By the estimates (2.14) and (2.15) of Lemma 2.13 and by 

H61der's inequality we have 
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[~SuflDs (U +--U-)~'U'h dt:~ldvu ~ c k ( ~ ) h ) E f F  NO s (S--lX--Xol)-l/21~TU(X)ldx 

+4Emeas(Fi)+ck(~Oh)affu)[EftiEi L iel DsNOF i (s -[x-xOl)- l /2d~l(x)+[i~l~l (FiNODs)]u2}  " 

Since (VVh) converges to Vv pointwise in Ds and 0Ph) converges to ~p in HI(aDs), by the 

estimates (2.4), (2.14), and (2.36) we can pass to the limit in the integral on the left hand 

side as h goes to + oo. Therefore 

tu  - u ~ : - -  d ~  1 <~ c k ( ~ )  ( s - I X - X o l ) - ' / 2  IVugx)l dx 
uNDs Ol'u N iEl F i D s 

(3.13) 

+4Emeas(Fi)+ck(~)w(u)  (s-lx-xol)-l /2d. '(x)+ .'(FinODs) j ~" 
iEl snoF i 

By conditions (b) and (d) of Lemma 2.29 we have 

4 meas(Fi) ~ c~ <~ caRr i, 

hence 

(3.14) 4 E meas(Fi) ~< caR 
iEI 

~l(S N DR) 

1 -e  

by condition (j) of Lemma 2.29. On the other hand by the same reasons we have 

~1(S N D R) 
(3.15) E ~I(FiNODs)<~c E diam(Fi)<~c E ri <~c 

1-e iEl iEI iEl 

Inequality (3.8) follows now from (3.13) (3.14), (3.15), and from the atomization 

condition (AC) of Lemma 2.22. 

LEMMA 3.16. Let (u,S),DR, e,a, Ra, Fi be as in Lemma 2.29. Assume that S is 

closed and that u satisfies the weak Euler-Lagrange equation (EL) of Lemma 2.9. 

Assume, in addition, that a<~e/8 and IlullL=(o)~ < 1. Then there exists a Borei subset E o f  

]eR/4,Ra[ with IE[>>-eR/8 such that for every sEE there exist an arc o f  circle As 

contained in aDs and a function usESBV(~) such that u,=u on f ] \ D  s, S,sNISs~_A ~, 

and 
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f lVUs[2dx+ffl(Us-g)2dx-S[Vul2dx-fQ(u-g)2dxW2~,l(As) 

- < c ~ S F ~  -~ ~ (s-Ix-x01)- '~ IVu(x)l dx + caR 2 
- riDs 

E l ifil snOFi E 

where Ds=D(xo, s) and c is an absolute constant. 

(3.18) 

Let 

Proof. By (I.10) and by the atomization condition (AC) of Lemma 2.22 we have 

fR ~ card(S fl ODe) d~ ~< ~ t  (S Iq DR) ~< (1 - e) diam(D R) ~< 2(1 - e) R. 
/4 

By (3.18) we have 

E2 = {0 E IRe/4, Ra[: card(S n aDQ) >~ 2} 

El = {Q E ]Re/4, R~[: card(S Iq aDo) ~< 1 } 

21E21 ~< 2(1-e)R. 

Since a<.e]4, we have Ra=(1-2a)R>.(1-(e[2))R, hence 

(3.19) lEd ~> eR/4. 

By the integral estimate (IE) of Lemma 2.5 we have 

fe~ [ foo ,\s lVUl2 d~' ] ds <<" foR lVul2 dx " cR' 

so by (1.15) there exists a Borel set E=__E~, with IEI>-eR/8, such that 

fo Ou 2dffd' fo (3.20) dr <<" IVu[2 d~l <~ 24~ VsEE. 
Ds\S Ds\S g 

From the ( ~ ,  1) rectifiability of S we obtain that condition (2.23) of Lemma 2.22 is 

satisfied for ~l-almost every x E S (see [13], Theorem 3.2.19). Therefore, by subtract- 

ing from E a subset of measure zero, we may assume that (2.23) holds for every s EE at 

the only point (if any) of S n aDs. 
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By Lemma 2.44 we may also assume that 

(3.21) fS (s-lx-xoD1/2dff(l(x)< +oo VsEE. 
nDs 

Let us fix s E E. Since s E E~ there exists at most one point x* E S 17 OD,. Let D(x, r) 

be the disc given by Lemma 2.22 and let y and z be the intersections of the circle 

aD(x, r) with the circle aDs. The points y and z can not belong to S because S n aDs 

contains just the point x*. Therefore properties (a) and (d) of Lemma 2.22 give 

(3.22) 

(3.23) 

ly-z[  ~ c a r  

]u(y)-u(z)[ ~ cE-l/2r 1/2 ~< ce-l/2otl/2g 1/2. 

Since x* is the only jump point u in the circle aDs, from (3.20), (3.22), (3.23), and from 

H61der's inequality it follows that 

lu(x)-u(y)l ~ ce-l/2otl/2g 1/2 (3.24) 

for every point x#:x* in the arc As of the circle aDs containing x* and with endpoints y 

and z. 

We define ~p E HI(ODs) to be equal to u on 8 D s \ A s  and to be the linear interpolate 

between u(y) and u(z) on the arc As. Note t h a t  [l~l[L=taDs)~l because [lul[L.(~)~<l. It 

follows easily from (3.24) that 

lU(X)--~(X)[  ~< ce-l/2al/2Rl/2 (3.25) 

while (3.23) gives 

Vx ~. A s, 

fA 81~ 2 d ~  1 _ [u(y)_u(z)]2 

which, together with (3.21), yields 

(3.26) I 0 ~  2 dfft ~1 ~<-cc. 

Jo , aV e 

We now consider the solution vs of the Dirichlet problem 

(3.27) ( - A v , + v  s = g  in D s, 

vs=~l, on OD s. 
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By Lemma 2.20 we have vs E C l(D~) n C~ Let us E SBV(f~) be the function defined 

as in (2.57). Then S ,~ (S \D~)U  A s. Since S N ODs= {x*}, we have also S,, N/)~=_A~. The 

left hand side of (3.17) is equal to 

namely to 

(3.28) 2Y(I(As)+~ (Vv-Vu)(Vvs+Vu)dx + f (Vs-U)(vs-Zg+u)dx. 
dD s D s 

Let us extend v, to a function of HI(Q)flC~ By applying Lemma 3.1 

with v=v , -u  we obtain 

(3.29) 
s ~\(x*} Ov s 

where v denotes the outward unit normal to 8Ds. 

By Lemma 2.35 we have 

fo s +0o  fo (3.30) (Vvs-Vu) Vv s dx = (u -u - )  av,, dy(l - (Vs-U) (vs-g) dx + ~,  
s uNDs s 

where, by (2.38) and (3.26), the remainder ~ satisfies the estimate 

Therefore (3.29), and (3.30) imply that (3.28) is bounded by 

(u ._u_) .7 ._d~,  +2Wl(As)+ i~p_u[ 0U d~al 
u riDs ~Vu Ds\{X*} 

(3.31) 

+ - ~  L aD~\(x*} 

By (3.20) and by H61der's inequality we have 

fODsN{X*} Ds\{X* } 
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By (3.22) and (3.25) we have 

C (t/__ ~)2 d~tal <<.CAR . 
2~](As) + ~ o,\(x*} 

The last two inequalities imply that (3.31) (and hence (3.28)) is bounded by 

~S " + _ \ ~ V s  ncv,~l ..[_ C, (u - u  )_-7----adt aR. 
u f) Ds 01,F u g 

By Lemma 3.6 and by (3.26) we have that (3.28) is also bounded by 

elC2 ~ fF (s-lX--Xoj)-l/2lVu(x)J dx + cctRz 
�9 il3D s 

+ c---~- ] L , (s-lX-Xol)-X/Z dY(l(x) + RV2 + c , 
r l iEl sNaFi E 

where 

to(u)= sup osc u. 
iEl  O(FinDs)\S 

To conclude the proof of the Lemma we have only to show that 

(3.32) lU(XI)--U(X2)I <~ ce-VZaVZR vz 

for every i E I and for every xl, X2 ~ O(Fi  [7 Ds ) \S .  We distinguish three cases: 
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Case 2. x l , x 2 E a D s \ S .  Then (3.32) follows from (3.24) if both points are in As. 

Otherwise (3.32) follows from (3.20) and from the fact that diam(Fi)<4aR. 

Case 3. x 1 E OFi\(S O 0Ds), x 2 E aDs \ (S  OaF i) or vice versa. Then X 2 E F i ['10Ds, 

hence OFiN ODs has at least two points and since S N aDs has at most one point, there 

exists x3E(OFiNODs)\S. Therefore we can estimate ]u(xO-u(x3)] as in Case 1 and 

]u(xz)-a(x3)] as in Case 2. 

The proof of (3.32) is so accomplished. [] 

LEMMA 3.33. Let u, S, DR, e, a, Ra, Fi, us, Ds, As be as in Lemma 3.16. Then t,here 

Case 1. x l , x2EaFi \S .  Then (3.32) follows from conditions (b) and (i) of Lernma 

2.29. 
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exists s E ]eR/4, Ra[ such that 

(3.34, fo,W~+fo(,,-~,'~x-fo,~u,' 'X-fo(U-~,'~x+~'(A,,<--,-'o'"~, 

where c denotes an absolute constant. 

Proof. Let us denote by ~ the integral with respect to s of the fight hand side of 

(3.34) over the set E given by Lemma 3.16. Then there exists sEE such that 

To estimate ~ ,  we consider separately the different terms of the fight hand side of 

(3.17). As for the first term, with notation from Lemma 2.29, we obtain 

fe[fnoo(s-lx-x~ 

;'[f, ] ~< 2R ~/2 IVul d ~  1 dt 
JO i(lODt 

= 2R1/21 IVul d.x, 
JF, 

hence, putting F=UietFi, we have 

(3.36) 

'x x~ 

<- 2Rl/2 ftJVul dx <~ 2RU2[ i~l meas(Fi) ] u2 I foR lVul2 dx ] l/2 

r q !/2 ] 1/2 

. ~ cal l2R2,  
1-e 

where in the last inequalities we have used the integral estimate (IE) of Lemma 2.5, 
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condition (AC) of Lemma 2.22, and conditions (b), (d), (j) of Lemma 2.29. To treat the 

term 

we introduce the Radon measure 2,. on [0, R[ defined by 

2i(B) = ~l(Of iO {x E R2:Ix-x01 

for every Borel subset B of [0, R[. Then 

f e [ fo ,  noei(s-lx-x~ st(s-t)-lnd2i(t)] ds 

oL[yt'. 
<~ 2Rln2i ([0, RI) = 2Rtn Nl(OFi) <~ cRt/2ri, 

where in the last inequality we have used condition (e) of Lemma 2.29. Therefore 

condition (j) of the same lemma and condition (AC) of Lemma 2.22 yield 

~.7, 2f [foiEl snaF i(s-lx-XO[)-l/2d~l(X)] ds~CRI/2~I(SNDR)~CR3/2"I-E 

From (3.17), (3.36), and (3.37) it follows that 

al/2R2 r + 2 ~1/2R2 
d~ <~ c - - - ~  + c e caR3 +c aR~e <~ c e ' 

so (3.34) follows from (3.35). [] 

We are now in a position to prove the concentration property (Definition 0.4) for 

the minima of J and Jk. The proof of the following result, which is similar to that of 

Theorem 2.66, holds for an arbitrarily bounded open subset f~ of R 2. 

THEOREM 3.38. Let (u, S) be a minimum pair of  J with Su~S~_S~. Then S satisfies 

the concentration property in ~ with a function e-->a(e) which does not depend on the 

data ~, g, u. 

Proof. Since ~l((~r n f~)=0 by Theorem 2.73, it is clearly enough to study the 

case S=Su. Let fl be the absolute constant which appears in Theorem 2.66 and let c be 
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the absolute constant which appears in Lemma 3.33. For every 0<e< l  we set 

(3.39) a(e) = f12e6 
25c 2" 

Then a(e)<e/8 and ce-Za(e)vz<fle]4 for every 0<e< 1. 

Assume, by contradiction, that the concentration property is not satisfied with a(e) 

defined by (3.39). Then there exist 0<e< l  and a disc D(xo,R) contained in g2, with 

x0 E S and 0<R< 1, such that condition (AC) of Lemma 2.22 is satisfied with a=  a(e). By 

Lemma 3.33 there exists s E ]eR/4, R[ such that 

fo, ,,2 x+fo (u,_g)2dx_s lVul2dx_f 
On the other hand, by easy computations, 

(3.40) 

therefore 

fo 'VUs]2dx+fn (Us-g)2dx-fn  ,Vu]2dx- f  (u-g)2"dx+2~t(As) 

J(G)-J(u)+ Ygl(S n D)+ Y(~(A s) >~ g(~(S rl Ds) , 

So Theorem 2.66 gives 

~l(S  N D s) <- tieR/4 <~ fls. 

s n D(x o, s[2) = 0 ,  

which contradicts the assumption x0 E S~ and concludes the proof of the theorem. [] 

As in the previous section, we can consider a version of the previous theorem 

concerned with the minima of the functional Jk defined in (0.3). 

THEOREM 3.41. Let (u;7 t . . . . .  7 k) be a minimum point Of Jk. Assume that the set 

k 

S -- U 7J([0, 1]) 
j=l 

has no isolated points. Then S satisfies the concentration property in Q with a function 

e---~a(e) which does not depend on the data f2, g, u, k. 

Proof. We argue as in the previous theorem. We just need to observe that, if 
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S N OD,=~, then S \ D s  consists of the union of at most k curves. If S fl OD,~Q, then 

SNODs consists of a single point, hence (S\D~)UAs is again made up of at most k 

curves and the total length of (S\D~) UA, is bounded by the length of S \ D ,  plus the 

double of the length of As. Therefore the last inequality in (3.40) still holds for a suitable 

s 6 ]eR/4, R[. So we can prove the theorem by the same argument as above. [] 

The following lemma will be used in the proof of the Convergence Theorem 0.2. 

We recall that o=a(f2) denotes the length of the smallest side of g2. 

LEMMA 3.42. Assume that (u; 71 .. . . .  7 k) and S satisfy the hypotheses of  Theorem 

3.41. Let f2* be the rectangle with the same center as ff~ and sides with triple length 

and let S* be the extension of  S obtained by reflection. Then S* satisfies the concentra- 

tion property in ~* (for discs DR with 0<R<min{1, cr/4}) with a function e--~a(e) which 

does not depend on the data if2, g, u, k. 

Proof. As in the proofs of Lemma 0.3 and Theorem 2.72 we consider the exten- 

sions u* and g* of u and g obtained by reflection. As we already noticed in the proof of 

Theorem 2.72, although u* is not in general, a solution of the corresponding minimum 

problem in g2*, nevertheless the pair (u*,S*) satisfies the Euler-Lagrange equation 

(EL) of Lemma 2.9 (corresponding to ~2" and g*) and the integral estimate (IE) of 

Lemma 2.5 (at least for r<cr/4). 

The proof of the lemma begins as the proof of Theorem 3.38, but now we choose as 

fl the constant which appears in Theorem 2.72. Then we continue by contradiction, 

with the additional requirement that R<a/4. Since (u*, S*) satisfies (EL) and (IE), we 

can apply Lemma 3.33 as before. Therefore we obtain 

E(f2*)+2N~(A~) ~ tieR/4 <<- fls, 

where, for every Borel subset B of Q*, we put 

E(B)= s dx + fs(u*~-g*)2 d x - s  lVu*t2 d x -  f (u*-g*)2 dx. 

As in the proof of Theorem 3.41 we can show that for every reflected image f2' of 

f2 the set ((S*\Ds) UAs) n ~ '  can be expressed as a union of k Lipschitz arcs. By the 

minimality of u in Q, hence of u*la, in f~', we have E(Q')~>0 for every reflected image 

Q' of Q, hence 

E(f~') + 2~1(A, N (2') <~fls. 
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Arguing as in (3.40) and using the minimality of u'Its, in f l '  we obtain 

~(l(s* ADs n (2') <- fls, 

hence by Theorem 2.72 we get 

for every reflected image Q' 

contradiction as in the proof of Theorem 3.38. 

S* flD(x0, s/2) A (2' = 

of f~. This implies S*flD(xo, s/2)=~ and leads to a 
[] 

w 4. Singular sets consisting of rectifiable arcs 

The aim of this section is to show that the functional Jk has a minimum and how a 

minimum of J can be approximated by a sequence of functions in SBV(s which have a 

singular set contained in a finite number of arcs. We begin by restating in a more 

precise way the necessary notation which has already been given in a fast way in the 

introduction. 

We say that a subset K of ~2 is a rectifiable arc if we can find a Lipschitz function y 

from [0, 1] to (2 such that K=v([O, I]); in this case 7 will be called aparametrization of 

K. By length of K we mean the best possible Lipschitz constant of 7, among all 

parametrizations 7 of K. One can easily see, by using the Ascoli-Arzel~ Theorem, that 

one can find a parametrization Y whose Lipschitz constant is equal to the length of K. 

In correspondence of an integer number k we shall introduce the length of a set K 

considered as a union o f k  rectifiable arcs. Such a length will be denoted by 2k(K) and 

will be defined as 

(4.1) 2k(K) = inf L i , 

\ i~l 

where the numbers L i denote the best Lipschitz constants of k parametrizations 7; such 

that 

k 
( 4 . 2 )  K = ~.J 7 ; ( [0 ,  I ] ) ,  

;=1 

and the infimum in (4.1) is taken on all the possible choices of the parametrizations Y; 

for which (4.2) holds. We can again apply the Ascoli-Arzeltt Theorem in order to see 

that, if 2k(K)<oo, then one can find k parametrizations y~,72 .. . . .  7 k, with Lipschitz 
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constants L 1, L 2 ..... L k, such that (4.2) holds and 

k 

(4.3) X Li= ~'k (K)" 
i=1 

Note that (4.1) defines ~-k on all subsets K of ~ and K turns out to be the union o fk  

rectifiable arcs if and only if 2k(K) is finite. Moreover for every K~_s and for every 

k E N one has obvious inequalities of the type 

(4.4) 2k+l(K) <~).k(K), 

(4.5) Yg1(K) ~< ~,k(K). 

Given kEN for every closed subset K of ~) and for every uEHl(Q\K) we define 

(4.6) Jk(U, K)= ~ IVul2 dx + f (u-g)2 dx + )],k(K), 
dfa \K J~Nr 

(4.7) Jk(K) = min Jk(v,K). 
vEHI(~K)  

It is well known that the minimum in (4.7) is achieved at a function u E 

C I ( f l \ K )  n L=(f~) which is a solution of the equation 

(4.8) -Au+u = g in ~ \ K .  

By Lemma 2.3 of [10] we see that, if )~k(K)<+o~, then u is in SBV(fl) and S~_K. 
By combining this fact with (4.4) and (4.5) we see that, i f J  is the functional defined by 

(0.2) and 

(4.9) 

(4.10) 

then 

(4.11) 

for every k E N. 

m E inf J(u), 
u E SBV(fl) 

mk= in(_~(K), 
KGQ 

m ~ mk+ 1 <~ mk 

We use once more the Ascoli-Arzel~ Theorem in order to get the following lemma. 

We recall that the Hausdorff distance h between two sets A and B is defined by 
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h(A, B) = sup d(x, B) + sup d(y, A), 
xEA yEB 

where d(x, A) denotes the distance between x and A. 

LEMMA 4.12. Let (Kh)he N be a sequence o f  subsets o f  s which converges in the 

Hausdorff  distance to some subset K o f  ~ .  Then 

(4.13) 2k(K) <~ lim inf2k(Kh) 
h-.--~ oo 

for every k E N. 

1 2 Proof. For  every h we can find k Lipschitz continuous maps ~h,Yh ... . .  Vkh from 

[0, I] in ~ with Lipschitz constants L~, Lh 2 . . . . .  Lh k such that 

k 

(4.14) ~ L~ = 2k(Kh), 
i = 1  

k 

(4.15) K h = 13 y~,([0, 11). 
i = 1  

By passing to a subsequence we can assume that for every l~i<.k the maps V~ 

converge to some maps ~;. Of course the maps )/ turn out to be Lipschitz continuous 

with a Lipschitz constant L; such that 

Then one has 

i ~  �9 �9 i L --: hm l n f t  h. 
h---> ~ 

k 

K = U y/([0, 1]) 
i = 1  

and the thesis of the lemma is easily verified. [] 

For the next lemma, in view of some application given in the next section, we shall 

assume that (Kh)he N is a sequence of arbitrary closed subsets of ~ with Lebesgue 

measure zero which converges to a closed subset K of ~ in the Hausdorff  distance. Let  

u be the solution of  the minimum problem 

and let Uh be the solution of the corresponding problem for Kh. 
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LEMMA 4.16. With the above notation one has 

(4.17, fo\lvu,edx+fo\(u--g,2dx liminfIIlVuhl'dx§ ] 
h--,| Ldfl\Kh 

Proof. The right hand side of (4.17) is clearly bounded by f~g2dx. Passing, if 

necessary, to a subsequence, we may assume that the lower limit in the right hand side 

of (4.17) is finite and is actually a limit. Let us denote by Wi, h the function equal to the 

partial derivative Diu h o n  ~d~gh and equal to zero o n  Kh. Since (Uh) and (w~,h) are 

bounded sequences in L2(~2), by passing to a subsequence, we can assume that (Uh) and 

(Wi, h) converge weakly in LE(Q) to w and wi respectively. We claim that we have 

(4.18) Diw= w i on f ~ \ K  

in the sense of distributions. The proof of (4.18) comes out easily from the fact that, if 

q~ E ~(~2\K) ,  then 

supp(q0) n Kh = 

for h large enough. So by the weak semicontinuity of the L 2 norm we have 

(4.19) 

f~\rlVUl2 dx + ft~\Klu-gl2 dx<~ ffj\KlVWl2 dx + f~\Klw-gl2 dx 

;o ; Iw,I 2dx + Iw-gl  
i=l 

[] 

~liminf(~f~lWi'hl2dx+fQ \iffi, 

= l iminf(  I IVuh'2dx+f~\rhlUh--g]2dx ) �9 
h---~ \ d f ~ \ K  h 

As an immediate corollary of the two previous lemmas we have the following 

theorem. 

THEOREM 4.20. For every kEN the infimum mk of problem (4.10) is achieved in 
some subset K of (2 which is the union of at most k rectifiable arcs. 

The following result contains the essential difficulties of Theorem 0.6. 

THEOREM 4.21. Let u be a minimum point of the functional (0.2). Then there exists 
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a sequence (uk, Kk) such that 

(a) Kk-->Su in the Hausdorff metric, 
(b) uk-->u strongly in L2(~), 

(c) VUk-->Vu strongly in LZ(f~, R2), 

(d) Jk(uk, Kk)-->J(u), 

(e) Xal(Su AKk)--->O, where A denotes the symmetric difference of sets. 

Proof. Let u be a minimum point of J in SBV(f2). By (1.1) we have the decomposi- 

tion 
or 

(4.22) S u = NO U q~i(Ki) 
i= 1 

where ~ t (N)=0 ,  tp~: R--->R 2 are Lipschitz maps, and Ki are compact subsets of R. 

Moreover we may assume that the sets 9;(/(,) are pairwise disjoint and that each map tp~ 

is a bijection of Ki onto cpi (Ki), hence 

(4.23) ~l(gi (gi)) = fK, IV~~ dt 

(see [13], Theorem 4.2.3(1)). 

Let us fix e>0. By the elementary properties of the Lebesgue measure on R, for 

any i there exists a closed set Ai, composed by a finite number of nonoverlapping closed 

intervals, such that Kic_A~ and 

fA 'VCp,'dt<- fK,'Vcp~'dt+e2-'= ~'(9,(Ki))+e2-~. 

Of course the sets q0~(A~) are rectifiable arcs, contain q~i(K3, and, by the previous 

inequality, we have 

(4.24) ~ . l ( q ) i ( A i )  ) <~ 2k (CPi(Ai)) ~ ~ IVqp,l dt <~ ff(l(qgi(Ki))+e2-i, 
dA i 

where k~ is the number of intervals of Ai. By (4.22) there exists h EN such that 

(4.25) 

Then the set H defined as 

~r tPi i <e .  

h 

H = U tp i (Ai) 
i=1 
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is composed of a finite number of rectifiable arcs and by (4.24) we have 

h 

( 4 . 2 6 )  2k(H) <~ Z [ ~(l(~i(Ki))q'e2-i] <~ ff(l(su)-I-e, 
i=1 

with k=k~+k2+...+kh. Moreover (4.24) and (4.25) yield 

(4.27) ~l (S .  AH)  < e. 

We may assume that d(x,H)<min{1,a} for every xES,,, where o=o(f~) is the 

length of the shortest side of the rectangle f2. In fact, if this condition is not satisfied, 

we have only to add to H a finite number of points of S~ and to increase accordingly the 

number k in the inequality (4.26). 

For every x E S , \ H  we consider the disc D(x) centred in x with radius equal to the 

distance d(x)=d(x, H) from x to H. By the Elimination Lemma 0.7 there exists an 

absolute constant fl>0 such that 

(4.28) Zl(S,  N D(x)) >I fld(x). 

By the Besicovitch covering lemma (see [4] and [IlL Chapter III, Lemma 3.1) 

there exists a finite or countable family (x~)ie t of points of (S~\H)  such that 

S , , \ H  c_ LI D(xi) 
iEl 

and for every x E R 2 the number of indices i E I for which x E D(xi) is less than or equal 

to 9. 

Let us set Di=D(xi) and di--d(xi)=d(x. H). Since, by construction, we obviously 

have 

(4.29) S,, N Di c_ S , , \H,  

from (4.27), (4.28), and (4.29) we obtain 

(4.30) Z di ~ 9fl -l ~ l ( S u \ H )  ~< 9fl -It" 
iEl 

By construction the arcs of circles El= (2 N aD i meet H for every i E I, so we can add 

Ei to one of the k arcs which compose H and we get 

(4.31) ~.k(H U Ei) <~ ~,k(H) + 4:~d r 
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Since the set 

K,=HUUE~ 
i E l  

is closed by (4.30) and the total length of the union of the sets Ei is finite, we can repeat 

this operation countably many times (by using, for instance, Lemma 4.12) and we 

finally obtain that (see (4.31), (4.26), and (4.30)) 

;tk(K,) ~< 2k(H) + 4~ ~ d i <~ ~1(S,,) + (36~fl - 1 + 1) e. 
iEl  

Then K~ is composed by k rectifiable arcs and 

(4.32) 2k(K ~) ~< :gl(S,) + (36~fl-1+ 1)e. 

Let us define 

A~=f~lq U D i. 
iEl  

We consider now the function u, defined almost everywhere on ~2 as 

u~(x)={~(x) ifif x~.A~,xEa~. 

Then u, E SBV(f~) and 

0Vu(x) on ~ \ ( K U A , ) ,  
Vu~(x) = on A~. 

Since Su~_K~UA ~ and K, UA, is closed in t-2 by (4.30), we have Su~_K~, so Vu~ is the 

distributional gradient of u, on ~ \ ( K ,  UA~) (see (1.8)). 

At this point (a) follows from the fact that 

(4.33) h(K, ,.q,,) <~ sup d i <~ E di <~ 9fl -le 
iEl  iEl  

as one easily sees by construction and by using (4.30). Property (b) follows from the 

inequality 

iEl  iEl  

and (c) from the inequality 
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e i E l  D i i E l  

where we have used the integral estimate (IE) of  Lemma 2.5 and (4.30) again. For  (d) 

we have 

\ ( K ~  U A e) Ae Q \ A  e A e 

<<-fQ 'Vu]2dx+f~ (u -g)2dx+f  g2dx+~t(S.)+(36~fl-t+l)e 
\ ( K ,  OA~) f l \ A  e A ,  (4.36) 

~ f lVu12 dx + f (u-g)2 dx + ~el(S.) + meas(&) + (36x3-' +1)~ 

=J (u )  + ~ ~ d~ + (36:tfl-l + l)e<~J(u) + (45xfl-1+ 1) e. 
i E l  

Finally we see by construction that 

S, AK,  c (S,&H) U O OD i. 
i E l  

Therefore from (4.27) and (4.30) we have 

o%"1(S,, AKk) ~< e + 2~ E d~ = (1 + 18fl -1) e, 
iet 

which implies (e). [] 

As an immediate corollary of  (d) we obtain the following result. 

COROLLARY 4.37. We have 

(4.38) m = lim m k, 
k---~ o0 

where m and mk are the minimum values defined in (4.9) and (4.10). 

Proof. From (d) of  the above theorem we have 

m k ~ Jk(Uk, K k) --~ J(u), 

hence from (4.11) we obtain (4.38). [] 

We conclude this section with the proof  of  Theorem 0.6. 
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Proof of  Theorem 0.6. Let (v, H) be a minimum point of the functional (0.1). By 

Theorem 0.4 v is a minimum point of the functional (0.2). Moreover Soc_H and 

~I(H'NSv)=0. Let (uk, KD be the approximating sequence given by Theorem 4.21. 

Since each closed set can be approximated in the Hausdorff metric by a sequence of 

finite sets, for every kEN we can construct a set/Ck, obtained by adding to Kk a finite 

set with at most k elements, in such a way that/(Tk--->K in the Hausdorff metric. Since 

clearly 22k(i~k)<~,~,k(Kk), from condition (d) of Theorem 4.21 we obtain 

lira sup J2k(ltk, gk) ~ J(u). 
k-.oo 

Since the opposite inequality follows from (4.1 I), we have 

J21c(uk, I~k)--+ J(v) = J(v, H). 

Then the sequence (vk, Hk) defined by 

(Vzk, H2k) = (V2k+t, H2k+t) = (Uk, Kk) 

satisfies all conditions of Theorem 0.6. [] 

w 5. The convergence theorem 

The aim of this section is to prove the Lower Semicontinuity Lemma 0.10 and the 

Convergence Theorem 0.5. 

We recall that the Hausdorff measure gt '1 is not lower semicontinuous with respect 

to the Hausdorff metric. A simple counterexample is given by the sequence 

h - I  

(5.1) Kh = O St, 
i=0 

where S~ are the closed segments in R 2 with endpoints 

{ 2i+I ^\  

It is clear that (Kh) converges in the Hausdorff metric to the segment K with endpoints 

(0, 0) and (1,0), but 

NI(K) = 1 > 1 = lim ~l(Kh). 
2 h---,| 
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This is the reason why we need the concentration property in the hypotheses of Lemma 

0.10. 

We remark that in the proof of this lemma (since we are concerned once more with 

an interior estimate) we do not use the hypothesis that f~ is a rectangle. 

Proo f  o f  L e m m a  0.10. We may assume that the lower limit in (0.11) is a limit and 

that 

(5.2) lim ffffl(Kh fl ~'-~) < +oo. 
h---~oo 

For every h E N let us consider the measure/zh defined by 

t~h(B) = ffffl(K h riB) 

for every Borel subset B of  Q. By (5.2) there exists a subsequence of (/~h), still denoted 

by (/~h), which converges weakly* to some positive Radon measure/~, i.e. 

fa~~ lim fa 
for every continuous function q~: f~---~R with compact support in ~ .  Then we have 

/~(fl) ~< lim inf/~h(Q) ~< lim i n f  ~ 1 ( ] ~  h [1 ~"]), 
h~oo h~ |  

so to prove (0.11) it is enough to show that 

(5.3) ~'I(KN g)) ~ # ( ~ ) .  

We shall use the following result, proved in [13], Theorem 2.10.18(1): given t>0, 

suppose that E is a Borel subset of  t) such that for every x E E  there exists a sequence 

of discs D(Xh, rh) with 

(5.4) 

(5.5) 

(5.6) 

then we have 

(5.7) 

r h <~ I/h, 

x E D(x h, r h) ~_ Q, 

lim inf t~(D(xh' r h) ) 
h-~| 2r h 

>~t; 

~ ) ~ t ~ ' ~ ) .  
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The line of the proof of (5.3) is the following: we shall show that for every 0 < e < l  

there exists a Borel subset E of fl with 

(5.8) Yg~(KN f 2 \ E )  = 0 

such that (5.4), (5.5), (5.6) hold with t = l - e ;  this will allow us to obtain from (5.7) and 

(5.8) the inequality 

/~(f~) ~>/~(E) I> (1 - e )  ~ l (E)  ~> ( l - e )  ~I(KN g2), 

which gives (5.3) as e---~0 and concludes the proof of the lemma. 

Let us begin with the proof of (5.8). Since (/~h) converges to/~ weakly* in the sense 

of measures and (Kh) converges to K in the Hausdorff metric, it is easy to see that the 

concentration property of Definition 0.9 implies the following condition on/~: for every 

e>0 and for every disc D~=D(xo,R) contained in f~ with 0 < R < I  and 

(5.9) D(x o, R/4) N K �9 ~ or /~(D(x o, R/4)) > 0, 

there exists a disc D=D(x, r) contained in DR such that 

(5.10) diam(D) >~ a*(e) diam(D~), 

(5.11) /~(D) 1> (1 - e) diam(D), 

with a*(e)=a(e/2)/2. 

In particular, from this condition we can deduce that 

liminf #(D(x, Q))/> (l-t) a*(t) 
p--,o + 20 

for every x EK. This implies that (5.4), (5.5), and (5.6) are satisfied with E = K  and 

t=(1-e)  a*(e), therefore by (5.7) we have 

(5.12) /~(B) >I (1 - e )  a*(e) ~ I (K NB) 

for every Borel subset B of f~ (see also 2.10.19(3) of [13]). 

Let us fix 0 < e < l  and let us denote by E the set of all points xE ~2 for which there 

exists a sequence of discs D(Xh, rh) which satisfy (5.4), (5.5), and (5.6) with t= l  - e .  We 

want to prove that 

(5.13) /~(g2\E) = 0. 
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To this aim, for every h E N we consider the set Eh of all points x E g) for which 

there exists a disc D(Xh, rh) satisfying (5.4), (5.5), and 

(5.14) /u(D(x h, rh)) >1 (1 - - e )  2r h. 

To prove (5.13) it is clearly enough to show that 

(5.15) I ~ ( ~ \ E  h) = 0 

for every h E N. 

By the Besicovitch Derivation Theorem (see [4] and [13], Theorem 2.9.7) we have 

I~(D( x, O) fl Eh) 
(5.16) lim = 0 

e__,o + /u(D(x, 0)) 

for/~-a.e, x E f~ \Eh  (with the convention 0/0= 1). Let x be a point of f~ \Eh  for which 

(5.16) holds and let 0<6<a*(e).  Then there exists 0 < 0 < l / h  such that D(x,o)~_f2, 

g(D(x, 0/4))>0, and 

(5.17) /u( D(x, 0) fl Eh) < 61u( D(x, 0)). 

Since x ~ Eh we have 

(5.18) g(D(x, 0)) < ( l - e )  20, 

otherwise (5.4), (5.5), and (5.14) would be satisfied by D(x, O) and x would belong to Eh. 

From (5.17) and (5.18) we obtain 

(5.19) I~(D( x, O) t3 Eh) < 6(1 --e) 20. 

By (5.9), (5.10), and (5.11), applied with DR=D(x,o),  there exists a disc D(y, r) 

contained in D(x, 0) such that 

(5.20) r >- a*(e) 0, 

(5.21) l~(D(y, r)) >- (1-e)  2r. 

By the definition of Eh we have D(y,r)~_Eh, hence D(y,r)~_D(x,o)nEh. Therefore 

(5.19), (5.20), and (5.21) give 

(1-e)  2a*(e)0 ~</~(D(y, r) ) <<. I~(D(x, 0)fl Eh) < 6(1--e)20, 

which contradicts the assumption 6<a*(e). 
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Since we get a contradiction for /z-a.e. x E s  we have to conclude that 

kt(s This proves (5.15) and concludes the proof of (5.13). From (5.12) and 

(5.13) we obtain (5.8), which concludes the proof of the lemma. [] 

When s is a rectangle, by a reflection argument we obtain the Convergence 

Theorem 0.5 from the Lower Semicontinuity Lemma 0.10. 

Proof  o f  Theorem 0.5. By the compactness properties of the Hausdorff distance, 

we may assume that (Kk) converges in the Hausdorff metric to a closed subset K of (2. 

Let u be the solution of the minimum problem 

(5.22) IVvl ax+fa,,,(o-g)2,lx ], 
and let uk be the solution of the corresponding problem for Kk. Let m and mk be the 

minimum values defined in (4.9) and (4.10). 

By Theorem 3.41 the sets Kk satisfy the concentration property in s (Definition 

0.9) uniformly with respect to k. Therefore, by the Lower Semicontinuity Lemma 0.10 

we have 

(5.23) ~ I (K  n Q) ~< lim inf Y(I(K k n s <~ ~ g2 dx < + oo .  

k----~ e~ 3~ 

Since u E C~(s  L|163 we have u E SBV(s and Su=_Kn s (see [10], Lemma 

2.3), hence 

(5.24) m = min J(v) <~ J(u) <~ J(u, K n s 
o E SBV(Q)  

By Lemma 4.16 and by (5.23) we have 

(5.25) J(u, K N s <. lim inf J(u k, K k N s 
k-.-.~ ~ 

By (4.5) we have also 

(5.26) J(u~, K k fl s <. J(u k, Ki) <- Jk(u k, K k) = m k. 

From (5.24), (5.25), (5.26), and from Corollary 4.37 we have 

(5.27) m = J(u, K n s = lim J(u k, K k n s = lim J(u k, K k) = lim Jk(Uk, Kk). 
k - + ~  k---~ ~ k- - -~  
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By the proof of Lemma 4.16 we know that, up to a subsequence, (uk) converges to 

a function w E H l ( ~ \ K )  and (Vuk) converges to Vw, weakly in L2(~). By (4.19) we see 

that one also has the convergence of the respective L 2 norms. This clearly implies 

uk--> w strongly in L2(Q), 

(5.28) 
Vuk--, Vw strongly in L2(~, R2). 

By (4.19) and (5.23) we have 

(5.29) J(w, K fl fl) ~< lim inf J(u k, K k fl f~). 
k---,oo 

Since u is a minimum point of problem (5.2), we have J(u, Kfl f~)<.J(w, Kfl f~), there- 

fore (5.27) and (5.29) give 

J(w, K A f~) = J(u, K A s 

Since the minimum problem (5.22) has only one solution, we conclude that w=u,  hence 

(uk) converges to u strongly in L2(f~) by (5.28). 

The equality (5.27), together with the inequalities (4.17) and (5.23), gives that 

(5.30) ~I(KN ff~)= lim fft~ fl Q)=  lim ~l(Kk), 
k--->~ k - - * ~  

which implies 

(5.31) lim f f ( l ( K  k fl a ~ )  = O. 
k-. . .  oo 

Given e>0, we define 

Q, = {x E R2: d(x, Q) < e} Q-e ---- {X E R2: d(x, R 2 ~ )  > e). 

Since the sets Kk satisfy the concentration property in f~_~ uniformly with respect 

to k, by the Lower Semicontinuity Lemma 0.10 we have 

~1(K N f~_) ~< lim inf ~I (K k fl fl_,), 
k----~ ao 

which, together with (5.30), gives 

(5.32) ~1(Q A K \ Q _ , )  I> lim sup ~ l (Kk \ f~_  ) .  
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Let f2* be the rectangle with the same center as Q and sides with triple length and 

let K* and K~ be the extensions of K and Kk obtained by reflection. It is clear that (K~) 

converges to K* in the Hausdorff metric on ~)*. 

By Lemma 3.42 the sets K~ satisfy the concentration property in f~* uniformly 

with respect to k (at least for discs DR with 0<R<min{1, a/4}, but this is enough for our 

purposes). By the Lower Semicontinuity Lemma 0.10, applied to the open set ~2 , \~_ , ,  

we have 

(5.33) Xa1(K fl Of 2) ~< Ygl(K* n ~ , \ ~ _ , )  ~< lim i n f  ~al (K~ ~'~e~'~_e). 
k.-.. 0o 

Since, by symmetry, ~l(K~'n ~ , \ ~ _ ~ ) ~ < 4 ~ l ( K k \ ~ ) ,  from (5.32) and (5.33) we obtain 

~l(KI3 aQ) ~< 4~1(ff~ f~ K \ ~  ~). 

As e--->0 we get 

(5.34) ~I (K N a~)  = 0. 

From (5.27) and (5.34) it follows that 

J(u, K) = min J(v) = lim Jk(Uk, Kk). 
v E SBV(~) k---, ~ 

The conclusion follows now from the equivalence between the minimum problems for 

(0.1) and (0.2) established in the Existence Theorem 0.4. [] 
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