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Abstract

We study the reconstructive martensitic transformations in crys-
talline solids (i.e. martensitic transformations in which the parent and
product lattices have arithmetic symmetry groups admitting no finite
supergroup), the best known example of which is the bee-fee transfor-
mation in iron. We first describe the maximal Ericksen-Pitteri neigh-
borhoods in the space of lattice metrics, thereby obtaining a quantita-
tive characterization of the ‘weak’ transformations, which occur within
these domains. Then, focusing for simplicity on a two-dimensional set-
ting, we construct a class of strain-energy functions admitting large
strains in their domain, and which are invariant under the full sym-
metry group of the lattice. In particular, we exhibit an explicit energy
suitable for the square-to-hexagonal reconstructive transformation in
planar lattices. We present a numerical scheme based on atomic-scale
finite elements and, by means of our constitutive function, we use it to
analyze the effects of transformation cycling on a planar crystal. This
example illustrates the main phenomena related to the reconstructive
martensitic phase changes in crystals: in particular, the formation of
dislocations, vacancies and interstitials in the lattice.



1 Introduction

‘Reconstructive’ martensitic transformations in crystalline materials are char-
acterized by the absence of a finite supergroup for the arithmetic symmetry
groups of the phases involved, as is the case for example in the well-known
- transformation in iron and other ferrous materials, which takes a body-
centered cubic (bce) to a face-centered cubic (fce) structure. In these transi-
tions the crystalline symmetry is initially reduced along the transformation
path (e.g. from bcc to face-centered tetragonal), and then increases when
the final state is reached (e.g. from face-centered tetragonal to bcc).!

‘Weak’ martensitic transformations, in contrast, entail phases whose
symmetry groups admit a common finite supergroup, and ‘small’ strains
which remain in a suitable neighborhood of the parent configuration (a typ-
ical case is given by the symmetry-breaking transformations, where the sym-
metry groups are in an inclusion relation), see for instance Ericksen (1989).
The current mathematical understanding of weak transformations within
nonlinear elasticity is based on choosing a suitable finite subgroup out of
the full discrete symmetry group of the crystal, which, a priori, is infinite,
see Ericksen (1970, 1977, 1980), Parry (1976), Pitteri (1984). This line
of thinking is compatible with the classical Landau theory for phase tran-
sitions, and has proved remarkably successful especially in the investiga-
tion of symmetry-breaking transformations, with the related phenomena of
twinning and microstructure formation, as they occur for example in shape-
memory and magnetostrictive alloys (Ball and James, 1987, 1992, Luskin,
1996, Bhattacharya, 2003, Miiller, 1999, James and Hane, 2000, Pitteri and
Zanzotto, 2002). The significance and applicability range of the Landau
theory have also been clarified by these methods.

Reconstructive transformations, on the other hand, lay outside the reach
of the standard Landau-theory approach, and a model for them proves
harder to develop than in the weak case. Firstly, an explicit characteri-
zation of the strains pertaining to weak vs. reconstructive phase changes is
at present still missing. The main difficulty in the elastic modeling of re-
constructive transitions, however, is that the invariance of the strain-energy
function of the material is not described by a finite group, as the full (in-
finite, discrete) invariance of the crystal must be taken into account — no
choice of a finite subgroup suffices. As a consequence, the relaxed energy of
a crystalline substance only depends on the specific volume (Fonseca, 1987),
which is a feature typical of fluids, not of solids. The relaxation must thus in-
clude slip-like processes and the creation and motion of dislocations, which,
as we discuss below, are obtainable within a purely elastic framework if the

IThe literature also calls reconstructive the transformations involving either large lat-
tice distortions, or a product phase whose symmetry group is not included in the one of
the parent phase (Buerger, 1963, Tolédano and Dmitriev, 1996). The definitions coincide
in all the main cases of interest.



energy density exhibits the full symmetry of the lattice. A related problem
is clarifying which explicit functional forms the (unrelaxed) elastic energy
density should have in order to exhibit such full lattice symmetry.2

These are, broadly, the questions of interest in this paper. We first char-
acterize the domains in which the weak transformations occur; then, restrict-
ing ourselves to the two-dimensional case, we write a class of strain-energy
functions with full lattice invariance, defined also for the large deformations
that are typical of the reconstructive phase changes. Finally, we consider
an explicit constitutive function suitable for the square-to-hexagonal (s-h)
reconstructive transformation in planar lattices, and, by investigating nu-
merically the evolution of an initially perfect lattice under repeated trans-
formations, we observe twinning, slip-like processes, dislocations and other
defects.

Our results put in evidence the marked differences between the recon-
structive and weak phase changes. The latter are largely reversible, leading
for instance to shape memory in some alloys. On the contrary, reconstruc-
tive transformations will generate defects in the lattice, preventing the re-
versibility of the transformation process. The relation of these ideas with
experimentally-known properties of transitions in metals and other alloys
will be discussed elsewhere (Bhattacharya, Conti, Zanzotto, and Zimmer,
2003). These general effects are present both in two and three dimensions,
and we remark that our analysis of the s-h transformation may be directly
applicable to two-dimensional periodic structures occurring in a number of
physical systems, such as flux line lattices (Gammel et al., 1999) and vor-
tex lattices (Chang et al., 1998) in superconductors, Wigner crystals in the
two-dimensional electron gas (Holz, 1980, Ando et al., 1982), and skyrmion
crystals in quantum Hall systems (Rao et al., 1997).

In Sect. 2 we recall some basic facts about the symmetry of two-
dimensional (2-d) simple lattices (or ‘Bravais lattices’). We introduce the
classical action of the group GL(2, Z) of 2 by 2 invertible integral matrices
on the space QF of 2-d positive-definite quadratic forms (lattice metrics),
and recall the ensuing subdivision of planar simple lattices, and their met-
rics, into five ‘Bravais types’.? Following Engel (1986), we also describe the
set of ‘Lagrange-reduced forms’ of lattice metrics, which gives a fundamental
domain for this action — see Table 1, and Figs. 1-2.

2The modeling of reconstructive martensitic transformations has been considered by
a number of authors during the last decade. One approach involves the extension of the
Landau theory based on the adoption of a ‘transcendental order parameter’ which partially
accounts for the infinitely-many lattice symmetries (see for instance Dmitriev et al., 1988,
Horovitz et al., 1989, Tolédano and Dmitriev, 1996, Hatch et al., 2001). Numerically, such
phenomena have also been also investigated with molecular dynamics, see e.g. Morris and
Ho (2001).

3The analogous criterion in 3-d produces the well-known fourteen Bravais types of
lattices. These basic notions of crystallography can be given for any dimension n of the
lattices — see for instance Engel (1986), Sternberg (1994), Michel (1995, 2001).



In Sect. 3 we recall a geometric result that introduces the ‘Ericksen-
Pitteri Neighborhoods’ (EPNs) in the space of lattice metrics (see Ericksen,
1980, Pitteri, 1984). These regions are used to reduce in a rational way
the domain of the energy functions of crystals, so that only finite crystallo-
graphic groups describe their invariance, as in the classical theories — see the
references above. We then give a procedure (which works in any dimension
n > 2) to construct maximal EPNs, which leads to a quantitative char-
acterization of the threshold between weak and reconstructive martensitic
transformations. We also discuss some explicit examples of maximal EPNs
for n = 2 (see Fig. 3).

In Sect. 4 we study a class of GL(2, Z)-invariant strain-energy functions
on Q; that can model the behavior of planar lattices undergoing reconstruc-
tive transformations. We give an explicit energy for the s-h reconstructive
phase change, which in suitable temperature ranges exhibits absolute min-
imizers with either square or hexagonal symmetry. Some properties of
GL(2, Z)-invariant constitutive functions on QF have been investigated by
Folkins (1991) and Parry (1998), based on the use of the classical modu-
lar functions on the upper complex half plane. Our energies, however, are
much more explicit, being constructed by ‘patching’ suitable polynomials of
scaled variables, so as to obtain enough smoothness and the desired sym-
metry. Through our elementary method it is also quite straightforward to
prescribe the correct minimizers of the model.

In Sect. 5 we present a numerical scheme which incorporates the GL(2, Z)-
invariant energy, and use it to investigate numerically the effects produced on
a lattice by taking it through two s-h-s transformation cycles, starting from
a homogeneous configuration with square symmetry. We observe the devel-
opment of twin bands when the system is transformed into the hexagonal
phase (Figs. 7(b) and 7(d)), and the formation of dislocations or vacancies
when the system is taken back to the square phase (Figs. 7(c) and 7(e)).

2 Crystallography

2.1 The arithmetic symmetry of simple lattices

A 2-d simple (‘Bravais’) lattice is an infinite and discrete subset of R?, given
by:
Llew) = {vER : v=1e, v €7} 1)

4We notice that the resulting theory is not of the Landau type, as the potential is
defined on all of Q;r (that is, also for large strains), and is invariant under the full group
GL(2,Z), not only under a finite crystallographic group. Its invariance reduces to the
latter when the domain is cut down to an EPN. In particular, we remark that here, unlike
in other theories, as a consequence of GL(2, Z)-invariance the elastic moduli relative
to any energy-minimizing configuration exhibit the correct symmetry pertaining to that
configuration.



(hereafter the summation convention is understood). The independent vec-
tors e,, a = 1,2, are the lattice basis, and the metric (or ‘Gram matrix’)
C = (Cyp) of L is

Cipb=Chao=¢€s-€ (1<a,b<2). (2)

The space QF of lattice metrics is the 3-d linear cone collecting all the
positive-definite symmetric 2 by 2 real matrices.

Given a Bravais lattice, its basis and metric are not uniquely determined.
Two bases €, and e, generate the same lattice if and only if they are related
by an invertible integral matrix; for the 2-d case one has:

L(ey) =L(6,) <& & =mge, with m = (my) € GL(2, Z), (3)

where GL(2, Z) denotes the group of 2 by 2 invertible matrices with integral
entries. Since each lattice determines its bases up to a transformation in this
group, the latter is said to be the ‘global symmetry group’ of planar lattices.
The change of basis in (3) induces, in obvious notation, the following change
of the lattice metric C' in (2):

C =m'Cm, (4)

where m! denotes the transpose of a matrix m. Equation (4) defines a
natural action of GL(2, Z) on QF , which is considered in crystallography
for studying the arithmetic symmetry of simple lattices, also in the general
case of n dimensions. The action (4) subdivides the space of metrics, and
hence the lattices themselves, into equivalence classes (‘strata’), which in
crystallographic theories correspond to the well-known ‘Bravais types’ of
lattices (see Engel, 1986, Michel, 2001).

Explicitly, if C' is the metric of a basis e,, let their ‘lattice group’ or
‘arithmetic holohedry’ be defined as

L(e,) ={m € GL(2, Z) : mgye, = Qep, Q € O(2)}
={m e GL(2,Z) : m'Cm=C} (5)
= L(C).

This group transforms by conjugacy under a change of basis (3) for the same
lattice:
L(mapeqd) = m ™ 'L(ey)m for all m € GL(2, Z); (6)

a given lattice L(e,) therefore determines an entire conjugacy class of lattice
groups in GL(2, Z). One then defines two lattices £ and L' as having the
same Bravais type (i.e. they belong to the same stratum of the action (4))
when they are associated to the same conjugacy class in GL(2, Z), that is,
when their lattice groups are arithmetically conjugate. In an analogous way,
one subdivides into Bravais types also the lattice metrics. A classical result
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TABLE 1: The five Bravais types of simple lattices in 2-d, and the
fixed sets (sets of metrics with given lattice group) intersecting the
fundamental domain D in (9), with the corresponding lattice groups
(only one element of each pair (m, —m) is tabulated). See also Fig. 1.




in 2-d finds five Bravais types in Q; , denominated oblique, rectangular,
rhombic (or centered-rectangular), hexagonal, and square — see Theorem 7.8
in Engel (1986), or Michel (1995); see also Table 1.

The notion of lattice group allows us to give a precise definition of which
transformations in Bravais lattices are reconstructive. Consider a linear map
T transforming a lattice L£(e,) onto the lattice L£(f,), with basis vectors
f, = Te,. We call T reconstructive when the group generated by

L(eq) U L(fa) (7)

in GL(2,Z) is infinite. This definition does not depend on the choice of the
lattice basis, if one also keeps track of the corresponding basis change in the
target lattice. Precisely, the different basis €, = myye, is mapped by T onto
f, = mayf,. Then, by (6) the groups change by conjugacy, according to

L(&,) UL(f,) = m™t (L(es) U L(£,)) m (8)

and hence the cardinality of the generated group does not change.

2.2 A fundamental domain

The question of how to select a representative metric for each orbit in Q;
(that is, for each Bravais lattice) is a natural one that arises also in the theory
of the arithmetic reduction of real quadratic forms, initiated by Lagrange
and later pursued by many others, among whom Dirichlet, Jordan, Seeber.
A ‘fundamental domain’ for the action (4) is a subset of QF such that each
GL(2, Z)-orbit in QF has one and only one element in that subset. A simply
connected fundamental domain in 2-d is the following:®

D:{CEQ;, 0 < Cy1 < Coy, 0§C12§%}7 (9)

whose metrics are said to have the ‘reduced form of Lagrange’ (see Engel,
1986, Michel, 1995).6 A representation of D is given in Fig. 1.

Given an arbitrary basis e,, the unique basis conjugate to it with metric
in the fundamental domain D can be obtained in finitely many steps by
iterating the following procedure: (i) if |e1]| > |ez|, swap the two vectors; (ii)
if 1 -e9 < 0, change sign to ey; (iii) if f = e; — ey is shorter than eq, replace
ey with f. It is straightforward to restate the same procedure in terms of

SFundamental domains have been explicitly described also in the 3-d case, see for
instance Schwarzenberger (1972), Engel (1986), Terras (1988).

SGiven any simple lattice £(e,), the definition in (9) corresponds to choosing a suitable
‘reduced’ basis €, for it, as follows: €; is a shortest lattice vector, €2 is a shortest lattice
vector non-collinear with €;, with the sign chosen so that the angle between the two is
acute. This basis always exists and is unique up to an inessential orthogonal transforma-
tion, so that its metric C' is unique.



p6mm (hexagonal)

Ciz c2mm (1)
(skinny rhombic) c2mm (I)
(fat rhombic)
R /

p4mm (square)

plmm
(rectangular)

FI1GURE 1: A two-dimensional representation of the intersection of the
fundamental domain D in (9) with the plane C11 4+ Caa = 1, projected
on the plane (Cy,C12). The five Bravais types in QF are represented
in D as shown (International Symbols are used). See Table 1 for a list
of the corresponding lattice groups. Unlike the other four lattice types,
the rhombic (or centered-rectangular) type is represented in D by two
sets of metrics (‘fat’ and ‘skinny’ rhombi — see Footnote 8) with two
distinct but arithmetically equivalent lattice groups. Details are given
in Sect. 2.2 and Sect. 3.2.

the lattice metrics, and check that it always converges to D.” The funda-
mental domain D in (9) is subdivided into six subsets, the metrics in each of
which are stabilized by six distinct lattice groups, as in (5); see Fig. 1 and
Table 1. One obtains six subsets for five lattice types because the rhombic
(or centered-rectangular) lattice type is represented by two distinct sets of
Lagrange-reduced metrics, having two distinct (but arithmetically equiva-
lent) lattice groups.® The fundamental domain D and its symmetry-related
copies m!Dm, m € GL(2, Z) cover the entire space Q; , as represented in
Fig. 2. In the case of 3-d lattices, the corresponding information of how
the (six-dimensional) space of metrics is explicitly decomposed into copies

"Analogous, more complex, reduction schemes, due to Seeber, Selling, Niggli,
Minkowski, exist also for the 3-d case — see Engel (1986).

8Geometrically, this happens because the unit cell of a rhombic lattice can be of two
different kinds: (i) a ‘skinny’ rhombus, one of whose angles is smaller than 60 degrees, so
that a diagonal is shorter than the side; (ii) a ‘fat’ rhombus, with angles all between 60
and 120 degrees, whose diagonals are both longer than the side. The Lagrange reduction
inequalities (9) then select a reduced basis constituted by two side vectors for the ‘fat’
rhombi, and by a diagonal and a side for the ‘skinny’ ones. The intersection of these two
sets of rhombic metrics gives the set of hexagonal metrics in D, as in Fig. 1. Note that
this fact is preserved by any continuous change of chart, as it is based on the fact that
any continuous deformation of a skinny rhombus into a fat one, which does not leave the
class of rhombi, must pass through the state where an angle is exactly 60 degrees, which
is the hexagonal configuration.
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FIGURE 2: Section on the plane Cq; + Coe = 1 (with coordinates
Ch1, C12) of the space QF, see Michel (1995). The GL(2,Z)-related
copies of the fundamental domain D in Fig. 1 fill QF . The full squares
and empty hexagons indicate a few metrics with square and hexagonal
symmetry, respectively. The dotted lines represent the rectangular
metrics, the solid lines the rhombic metrics. The dense open set of the
other points represents the generic (oblique) lattice metrics.

of the fundamental domain does not seem to be available.

3 Global and local symmetries of simple lattices

3.1 Ericksen-Pitteri neighborhoods (EPNs)

In Sect. 2 we have seen how the the action (4) of the group GL(2, Z) on
the space of lattice metrics QF describes the global symmetry of planar
lattices. In this section we recall a result showing how such global symmetry
reduces to the classical one given by the usual 2-d crystallographic groups.
Indeed, within suitable ‘Ericksen-Pitteri neighborhoods’ (EPNs) in Q5 one
needs only consider the action and invariance given by appropriate lattice
(sub)groups of GL(2, Z) as in (5). We remark that the notion of EPN holds
in any dimension n.

Given any lattice metric Cp, an open neighborhood N of Cj in Q5 is an
EPN if the following properties hold:?

9Equivalently:
(i) m'Nm =N for all m € L(Co);
(i) m'NmnN =0 for all m € GL(2,Z) \ L(Cy).



i) for all m € L(Cy), C € N implies m!Cm € N;
(i)

(i) if for some m € GL(2,Z) there is C € N such that m!Cm € N/, then
m L(CO)

Every Cy € Q; has a nonempty EPN, see Pitteri (1984), Ball and James
(1992). See also Duistermaat and Kolk (1999) for a general treatment of
‘slices” of group actions. Pitteri and Zanzotto (2002) give a description of
the local structure of the EPNs in (2- and) 3-d. As the metrics in an EPN
are at most as symmetric as the ‘center’ metric Cy, these neighborhoods
are the natural domains on which one analyzes symmetry-breaking trans-
formations involving finite but not ‘too large’ lattice distortions, as in the
literature mentioned in the Introduction. Indeed, the EPNs help formalizing
the notion of a weak transformation as a phase change completely taking
place within one such neighborhood (Ericksen, 1989). As the metrics of
the initial, final, and any intermediate states belong to a single EPN, their
symmetry groups are all included in the symmetry group of the neighbor-
hood’s center. Clearly, the reconstructive transformations considered here
are necessarily not weak.

3.2 Maximal EPNs

The above-mentioned existence results about EPNs do not give a quanti-
tative measure for weak vs. reconstructive transformations. Typical recon-
structive cases are the s-h or the bee-fee phase changes, which both involve
maximal lattice groups (i.e. not contained in any other lattice group in 2-d
and 3-d, respectively). In general, however, one must also know how large
the EPNs are, in order to have an explicit criterion to differentiate between
weak and reconstructive transitions. In this section we describe how, given a
‘good enough’ fundamental domain, one can construct maximal EPNs, that
is, open EPNs not strictly contained in any other open EPN (this method
works in any dimension n > 2).

Proposition 1. Let D be a fundamental domain whose boundary has mea-
sure zero — as for instance in (9) -, and fix a metric Cy € D. Let

Q= {m'!Cm:m e L(Cy), C € D}. (10)
Then, the inner part Qo of the set Q) is a mazximal EPN of Cy.

We observe that every orbit has (at least) a representative in the closure
of the maximal EPN Qg considered in the Proposition. This representative
is in general not unique, as each orbit in Q; must have as many elements in
an EPN N (C)) as is dictated by the local symmetry given the lattice group
L(Cp) of the center Cpy. On the other hand, it is clear that not every orbit
can have a representative in {1, as, for instance, the square and hexagonal
metrics have symmetry groups with no finite common supergroup.

10



To prove Proposition 1, we first give two lemmas. In the following we
denote by m o C' = m!Cm the natural action of GL(n, Z) on Q.

Lemma 1. Given a metric C and a neighborhood I of C, there is an EPN
of C contained in I.

Proof. Let N be an EPN of C. The required set is

N () {moC: Cel}. (11)
meL(C)

Lemma 2. Let Q be as in the statement of Proposition 1. If C, C' € Q,
with C' =mo C for some m € GL(n,Z), then

m € L(Co)L(C) . (12)

Proof. By definition there are m, m’ € L(Cjp) such that C = m o C' and
C' =m' o C', with C,C" € D. The condition C' = m o C' becomes C'" =
((m")~Ymm) o C, which by definition of D implies C’ = C. Then we get
C' =m' m~ ' o C, which together with C’ = m o C gives the thesis.

Proof of Proposition 1. We first show that €y is an EPN of Cy. The first
property of the EPNs (invariance under L(Cjy)) is obvious. To verify the
second one, let C', C" € Qp, with ¢’ =m o C. If L(C) < L(Cy), by Lemma
2 the thesis is verified. Otherwise, choose m € L(C) \ L(Cy), and let I be
an EPN of C contained in Q (Lemma 1). We now choose in I a metric C
whose lattice group L(C) is minimal (i.e. for all C” € Q, L(C) < L(C")).
Consider now C, moC € I C Q. By Lemma 2 we have

m € L(Co)L(C) = L(Co), (13)

which is a contradiction. It remains to show that € is maximal. If not, there
would be an open EPN €y which strictly contains €y. Since §2; contains
at most finitely many copies of each metric (at most as many as is the
cardinality of L(Cjy)), copies of the boundary of D can cover only a zero-
measure subset of Q0 \ Qy. Hence we can find C’ with minimal symmetry in
the interior of D and m € GL(2,Z) such that mo C" € Qp \ Q. Since C’ is
in Qo and mo C’ is not, m cannot be in L(Cjp). But since C' and mo C’ are
both in €1, m must be in L(Cp). This gives a contradiction and concludes
the proof.

To give some explicit examples in 2-d, we represent any C belonging to
the cone Q; by means of the three coordinates C11, Cia, Cos, with Cj; > 0
and 0122 < C11C0%2. Then, considering only the plane C1; + Ca3 = 1 (with
coordinates C1; and Ci2, 0 < C13 < 1 and |Ci2| < 0111/2(1 —C1)'?),
amounts to giving the elements of Q; up to a rescaling, which we will

11
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FIGURE 3: Examples of maximal EPNs in QF, indicated as dashed
areas. (a) Maximal EPN for a square lattice metric, and (b) for a
hexagonal lattice metric. See Sect. 3.2 for details. In both cases, the
boundary does not belong to the (open) maximal EPN.

no longer mention in the rest of this section. On this plane, the trace
of the fundamental domain D in (9) — still called D for simplicity — has
a particularly simple form: it is the triangle with vertices S = (1/2,0),
H* = (1/2,1/4), and (0,0), the latter not being included in D — see Fig.
1. The trace of Q; on the plane Ci1 + Cos = 1 is covered by copies of D
obtained by means of the action (4), as shown in Fig. 2.

Now, it is straightforward to describe some maximal neighborhoods in
Q5. A maximal EPN for the square metric S = (1/2,0) is the open thombus
centered on S, composed by the four copies of D obtained through the action
of the lattice group L(S) on D (see Table 1 for a list of the elements in
L(S)). As shown in Fig. 3(a), there are two distinct hexagonal metrics on
the boundary of this maximal EPN. Analogously, for the hexagonal metric
H* =(1/2,1/4) a maximal EPN is an open triangle containing six copies
of D, with three distinct square metrics on its boundary — see Fig. 3(b).
For an oblique metric a maximal EPN coincides with the inner part of (the
appropriate copy of) D; for a rhombic or rectangular metric, a maximal
EPN is composed by the two copies of D whose common boundary contains
the given metric.

It is instructive to consider in this picture the phase transformations
of a lattice. For instance, a (weak) square-to-rhombic transition involves
the parent square metric S = (1/2,0) and two product rhombic metrics
R* = (1/2,4r), with 0 < r < 1/4; the choices + correspond to the two
rhombic metrics (‘variants’) that exist in an EPN of S, which belong to the
same L(.S)-orbit. In the homogeneous configuration with metric S the basis
vectors of the lattice are orthogonal: r = e - e = 0; when the lattice is
transformed to one of the configurations with metrics R*, the distortion

12



breaks the orthogonality relation » = 0, but leaves the basis vectors of equal
length. This transformation is weak as for not too-large r the metrics in-
volved do not exit from the maximal EPN of S constructed above (twinning
arises when the lattice deforms in a piecewise linear fashion to a configura-
tion involving both the variants RT). If the system is made to transform
back to the square phase, it is reasonable to assume that it will all go back
to the metric S, due to strong energy barriers in the direction of any other
square metric, which are ‘far-away’ from (that is, they are not in any EPN
containing) the metrics S, R*. This reasoning is the basis of the mathe-
matical theory of the shape-memory effect — see the literature quoted in the
Introduction.

If, on the other hand, the homogeneous lattice configuration is trans-
formed from S to one or both of the variants H* = (1/2,£r), with r = 1/4,
the strain is so large that the deformed system with metric HT has actually
gained full hexagonal symmetry: we have a reconstructive transformation
(which cannot be weak because the metrics S, H* cannot all belong to a
single EPN). Also in this case there can be twinning and the formation of
microstructure in the transformed lattice, as its cells may find themselves
either in the variant H* or H~ (see Fig. 3(a)). However, things differ con-
siderably from the weak case on going back to the square phase. In this
instance, neglecting elastic interactions, the cells in the configuration H™
have in principle equal chances of going to any of the three neighboring
square metrics 51 = S = (1/2,0), S2 = (1/3,1/3) or S3 = (2/3,1/3); like-
wise for H~ (Fig. 3(b)). In a large-enough lattice one expects that all these
five square choices may be present in different parts of the crystal. Trans-
formation cycling can thus have the result of moving different parts of the
sample from S; to four other square metrics. This generates defects which
can be either localized (interstitials, vacancies) or long-range (dislocations).
An energetic model for these effects is presented and discussed in the rest
of this paper.

4 Elastic potentials for reconstructive phase changes
and the square-to-hexagonal transformation

The free energy density ¢ of a lattice depends on the basis vectors e,, and
due to Euclidean invariance, it actually depends only on their inner products,
that is, on the lattice metric C, besides the temperature 6:

¢ =o(C.0). (14)

From the discussion in the preceding section, we see that the phenomeno-
logical description of reconstructive transformations in (2-d) crystals entails
energies ¢ whose domain in Q; is large enough to contain metrics not all
belonging to a single EPN. These state functions also ought to identify the
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different basis representations of the same lattice, so that, in the 2-d case,
their invariance should be dictated by the action (4) of GL(2, Z):

#(C,0) = ¢(m'Cm,0) (15)

for all 6, all C, and all m € GL(2, Z). This invariance requirement is
achieved by setting

¢(C,0) = ¢o(Cr,0), (16)

where ¢ is a function defined on the fundamental domain D in (9), and, for
any C € QF , Cr € D is the corresponding Lagrange-reduced form obtained
as discussed in Sect. 2.2. One may choose any parameterization of ¢g in
(16) — e.g. Fourier coefficients, polynomial expansions, etc. —, but in order
to ensure suitable regularity of ¢ one needs to impose appropriate conditions
on the boundary of D, as discussed for instance by Parry (1976).

This procedure is simplified if one starts from a maximal EPN, as smooth-
ness on most of the boundary of D is then a consequence of the symmetry
with respect to the lattice group of the center. In the following we require
the continuity of the first and second derivatives of ¢, which makes the
elastic moduli of the lattice continuous. Since the determinant is invariant
under GL(2, Z), one can decouple the volumetric and the deviatoric parts
of the energy by using scaled variables, i.e. writing ¢g as a function of det C
and C/ det'/?2 C. We will do so in our model, and assume the dependence
on the latter variables to be polynomial.

We start by studying polynomials in the three variables Ci1,Cig, Coo,
with Cj; > 0 and 0122 < (1109 as in Sect. 3.2 (no planar section of Q;
is taken here). We first focus on a maximal EPN N (H™) of the unimod-
ular hexagonal metric H+ = (1,1/2,1), whose lattice group L(H™) is the
hexagonal group in Table 1. A polynomial in C is invariant under L(H™)
if and only if it can be written as a polynomial in the following hexagonal
invariants (see Smith and Rivlin, 1958):

1
L = 5(011 + Ca2 — Ch2),
1 1
I, = Z(Cll — Cn)* + E(Cn +Cay — 4C12)%, (17)

Iy = (Cy1 — C)*(Cyy + Cag — 4C1) (C11 + Cyp — 4C12)3.

1

9
Then, let ¢;(C) be a generic sixth-order polynomial for C' € D, expressed
in terms of the I’s, and define ¢(C) outside of D by GL(2,Z)-symmetry as
in (16). As the same polynomial form is retained in all of N'(H ), we only
need to impose C? smoothness on the Cj3 = 0 boundary (see Fig. 3 (b)).
The extension through the latter is generated by a reflection, hence we need
to require C? smoothness for ¢1(Ciy, |Ci2|,C22) around Cjp = 0. This is
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equivalent to

88251 —0, (18)
12 C12=0
as the second derivative is automatically continuous. By imposing (18) to
the sixth-order polynomial ¢; we obtain a 10-dimensional linear space, for
which, as det C' is GL(2, Z)-invariant, three basis vectors are trivially given
by the determinant, its square and its cube. The remaining basis vectors
are, for instance:

411,52 7L LI 52
= n'n-
V1 R T 1056’
651, I IoI3 I32
= NL°L°%- —_
v L2 99 11 264
41 8IIgIy 17137
= 22 13—
¥s TR 11 528 '
91,° I I
by = 71—411312+11122—Z—;’, (19)
Vs = 48N — 240 I+ [ I3,
e = 210" =51+ I I,
51,3 I
Yr = —71-1-[1]2—4—;,

where the I’s are expressed in terms of C' as in (17). The general sixth-order
polynomial ¢; in C meeting (18) can thus be written as a linear combination
of the above-mentioned ten basis vectors.

We can use this result to obtain energies ¢y which are polynomials in
the scaled variables C/ det'/? C, and have a generic dependency on det C'.
Indeed, since the v); are homogeneous the scaling of C' with respect to det C'
gives a factor that we can incorporate into the coefficient. We obtain:

r C
$o(C) = h(det C) + ; Bi(det C)eh; (M) , (20)

which still satisfies (18) and hence can be extended with C? smoothness to
Q;’. In particular, for constant coefficients (; the above energy function ¢g
completely decouples into the sum of a volumetric term and a deviatoric
one.

In order to obtain a model energy for the s-h (first-order) transformation,
we seek numerical values of 3; in (20) such that the global minimum is always
either the square or the hexagonal state, and when changing a parameter,
the system goes through the following three regimes: (i) the square state
is the global minimum, and the hexagonal is unstable (precisely, a saddle
point); (ii) both the square and the hexagonal states are local minima; (iii)
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FIGURE 4: Bifurcation for the energy (21): dotted and solid lines indi-
cate unstable and stable critical points, respectively. The bifurcation
between the square and rhombic critical points is transverse in our C?
energy, but would be the usual pitchfork for C? and smoother energies.
The other bifurcation is generically ‘transcritical’ (i.e. transverse). The
pattern shown here repeats itself according to GL(2, Z)-symmetry, so
that three [two] rhombic branches meet each hexagonal [square] branch
at the bifurcation point.

the hexagonal is the global minimum, and the square is unstable (see Fig. 4;
stability here is always determined, away from bifurcation points, through
the usual second-derivatives test). This leads to an underdetermined set of
restrictions on the coefficients 3;, which are met for instance by choosing
Bs=1,02=01=05=0s =07 =0, and —1/4 < 3y < 4. The parameter
(1 now plays the role of ‘temperature’, hence we call it € in the final form
of our energy:

C C
0€.0) =00 (i) + o (g ) e C 17, o)

where the volumetric part has been taken to be quadratic. It is straightfor-
ward to verify that due to the GL(2, Z)-invariance of ¢, the elastic moduli
of the square and hexagonal energy minimizers, have square and hexagonal
symmetry, respectively.

5 Transformation cycles: dislocations

and plasticity phenomena
Some numerical examples illustrate how this model is useful in the study
of reconstructive transformations in a planar crystal, with the associated

phenomena of microstructure and dislocation formation. We take as refer-
ence a portion of the simple lattice (1), and assume its strain-energy density
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FIGURE 5: Decomposition of the crystal in triangles, and construction
of the basis vectors used in the numerical computations (see Sect. 5).

to be as in (21). The numerical approach we use for computing the total
energy of any deformation of the reference lattice is based on a set of atomic
coordinates, from which the deformation gradient is constructed using lin-
ear finite elements. Precisely, let {r;};,—1 n be the position vectors of the N
atoms considered. The lattice is first subdivided into triangles, with vertices
on the atoms; for example, the triangle T}, has vertices (rq,,rs,,r~,). (The
topology of this decomposition remains fixed during the computation.)

In each triangle T} the continuous deformation u; is defined by means of
the linear interpolation between the positions of the vertices, in the deformed
configuration. The corresponding basis vectors are given by

fl(k) f2(k)

=rg, —Tq,, =T, — T, (22)

and the metric is given by C’i(f) = fi(k) . f](k), for i,7 = 1,2 (see Fig. 5). The
energy density at temperature 0 is then given by

E({ri},0) = > [Tiloo (C1).0) (23)

k

where the sum runs over all grid triangles T}, as illustrated in Figure 5,
and |Ty| = 1/2 denotes the area of the triangle T, in the reference con-
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FI1GURE 6: Three different triangulations of a polygon, which according
to Lemma 3 give the same energy for all affine deformations.

figuration.'® The invariance properties of the energy guarantee that any
permutation of {ay, Bk, 7%} in (22) will not change ¢(C*), 0), and that all
subdivisions of the domain are equivalent, for Bravais lattices. Precisely, all
triangulations of polygons which use only lattice points as vertices and only
triangles of the minimal area 1/2, as for example those illustrated in Figure
6, give exactly the same energy under all affine deformations of the reference
lattice.

Lemma 3. Let P C R? be a polygon in R? with vertices belonging to 72,
and F € R?>*? have positive determinant. Then, for any triangulation T =
{Ty ... Ty} covering P, such that each T; has area 1/2 and vertices in Z*NP,
we have

N

> [Teléo (C.0) = [Plon (FTF.6) . (24)

k=1
where C’g-f) = i(k) . f](k), fori, j =1,2, and fl(fz) are any two sides of the
deformed triangle FTy, defined as in (22).
Proof. We first show that any pair of sides (egk), egk)) of any triangle Ty, is, in
the reference configuration, a basis for Z2. Indeed, since T}, has vertices in Z?2
the lattice generated by the pair (egk) , egk)) is a subset of Z?2, and conversely,
since |Ti| = 1/2, it cannot be a strict subset. Therefore the corresponding
deformed pair (fl(k), fz(k)) = (F egk), F egk)) is a basis for the deformed lattice
F7?. By the invariance properties discussed above, the energy density ¢
does not depend on the basis, only on the lattice, hence each term in the
sum is given by the area of T (in the reference configuration), which is 1/2,
times the energy density ¢p, evaluated on any basis of the lattice FZ2.

Computing with the standard basis for Z2, namely, e; = (1,0) and

ey = (0,1), we get that

f; = Fe; = F, Cij = (Fi)-(Fj)=F'F (25)

19Tn agreement with ideas by Ericksen (1997, 1999) and Friesecke and Theil (2002), our
total energy computation for the crystalline body makes no assumptions relating atomic
movements to macroscopic deformations, such as the ‘Cauchy-Born hypothesis’ (Ericksen,
1984, Zanzotto, 1992, 1996).
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which concludes the proof.

This invariance implies that there is no need for relabeling, or, equiva-
lently, for dynamic neighbor lists. This is the reason why we can keep the
topology of the grid fixed during the transformation. Clearly one cannot ex-
pect the invariance under the choice of triangulation to hold strictly for all
non-affine deformations of the lattice, since the three-body interactions we
consider are local in nature. However, Lemma 3 shows that the dependence
on the choice of the grid is strong only in the regions, such as dislocation
cores, where deviations from homogeneous deformations are large, and any
elastic treatment is necessarily only a first approximation.

The gradient of the energy with respect to the atomic positions can
be computed analytically, but its explicit expression is rather cumbersome
and is not given here. Our code is then based on a mixture of gradient
flow and random displacements. More precisely, we perform gradient flow,
and periodically displace randomly all atoms by a small fraction (around
2%) of the atomic spacing, to accelerate the exploration of the phase space.
Note that the model on which our code is based is nonlinear elasticity, and
thus markedly different from the pair-potential or embedded-atom models
typical of numerical investigations of analogous phenomena performed with
molecular dynamics (see, e.g., Morris and Ho, 2001).

By using this method, we now observe the quasistatic evolution of the
lattice through two s-h transformation cycles. We start at § = 8, = —0.2,
with the crystal in a homogeneous square configuration, which realizes a
(homogeneous) minimizer of the energy functional, as in Fig. 7(a). Fig. 7(b)
shows a state obtained by computing with the hexagonal energy (0 = 6, =
3.5) starting from (a). We observe the formation of a twinned microstructure
involving two hexagonal variants and two different lamination directions (the
ground state would involve only one such direction). In Fig. 7(c) the crystal
is brought back to the square phase, by computing with 8 = 6, starting from
(c). Here we observe the formation of several defects: a dislocation in the
lower-right part of the crystal, and a bulk and a surface interstitial in the
upper-right part. In Fig. 7(d) we show the result obtained by starting a
second transformation cycle from (c), with the hexagonal energy. Again, we
observe different twinned microstructures in different parts of the sample,
and some strains arising from kinematic incompatibility. Finally, Fig. 7(d)
shows the end of the second cycle, in which the sample accumulates defects
in the square phase.
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(c) (d) (e)

FIGURE 7: Positions of the atoms in the numerical computation de-
scribed in Sect. 5. (a) The initial square configuration. (b) A state
obtained by evolving with the hexagonal energy (6 = 0}) starting from
(a). (c) The result of evolution with 6§ = 6, starting from (b). (d)
The result of evolution with 8 = 6}, starting from (c). (e) The result
of evolution with 6 = 6,, starting from (d).
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