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Abstract.

Using a variational principle and a parabolic approximation to the vertical structure of the velocity potential, the equations
of motion for surface gravity waves over mildly sloping bathymetry are derived. No approximations are made concerning the
non-linearity of the waves. The resulting model equations conserve mass, momentum and positive-definite energy. They are shown
to have improved frequency-dispersion characteristics, as compared to classical Boussinesq-type of wave equations.

1. Introduction. Classical Boussinesq-type of models suffer from the introduction of high-order mixed
spatial and temporal derivatives. Further, many Boussinesq-type models are not derived from variational
principles and do not satisfy energy conservation. We want to obtain a model for non-linear waves which does
not have these drawbacks.

High-order non-linear models, like Dommermuth & Yue (1987) and Agnon et al. (1999), solve free-surface
evolution equations derived from a Hamiltonian under the constraint that the Laplace equation is satisfied
exactly in the interior of the fluid domain. However, these models have to relate free-surface quantities to those
at some fixed level. This is done by using truncated Taylor-series expansions, thus destroying the exact solution
of the Laplace equation in the interior of the domain and with that the conservation of energy. Conservation of
energy is important, since it can be related to high wave-number instabilities of the model.

Dingemans (1997) describes several methods for constructing Boussinesq-type models with positive-definite
Hamiltonian, but these methods are quite tedious and have certain ambiguities regarding the order of certain
operators, see also Broer (1974, 1975) and Broer et al. (1976). The described models are weakly non-linear.

The present method is easier and unambiguous, leads to a positive-definite Hamiltonian and can be fully
non-linear if desired. Besides the fully non-linear form we also give a simpler weakly non-linear form. The
drawback of the present model is, that instead of higher-order spatial and/or mixed spatial-temporal derivatives,
an additional elliptic equation in the horizontal plane has to be solved (which is also the case for Agnon et al.
1999).

In the following, a parabolic approximation is used for the vertical distribution of horizontal velocity, since
this is simple and eases the derivations. This parabolic approximation already gives improved linear dispersion
characteristics as compared to classical Boussinesq-type models.

However, better performance can be achieved by choosing a power-series expansion in the vertical direction
of the velocity potential. For each additional term in the power series an additional elliptic equation has to be
solved, without increasing the order of the spatial derivatives in the model equations. Additional terms result
in further improvement of the frequency-dispersion characteristics as well as non-linear behaviour of the model.
However, the description of this model will be postponed for the moment.

2. Fully non-linear model. We start from the variational principle for irrotational water waves in the
form as given by Miles (1977) (see also Milder 1977):

0 = δL = δ

∫∫
L dxdt,(2.1)

with L(ζ, ∂tζ, ϕ, ∂xφ, ∂zφ;x, t) the Lagrangian density:

L = ϕ ∂tζ − H with ϕ = [φ]z=ζ ,(2.2)

where ζ(x, t) is the surface elevation, φ(x, z, t) is the velocity potential and the energy density H(ζ, ∂xφ, ∂zφ;x, t)
is given by the sum of kinetic and potential energy densities:

H =
∫ ζ

−h

1
2

[
(∂xφ)2 + (∂zφ)2

]
dz +

1
2
g ζ2,(2.3)

while the mass density ρ is taken to be constant and equal to one. Further h(x) is the still-water depth
and g is the gravitational acceleration. This Lagrangian variational principle is equivalent to the Hamiltonian
approach, as shown by Miles (1977). Note that the Hamiltonian H(ζ, ∂xφ, ∂zφ) itself is the spatial integral of H:
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H =
∫
H dx . Now we make the following Ansatz for the potential φ(x, z, t), corresponding with a parabolic

behaviour over depth with ∂zφ = 0 at the bed and φ = ϕ at the free surface:

φ(x, z, t) = ϕ(x, t) + f(z;h, ζ) ψ(x, t), with(2.4)

f(z;h, ζ) =
1
2

( z − ζ )
2h + z + ζ

h + ζ
.(2.5)

We take this choice, because we only want time derivatives of ζ(x, t) and ϕ(x, t) to appear in the Euler-Lagrange
equations, and because we know that for a horizontal bottom we have ∂zφ = 0 at z = −h and therefor expect
parabolic behaviour at leading ordera.

Under the assumption of a mildly sloping bottom, i.e. neglecting spatial derivatives of h(x), the velocity
components become:

∂xφ = ∂xϕ − 1
2

[
1 +

(
h+ z

h+ ζ

)2
]
ψ ∂xζ + f(z;h, ζ) ∂xψ and ∂zφ =

h+ z

h+ ζ
ψ.(2.6)

Note that ψ(x, t) is the vertical velocity ∂zφ at z = ζ(x, t). From these, we find for the energy density H:

H =
1
2

(h+ ζ)
[
∂xϕ − 2

3
ψ ∂xζ − 1

3
(h+ ζ) ∂xψ

]2

+
1
90

(h+ ζ)
[
ψ ∂xζ − (h+ ζ) ∂xψ

]2

(2.7)

+
1
6

(h+ ζ) ψ2 +
1
2
g ζ2.

Now by taking variationsb of L with respect to ϕ, ζ and ψ we get from δL = 0:

∂t ζ + ∂x

{
(h+ ζ)

[
∂xϕ − 2

3
ψ ∂xζ − 1

3
(h+ ζ) ∂xψ

]}
= 0,(2.8)

∂t ϕ + g ζ +
1
2

[
∂xϕ − 2

3
ψ ∂xζ − 2

3
(h+ ζ) ∂xψ

]2

− 1
45

[
ψ ∂xζ + (h+ ζ) ∂xψ

]2

(2.9)

+
1
6

[
1 +

1
5

(∂xζ)2
]
ψ2 + ∂x

{
(h+ ζ)

[
2
3
∂xϕ − 7

15
ψ ∂xζ − 1

5
(h+ ζ) ∂xψ

]
ψ

}
= 0,

(h+ ζ) ψ
[

1
3

+
7
15

(∂xζ)2
]
−

[
2
3

(h+ ζ) ∂xϕ − 1
5

(h+ ζ)2 ∂xψ

]
∂xζ(2.10)

+ ∂x

{
1
3

(h+ ζ)2 ∂xϕ − 1
5

(h+ ζ)2 ψ ∂xζ − 2
15

(h+ ζ)3 ∂xψ

}
= 0.

We introduce u ≡ ∂xϕ, and note from (2.8) that the discharge q(x, t) and depth-averaged velocity U(x, t) are:

q ≡ (h+ ζ) U, and U = u − 2
3
ψ ∂xζ − 1

3
(h+ ζ) ∂xψ.(2.11)

Then the system of equations to be solved can be written as:

∂t ζ + ∂x ( (h+ ζ) U ) = 0,(2.12)

∂t u + ∂x

{
g ζ +

1
2

[
U − 1

3
(h+ ζ) ∂xψ

]2

− 1
45

[
ψ ∂xζ + (h+ ζ) ∂xψ

]2

(2.13)

+
1
6

[
1 +

1
5

(∂xζ)2
]
ψ2 + ∂x

[
(h+ ζ)

(
2
3
u − 7

15
ψ ∂xζ −

1
5

(h+ ζ) ∂xψ

)
ψ

]}
= 0,

(h+ ζ) ψ
[

1
3

+
7
15

(∂xζ)2
]
−

[
2
3

(h+ ζ) u − 1
5

(h+ ζ)2 ∂xψ

]
∂xζ(2.14)

+ ∂x

{
1
3

(h+ ζ)2 u − 1
5

(h+ ζ)2 ψ ∂xζ − 2
15

(h+ ζ)3 ∂xψ

}
= 0.

So we have to solve two time-evolution equations for ζ(x, t) and u(x, t), as well as an elliptic equationc for
ψ(x, t). Further it can be observed that, for given ζ(x, t) and ϕ(x, t), equation (2.14) is a linear equation in
ψ(x, t).

aHigher-order performance can be obtained by chosing φ(x, z, t) = ϕ(x, t) +
∑M

m=1
(z − ζ)m βm. Chosing M = 2 also gives

a parabolic approximation to φ(x, z, t), but results in better linear dispersion than the present model. The cost is that two elliptic
equations for β1(x, t) and β2(x, t) have to be solved, instead of one elliptic equation for ψ(x, t) in the present model.

bWith L = ϕ∂tζ − H (ζ, ∂xζ, ϕ, ∂xϕ,ψ, ∂xψ;x, t) we have δL =
∫∫ (

δϕ δL
δϕ

+ δζ δL
δζ

+ δψ δL
δψ

)
dx dt and e.g. δL

δϕ
= ∂tζ −[

∂H
∂ϕ

− ∂x
(

∂H
∂(∂xϕ)

)]
.

cWe talk already of elliptic in anticipation to the two-dimensional extension we are planning.
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3. Weakly non-linear model. If we assume that also the free-surface slope ∂xζ is small and can be
neglected in the Hamiltonian density (2.7), we get after taking the variations the following system of equations:

∂t ζ + ∂x

{
(h+ ζ)

[
u − 1

3
(h+ ζ) ∂xψ

]}
= 0,(3.1)

∂t u + ∂x

{
g ζ +

1
2

[
u − 2

3
(h+ ζ) ∂xψ

]2

− 1
45

(h+ ζ)2 (∂xψ)2 +
1
6
ψ2

}
= 0,(3.2)

(h+ ζ) ψ + ∂x

{
(h+ ζ)2 u − 2

5
(h+ ζ)3 ∂xψ

}
= 0.(3.3)

These are somewhat simpler in appearance as the fully non-linear system (2.12)–(2.14). Note that this also has
a positive-definite Hamiltonian.

4. Linear dispersion. When linearizing the equations for a horizontal bed, i.e. the still-water depth h is
constant, we get:

∂t ζ + h ∂x u − 1
3
h2 ∂2

x ψ = 0, ∂t u + g ∂x ζ = 0 and h ψ + h2 ∂xu − 2
5
h3 ∂2

x ψ = 0.(4.1)

We look for linear wave solutions propagating as b(x, t) = b̂ exp[ i (kx − ωt) ], where k is the wave number and
ω is the angular frequency. We find for the above linearized Boussinesq-type equations, with (ζ̂, û, ψ̂) denoting
the complex-valued amplitudes of (ζ, u, ψ) respectively:

− i ω ζ̂ + i k h û +
1
3
k2 h2 ψ̂ = 0, −i ω û + i gk ζ̂ = 0 and h ψ̂ + i k h2 û +

2
5
k2 h3 ψ̂ = 0.(4.2)

Non-trivial solutions exist only if the following dispersion relationship is satisfied:

ω2 h

g
= (kh)2

1 + 1
15 (kh)2

1 + 2
5 (kh)2

.(4.3)

The first terms of a Taylor-series expansion around kh = 0 are:

ω2 h

g
= (kh)2 − 1

3
(kh)4 +

2
15

(kh)6 − 4
75

(kh)8 + O
(
(kh)10

)
.(4.4)

This dispersion relation can be compared with the exact linear dispersion relation:

ω2 = g k tanh kh, which has the Taylor-series expansion(4.5)
ω2 h

g
= (kh)2 − 1

3
(kh)4 +

2
15

(kh)6 − 17
315

(kh)8 + O
(
(kh)10

)
.(4.6)

So they start differing with the term proportional to (kh)8. Both dispersion curves are compared in Figure 5.1(a).
They differ less than 1% for kh < 2.3 and less than 2.8% for kh < π.

T [s] H [m] h/λ H/h
10 2.0 0.0695 0.40
6 1.8 0.1280 0.36
4 1.5 0.2208 0.30

Table 5.1
Wave conditions for numerical examples.

5. Numerical examples. In order to test the models some pre-
liminary computations on a horizontal bed are performed. As initial
condition we use periodic waves computed with the method of Rie-
necker and Fenton (1981). We both test the fully non-linear (2.12)–
(2.14)) and the weakly non-linear (3.1)–(3.3) model.

In all cases we use a constant water depth h = 5 m and g = 9.81
m/s2. We consider three cases as given in Table 5. A pseudo-spectral
method has been used with 100 points per wave length and also 100 points per wave period. A periodic spatial
domain has been used. The elliptic equation for ψ has been solved by means of a conjugate gradient method
(the bi-CGSTAB method), see Quarteroni and Valli (1997). The time-integration has been performed using a
four-stage Runge-Kutta integration method. No numerical damping and smoothing have been applied.

The results of the computations are shown after a simulation time of five wave periods, see Figure 5.1. During
these computations no instabilities occurred. In a similar model using Agnon et al. (1999) we often encountered
numerical instabilities. We think the present model performs well because of the positive definiteness of the
Hamiltonian density, which guarantees good dynamical behaviour of the approximate equations. A check on
the numerical accuracy has been performed. Averaging over one wave length shows that the absolute errors
of the fully non-linear model and T = 4 s are as follows after five wave periods: for the Hamiltonian density
2 · 10−5 with 〈H〉 = 2.6504, for ζ the error is 3 · 10−17 and for the free-surface potential gradient we find an
error of 2 · 10−16. Also for the weakly non-linear model the errors are of similar magnitude.

As is obvious from Figures 5.1(b-d) the weakly non-linear model performs not good enough for practical
purposes. The fully non-linear model performs very well.
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(a) Linear dispersion curves
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Fig. 5.1. (a): Linear dispersion curves ω
√
h/g as a function of kh for the Boussinesq model (4.3) (solid line) and the exact

linear dispersion (4.5) (dash-dash line). (b)–(d): Snapshots of the free-surface elevation after 5 wave periods (b)–(d). of the fully
non-linear model (dash-dash line), the weakly non-linear model (dash-dot line) and the Rienecker and Fenton solution (solid line).

6. Conclusion. We have presented a relatively easy derivation of Boussinesq-like equations from a vari-
ational principle having a positive definite Hamiltonian. The resulting mass and momentum equations have
conservative form. Preliminary computations show promising behaviour of the fully non-linear model. At the
conference we intend to show results compared with measurements of waves over varying bathymetry and with
other models.
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