A variational model for reconstructive phase transformations in crystals, and their relation to dislocations and plasticity

Sergio Conti ${ }^{1}$ and Giovanni Zanzotto ${ }^{2}$
${ }^{1}$ Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig, Germany
conti@mis.mpg.de
${ }^{2}$ Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate - DMMMSA
Università di Padova
Via Belzoni 7, 35131 Padova, Italy
zanzotto@dmsa.unipd.it

December 10, 2003

Abstract

We study the reconstructive martensitic transformations in crystalline solids (i.e. martensitic transformations in which the parent and product lattices have arithmetic symmetry groups admitting no finite supergroup), the best known example of which is the bcc-fcc transformation in iron. We first describe the maximal Ericksen-Pitteri neighborhoods in the space of lattice metrics, thereby obtaining a quantitative characterization of the 'weak' transformations, which occur within these domains. Then, focusing for simplicity on a two-dimensional setting, we construct a class of strain-energy functions admitting large strains in their domain, and which are invariant under the full symmetry group of the lattice. In particular, we exhibit an explicit energy suitable for the square-to-hexagonal reconstructive transformation in planar lattices. We present a numerical scheme based on atomic-scale finite elements and, by means of our constitutive function, we use it to analyze the effects of transformation cycling on a planar crystal. This example illustrates the main phenomena related to the reconstructive martensitic phase changes in crystals: in particular, the formation of dislocations, vacancies and interstitials in the lattice.

1 Introduction

'Reconstructive' martensitic transformations in crystalline materials are characterized by the absence of a finite supergroup for the arithmetic symmetry groups of the phases involved, as is the case for example in the well-known $\alpha-\gamma$ transformation in iron and other ferrous materials, which takes a bodycentered cubic (bcc) to a face-centered cubic (fcc) structure. In these transitions the crystalline symmetry is initially reduced along the transformation path (e.g. from bcc to face-centered tetragonal), and then increases when the final state is reached (e.g. from face-centered tetragonal to bcc). ${ }^{1}$
'Weak' martensitic transformations, in contrast, entail phases whose symmetry groups admit a common finite supergroup, and 'small' strains which remain in a suitable neighborhood of the parent configuration (a typical case is given by the symmetry-breaking transformations, where the symmetry groups are in an inclusion relation), see for instance Ericksen (1989). The current mathematical understanding of weak transformations within nonlinear elasticity is based on choosing a suitable finite subgroup out of the full discrete symmetry group of the crystal, which, a priori, is infinite, see Ericksen (1970, 1977, 1980), Parry (1976), Pitteri (1984). This line of thinking is compatible with the classical Landau theory for phase transitions, and has proved remarkably successful especially in the investigation of symmetry-breaking transformations, with the related phenomena of twinning and microstructure formation, as they occur for example in shapememory and magnetostrictive alloys (Ball and James, 1987, 1992, Luskin, 1996, Bhattacharya, 2003, Müller, 1999, James and Hane, 2000, Pitteri and Zanzotto, 2002). The significance and applicability range of the Landau theory have also been clarified by these methods.

Reconstructive transformations, on the other hand, lay outside the reach of the standard Landau-theory approach, and a model for them proves harder to develop than in the weak case. Firstly, an explicit characterization of the strains pertaining to weak vs. reconstructive phase changes is at present still missing. The main difficulty in the elastic modeling of reconstructive transitions, however, is that the invariance of the strain-energy function of the material is not described by a finite group, as the full (infinite, discrete) invariance of the crystal must be taken into account - no choice of a finite subgroup suffices. As a consequence, the relaxed energy of a crystalline substance only depends on the specific volume (Fonseca, 1987), which is a feature typical of fluids, not of solids. The relaxation must thus include slip-like processes and the creation and motion of dislocations, which, as we discuss below, are obtainable within a purely elastic framework if the

[^0]energy density exhibits the full symmetry of the lattice. A related problem is clarifying which explicit functional forms the (unrelaxed) elastic energy density should have in order to exhibit such full lattice symmetry. ${ }^{2}$

These are, broadly, the questions of interest in this paper. We first characterize the domains in which the weak transformations occur; then, restricting ourselves to the two-dimensional case, we write a class of strain-energy functions with full lattice invariance, defined also for the large deformations that are typical of the reconstructive phase changes. Finally, we consider an explicit constitutive function suitable for the square-to-hexagonal (s-h) reconstructive transformation in planar lattices, and, by investigating numerically the evolution of an initially perfect lattice under repeated transformations, we observe twinning, slip-like processes, dislocations and other defects.

Our results put in evidence the marked differences between the reconstructive and weak phase changes. The latter are largely reversible, leading for instance to shape memory in some alloys. On the contrary, reconstructive transformations will generate defects in the lattice, preventing the reversibility of the transformation process. The relation of these ideas with experimentally-known properties of transitions in metals and other alloys will be discussed elsewhere (Bhattacharya, Conti, Zanzotto, and Zimmer, 2003). These general effects are present both in two and three dimensions, and we remark that our analysis of the s-h transformation may be directly applicable to two-dimensional periodic structures occurring in a number of physical systems, such as flux line lattices (Gammel et al., 1999) and vortex lattices (Chang et al., 1998) in superconductors, Wigner crystals in the two-dimensional electron gas (Holz, 1980, Ando et al., 1982), and skyrmion crystals in quantum Hall systems (Rao et al., 1997).

In Sect. 2 we recall some basic facts about the symmetry of twodimensional (2-d) simple lattices (or 'Bravais lattices'). We introduce the classical action of the group $G L(2, \mathbb{Z})$ of 2 by 2 invertible integral matrices on the space \mathcal{Q}_{2}^{+}of 2 -d positive-definite quadratic forms (lattice metrics), and recall the ensuing subdivision of planar simple lattices, and their metrics, into five 'Bravais types'. ${ }^{3}$ Following Engel (1986), we also describe the set of 'Lagrange-reduced forms' of lattice metrics, which gives a fundamental domain for this action - see Table 1, and Figs. 1-2.

[^1]In Sect. 3 we recall a geometric result that introduces the 'EricksenPitteri Neighborhoods' (EPNs) in the space of lattice metrics (see Ericksen, 1980, Pitteri, 1984). These regions are used to reduce in a rational way the domain of the energy functions of crystals, so that only finite crystallographic groups describe their invariance, as in the classical theories - see the references above. We then give a procedure (which works in any dimension $n \geq 2$) to construct maximal EPNs, which leads to a quantitative characterization of the threshold between weak and reconstructive martensitic transformations. We also discuss some explicit examples of maximal EPNs for $n=2$ (see Fig. 3).

In Sect. 4 we study a class of $G L(2, \mathbb{Z})$-invariant strain-energy functions on \mathcal{Q}_{2}^{+}that can model the behavior of planar lattices undergoing reconstructive transformations. We give an explicit energy for the s-h reconstructive phase change, which in suitable temperature ranges exhibits absolute minimizers with either square or hexagonal symmetry. ${ }^{4}$ Some properties of $G L(2, \mathbb{Z})$-invariant constitutive functions on \mathcal{Q}_{2}^{+}have been investigated by Folkins (1991) and Parry (1998), based on the use of the classical modular functions on the upper complex half plane. Our energies, however, are much more explicit, being constructed by 'patching' suitable polynomials of scaled variables, so as to obtain enough smoothness and the desired symmetry. Through our elementary method it is also quite straightforward to prescribe the correct minimizers of the model.

In Sect. 5 we present a numerical scheme which incorporates the $G L(2, \mathbb{Z})$ invariant energy, and use it to investigate numerically the effects produced on a lattice by taking it through two s-h-s transformation cycles, starting from a homogeneous configuration with square symmetry. We observe the development of twin bands when the system is transformed into the hexagonal phase (Figs. 7(b) and 7(d)), and the formation of dislocations or vacancies when the system is taken back to the square phase (Figs. $7(\mathrm{c})$ and $7(\mathrm{e})$).

2 Crystallography

2.1 The arithmetic symmetry of simple lattices

A 2-d simple ('Bravais') lattice is an infinite and discrete subset of \mathbb{R}^{2}, given by:

$$
\begin{equation*}
\mathcal{L}\left(\mathbf{e}_{a}\right)=\left\{\mathbf{v} \in \mathbb{R}^{2}: \mathbf{v}=v^{a} \mathbf{e}_{a}, v^{a} \in \mathbb{Z}\right\} \tag{1}
\end{equation*}
$$

[^2](hereafter the summation convention is understood). The independent vectors $\mathbf{e}_{a}, a=1,2$, are the lattice basis, and the metric (or 'Gram matrix') $C=\left(C_{a b}\right)$ of \mathcal{L} is
\[

$$
\begin{equation*}
C_{a b}=C_{b a}=\mathbf{e}_{a} \cdot \mathbf{e}_{b} \quad(1 \leq a, b \leq 2) \tag{2}
\end{equation*}
$$

\]

The space \mathcal{Q}_{2}^{+}of lattice metrics is the 3 -d linear cone collecting all the positive-definite symmetric 2 by 2 real matrices.

Given a Bravais lattice, its basis and metric are not uniquely determined. Two bases $\overline{\mathbf{e}}_{a}$ and \mathbf{e}_{a} generate the same lattice if and only if they are related by an invertible integral matrix; for the $2-\mathrm{d}$ case one has:

$$
\begin{equation*}
\mathcal{L}\left(\mathbf{e}_{a}\right)=\mathcal{L}\left(\overline{\mathbf{e}}_{a}\right) \quad \Leftrightarrow \quad \overline{\mathbf{e}}_{b}=m_{a b} \mathbf{e}_{a} \text { with } m=\left(m_{a b}\right) \in G L(2, \mathbb{Z}) \tag{3}
\end{equation*}
$$

where $G L(2, \mathbb{Z})$ denotes the group of 2 by 2 invertible matrices with integral entries. Since each lattice determines its bases up to a transformation in this group, the latter is said to be the 'global symmetry group' of planar lattices. The change of basis in (3) induces, in obvious notation, the following change of the lattice metric C in (2):

$$
\begin{equation*}
\bar{C}=m^{t} C m \tag{4}
\end{equation*}
$$

where m^{t} denotes the transpose of a matrix m. Equation (4) defines a natural action of $G L(2, \mathbb{Z})$ on \mathcal{Q}_{2}^{+}, which is considered in crystallography for studying the arithmetic symmetry of simple lattices, also in the general case of n dimensions. The action (4) subdivides the space of metrics, and hence the lattices themselves, into equivalence classes ('strata'), which in crystallographic theories correspond to the well-known 'Bravais types' of lattices (see Engel, 1986, Michel, 2001).

Explicitly, if C is the metric of a basis \mathbf{e}_{a}, let their 'lattice group' or 'arithmetic holohedry' be defined as

$$
\begin{align*}
L\left(\mathbf{e}_{a}\right) & =\left\{m \in G L(2, \mathbb{Z}): m_{a b} \mathbf{e}_{a}=Q \mathbf{e}_{b}, Q \in O(2)\right\} \\
& =\left\{m \in G L(2, \mathbb{Z}): m^{t} C m=C\right\} \tag{5}\\
& =L(C)
\end{align*}
$$

This group transforms by conjugacy under a change of basis (3) for the same lattice:

$$
\begin{equation*}
L\left(m_{a b} \mathbf{e}_{a}\right)=m^{-1} L\left(\mathbf{e}_{b}\right) m \quad \text { for all } \quad m \in G L(2, \mathbb{Z}) \tag{6}
\end{equation*}
$$

a given lattice $\mathcal{L}\left(\mathbf{e}_{a}\right)$ therefore determines an entire conjugacy class of lattice groups in $G L(2, \mathbb{Z})$. One then defines two lattices \mathcal{L} and \mathcal{L}^{\prime} as having the same Bravais type (i.e. they belong to the same stratum of the action (4)) when they are associated to the same conjugacy class in $G L(2, \mathbb{Z})$, that is, when their lattice groups are arithmetically conjugate. In an analogous way, one subdivides into Bravais types also the lattice metrics. A classical result

Crystal system (International Symbol)	Lattice type (International Symbol)	Fixed set	Lattice group (up to inversion)
oblique (2)	oblique $(p 2)$	$\begin{aligned} & 0<C_{11}<C_{22} \\ & 0<C_{12}<\frac{C_{11}}{2} \end{aligned}$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
rectangular (2mm)	rectangular ($p 2 \mathrm{~mm}$)	$\begin{gathered} 0<C_{11}<C_{22} \\ C_{12}=0 \end{gathered}$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
	rhombic or centeredrectangular (c2mm)	Fixed set I $\begin{aligned} & 0<C_{11}=C_{22} \\ & 0<C_{12}<\frac{C_{11}}{2} \end{aligned}$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
		Fixed set II $\begin{aligned} & 0<C_{11}<C_{22} \\ & 0<C_{12}=\frac{C_{11}}{2} \end{aligned}$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)$
square (4mm)	square ($p 4 m m$)	$\begin{gathered} 0<C_{11}=C_{22} \\ C_{12}=0 \end{gathered}$	$\begin{aligned} & \left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \\ & \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right) \end{aligned}$
hexagonal (6 mm)	hexagonal (p 6 mm)	$\begin{aligned} & 0<C_{11}=C_{22} \\ & 0<C_{12}=\frac{C_{11}}{2} \end{aligned}$	$\begin{aligned} & \left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array}\right), \\ & \left(\begin{array}{cc} 1 & 1 \\ -1 & 0 \end{array}\right),\left(\begin{array}{cc} -1 & 0 \\ 1 & 1 \end{array}\right) \\ & \left(\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}\right),\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right) \end{aligned}$

Table 1: The five Bravais types of simple lattices in 2-d, and the fixed sets (sets of metrics with given lattice group) intersecting the fundamental domain \mathcal{D} in (9), with the corresponding lattice groups (only one element of each pair $(m,-m)$ is tabulated). See also Fig. 1.
in 2-d finds five Bravais types in \mathcal{Q}_{2}^{+}, denominated oblique, rectangular, rhombic (or centered-rectangular), hexagonal, and square - see Theorem 7.8 in Engel (1986), or Michel (1995); see also Table 1.

The notion of lattice group allows us to give a precise definition of which transformations in Bravais lattices are reconstructive. Consider a linear map T transforming a lattice $\mathcal{L}\left(\mathbf{e}_{a}\right)$ onto the lattice $\mathcal{L}\left(\mathbf{f}_{a}\right)$, with basis vectors $\mathbf{f}_{a}=T \mathbf{e}_{a}$. We call T reconstructive when the group generated by

$$
\begin{equation*}
L\left(\mathbf{e}_{a}\right) \cup L\left(\mathbf{f}_{a}\right) \tag{7}
\end{equation*}
$$

in $G L(2, \mathbb{Z})$ is infinite. This definition does not depend on the choice of the lattice basis, if one also keeps track of the corresponding basis change in the target lattice. Precisely, the different basis $\overline{\mathbf{e}}_{b}=m_{a b} \mathbf{e}_{a}$ is mapped by T onto $\overline{\mathbf{f}}_{b}=m_{a b} \mathbf{f}_{a}$. Then, by (6) the groups change by conjugacy, according to

$$
\begin{equation*}
L\left(\overline{\mathbf{e}}_{a}\right) \cup L\left(\overline{\mathbf{f}}_{a}\right)=m^{-1}\left(L\left(\mathbf{e}_{a}\right) \cup L\left(\mathbf{f}_{a}\right)\right) m \tag{8}
\end{equation*}
$$

and hence the cardinality of the generated group does not change.

2.2 A fundamental domain

The question of how to select a representative metric for each orbit in \mathcal{Q}_{2}^{+} (that is, for each Bravais lattice) is a natural one that arises also in the theory of the arithmetic reduction of real quadratic forms, initiated by Lagrange and later pursued by many others, among whom Dirichlet, Jordan, Seeber. A 'fundamental domain' for the action (4) is a subset of \mathcal{Q}_{2}^{+}such that each $G L(2, \mathbb{Z})$-orbit in \mathcal{Q}_{2}^{+}has one and only one element in that subset. A simply connected fundamental domain in $2-\mathrm{d}$ is the following: ${ }^{5}$

$$
\begin{equation*}
\mathcal{D}=\left\{C \in \mathcal{Q}_{2}^{+}, \quad 0<C_{11} \leq C_{22}, \quad 0 \leq C_{12} \leq \frac{C_{11}}{2}\right\} \tag{9}
\end{equation*}
$$

whose metrics are said to have the 'reduced form of Lagrange' (see Engel, 1986, Michel, 1995). ${ }^{6}$ A representation of \mathcal{D} is given in Fig. 1.

Given an arbitrary basis \mathbf{e}_{a}, the unique basis conjugate to it with metric in the fundamental domain \mathcal{D} can be obtained in finitely many steps by iterating the following procedure: (i) if $\left|\mathbf{e}_{1}\right| \geq\left|\mathbf{e}_{2}\right|$, swap the two vectors; (ii) if $\mathbf{e}_{1} \cdot \mathbf{e}_{2} \leq 0$, change sign to \mathbf{e}_{2}; (iii) if $\mathbf{f}=\mathbf{e}_{1}-\mathbf{e}_{2}$ is shorter than \mathbf{e}_{2}, replace \mathbf{e}_{2} with \mathbf{f}. It is straightforward to restate the same procedure in terms of

[^3]

Figure 1: A two-dimensional representation of the intersection of the fundamental domain \mathcal{D} in (9) with the plane $C_{11}+C_{22}=1$, projected on the plane $\left(C_{11}, C_{12}\right)$. The five Bravais types in \mathcal{Q}_{2}^{+}are represented in \mathcal{D} as shown (International Symbols are used). See Table 1 for a list of the corresponding lattice groups. Unlike the other four lattice types, the rhombic (or centered-rectangular) type is represented in \mathcal{D} by two sets of metrics ('fat' and 'skinny' rhombi - see Footnote 8) with two distinct but arithmetically equivalent lattice groups. Details are given in Sect. 2.2 and Sect. 3.2.
the lattice metrics, and check that it always converges to $\mathcal{D} .{ }^{7}$ The fundamental domain \mathcal{D} in (9) is subdivided into six subsets, the metrics in each of which are stabilized by six distinct lattice groups, as in (5); see Fig. 1 and Table 1. One obtains six subsets for five lattice types because the rhombic (or centered-rectangular) lattice type is represented by two distinct sets of Lagrange-reduced metrics, having two distinct (but arithmetically equivalent) lattice groups. ${ }^{8}$ The fundamental domain \mathcal{D} and its symmetry-related copies $m^{t} \mathcal{D} m, m \in G L(2, \mathbb{Z})$ cover the entire space \mathcal{Q}_{2}^{+}, as represented in Fig. 2. In the case of 3-d lattices, the corresponding information of how the (six-dimensional) space of metrics is explicitly decomposed into copies

[^4]

Figure 2: Section on the plane $C_{11}+C_{22}=1$ (with coordinates C_{11}, C_{12}) of the space \mathcal{Q}_{2}^{+}, see Michel (1995). The $G L(2, \mathbb{Z})$-related copies of the fundamental domain \mathcal{D} in Fig. 1 fill \mathcal{Q}_{2}^{+}. The full squares and empty hexagons indicate a few metrics with square and hexagonal symmetry, respectively. The dotted lines represent the rectangular metrics, the solid lines the rhombic metrics. The dense open set of the other points represents the generic (oblique) lattice metrics.
of the fundamental domain does not seem to be available.

3 Global and local symmetries of simple lattices

3.1 Ericksen-Pitteri neighborhoods (EPNs)

In Sect. 2 we have seen how the the action (4) of the group $G L(2, \mathbb{Z})$ on the space of lattice metrics \mathcal{Q}_{2}^{+}describes the global symmetry of planar lattices. In this section we recall a result showing how such global symmetry reduces to the classical one given by the usual 2-d crystallographic groups. Indeed, within suitable 'Ericksen-Pitteri neighborhoods' (EPNs) in \mathcal{Q}_{2}^{+}one needs only consider the action and invariance given by appropriate lattice (sub)groups of $G L(2, \mathbb{Z})$ as in (5). We remark that the notion of EPN holds in any dimension n.

Given any lattice metric C_{0}, an open neighborhood \mathcal{N} of C_{0} in \mathcal{Q}_{2}^{+}is an EPN if the following properties hold: ${ }^{9}$

${ }^{9}$ Equivalently:

(i) $m^{t} \mathcal{N} m=\mathcal{N}$ for all $m \in L\left(C_{0}\right)$;
(ii) $m^{t} \mathcal{N} m \cap \mathcal{N}=\emptyset$ for all $m \in G L(2, \mathbb{Z}) \backslash L\left(C_{0}\right)$.
(i) for all $m \in L\left(C_{0}\right), C \in \mathcal{N}$ implies $m^{t} C m \in \mathcal{N}$;
(ii) if for some $m \in G L(2, \mathbb{Z})$ there is $C \in \mathcal{N}$ such that $m^{t} C m \in \mathcal{N}$, then $m \in L\left(C_{0}\right)$.

Every $C_{0} \in \mathcal{Q}_{2}^{+}$has a nonempty EPN, see Pitteri (1984), Ball and James (1992). See also Duistermaat and Kolk (1999) for a general treatment of 'slices' of group actions. Pitteri and Zanzotto (2002) give a description of the local structure of the EPNs in (2- and) 3-d. As the metrics in an EPN are at most as symmetric as the 'center' metric C_{0}, these neighborhoods are the natural domains on which one analyzes symmetry-breaking transformations involving finite but not 'too large' lattice distortions, as in the literature mentioned in the Introduction. Indeed, the EPNs help formalizing the notion of a weak transformation as a phase change completely taking place within one such neighborhood (Ericksen, 1989). As the metrics of the initial, final, and any intermediate states belong to a single EPN, their symmetry groups are all included in the symmetry group of the neighborhood's center. Clearly, the reconstructive transformations considered here are necessarily not weak.

3.2 Maximal EPNs

The above-mentioned existence results about EPNs do not give a quantitative measure for weak vs. reconstructive transformations. Typical reconstructive cases are the s-h or the bcc-fcc phase changes, which both involve maximal lattice groups (i.e not contained in any other lattice group in 2-d and 3 -d, respectively). In general, however, one must also know how large the EPNs are, in order to have an explicit criterion to differentiate between weak and reconstructive transitions. In this section we describe how, given a 'good enough' fundamental domain, one can construct maximal EPNs, that is, open EPNs not strictly contained in any other open EPN (this method works in any dimension $n \geq 2$).

Proposition 1. Let \mathcal{D} be a fundamental domain whose boundary has measure zero - as for instance in (9) -, and fix a metric $C_{0} \in \mathcal{D}$. Let

$$
\begin{equation*}
\Omega=\left\{m^{t} C m: m \in L\left(C_{0}\right), C \in \mathcal{D}\right\} . \tag{10}
\end{equation*}
$$

Then, the inner part Ω_{0} of the set Ω is a maximal EPN of C_{0}.
We observe that every orbit has (at least) a representative in the closure of the maximal EPN Ω_{0} considered in the Proposition. This representative is in general not unique, as each orbit in \mathcal{Q}_{2}^{+}must have as many elements in an EPN $\mathcal{N}\left(C_{0}\right)$ as is dictated by the local symmetry given the lattice group $L\left(C_{0}\right)$ of the center C_{0}. On the other hand, it is clear that not every orbit can have a representative in Ω_{0}, as, for instance, the square and hexagonal metrics have symmetry groups with no finite common supergroup.

To prove Proposition 1, we first give two lemmas. In the following we denote by $m \circ C=m^{t} C m$ the natural action of $G L(n, \mathbb{Z})$ on \mathcal{Q}_{n}^{+}.

Lemma 1. Given a metric C and a neighborhood I of C, there is an EPN of C contained in I.

Proof. Let N be an EPN of C. The required set is

$$
\begin{equation*}
N \cap \bigcap_{m \in L(C)}\{m \circ C: C \in I\} . \tag{11}
\end{equation*}
$$

Lemma 2. Let Ω be as in the statement of Proposition 1. If $C, C^{\prime} \in \Omega$, with $C^{\prime}=m \circ C$ for some $m \in G L(n, \mathbb{Z})$, then

$$
\begin{equation*}
m \in L\left(C_{0}\right) L(C) \tag{12}
\end{equation*}
$$

Proof. By definition there are $\bar{m}, \bar{m}^{\prime} \in L\left(C_{0}\right)$ such that $C=\bar{m} \circ \bar{C}$ and $C^{\prime}=\bar{m}^{\prime} \circ \bar{C}^{\prime}$, with $\bar{C}, \bar{C}^{\prime} \in \mathcal{D}$. The condition $C^{\prime}=m \circ C$ becomes $\bar{C}^{\prime}=$ $\left(\left(\bar{m}^{\prime}\right)^{-1} m \bar{m}\right) \circ \bar{C}$, which by definition of \mathcal{D} implies $\bar{C}^{\prime}=\bar{C}$. Then we get $C^{\prime}=\bar{m}^{\prime} \bar{m}^{-1} \circ C$, which together with $C^{\prime}=m \circ C$ gives the thesis.

Proof of Proposition 1. We first show that Ω_{0} is an EPN of C_{0}. The first property of the EPNs (invariance under $L\left(C_{0}\right)$) is obvious. To verify the second one, let $C, C^{\prime} \in \Omega_{0}$, with $C^{\prime}=m \circ C$. If $L(C) \leq L\left(C_{0}\right)$, by Lemma 2 the thesis is verified. Otherwise, choose $\tilde{m} \in L(C) \backslash L\left(C_{0}\right)$, and let I be an EPN of C contained in Ω_{0} (Lemma 1). We now choose in I a metric \tilde{C} whose lattice group $L(\tilde{C})$ is minimal (i.e. for all $C^{\prime \prime} \in \mathcal{Q}_{n}^{+}, L(\tilde{C}) \leq L\left(C^{\prime \prime}\right)$). Consider now $\tilde{C}, \tilde{m} \circ \tilde{C} \in I \subset \Omega$. By Lemma 2 we have

$$
\begin{equation*}
\tilde{m} \in L\left(C_{0}\right) L(\tilde{C})=L\left(C_{0}\right), \tag{13}
\end{equation*}
$$

which is a contradiction. It remains to show that Ω_{0} is maximal. If not, there would be an open EPN Ω_{1} which strictly contains Ω_{0}. Since Ω_{1} contains at most finitely many copies of each metric (at most as many as is the cardinality of $L\left(C_{0}\right)$), copies of the boundary of \mathcal{D} can cover only a zeromeasure subset of $\Omega_{1} \backslash \Omega_{0}$. Hence we can find C^{\prime} with minimal symmetry in the interior of \mathcal{D} and $m \in G L(2, \mathbb{Z})$ such that $m \circ C^{\prime} \in \Omega_{1} \backslash \Omega_{0}$. Since C^{\prime} is in Ω_{0} and $m \circ C^{\prime}$ is not, m cannot be in $L\left(C_{0}\right)$. But since C^{\prime} and $m \circ C^{\prime}$ are both in Ω_{1}, m must be in $L\left(C_{0}\right)$. This gives a contradiction and concludes the proof.

To give some explicit examples in 2-d, we represent any C belonging to the cone \mathcal{Q}_{2}^{+}by means of the three coordinates C_{11}, C_{12}, C_{22}, with $C_{i i}>0$ and $C_{12}^{2}<C_{11} C_{22}$. Then, considering only the plane $C_{11}+C_{22}=1$ (with coordinates C_{11} and $C_{12}, 0<C_{11}<1$ and $\left.\left|C_{12}\right|<C_{11}^{1 / 2}\left(1-C_{11}\right)^{1 / 2}\right)$, amounts to giving the elements of \mathcal{Q}_{2}^{+}up to a rescaling, which we will

Figure 3: Examples of maximal EPNs in \mathcal{Q}_{2}^{+}, indicated as dashed areas. (a) Maximal EPN for a square lattice metric, and (b) for a hexagonal lattice metric. See Sect. 3.2 for details. In both cases, the boundary does not belong to the (open) maximal EPN.
no longer mention in the rest of this section. On this plane, the trace of the fundamental domain \mathcal{D} in (9) - still called \mathcal{D} for simplicity - has a particularly simple form: it is the triangle with vertices $S=(1 / 2,0)$, $H^{+}=(1 / 2,1 / 4)$, and $(0,0)$, the latter not being included in $\mathcal{D}-$ see Fig. 1. The trace of \mathcal{Q}_{2}^{+}on the plane $C_{11}+C_{22}=1$ is covered by copies of \mathcal{D} obtained by means of the action (4), as shown in Fig. 2.

Now, it is straightforward to describe some maximal neighborhoods in \mathcal{Q}_{2}^{+}. A maximal EPN for the square metric $S=(1 / 2,0)$ is the open rhombus centered on S, composed by the four copies of \mathcal{D} obtained through the action of the lattice group $L(S)$ on \mathcal{D} (see Table 1 for a list of the elements in $L(S)$). As shown in Fig. 3(a), there are two distinct hexagonal metrics on the boundary of this maximal EPN. Analogously, for the hexagonal metric $H^{+}=(1 / 2,1 / 4)$ a maximal EPN is an open triangle containing six copies of \mathcal{D}, with three distinct square metrics on its boundary - see Fig. 3(b). For an oblique metric a maximal EPN coincides with the inner part of (the appropriate copy of) \mathcal{D}; for a rhombic or rectangular metric, a maximal EPN is composed by the two copies of \mathcal{D} whose common boundary contains the given metric.

It is instructive to consider in this picture the phase transformations of a lattice. For instance, a (weak) square-to-rhombic transition involves the parent square metric $S=(1 / 2,0)$ and two product rhombic metrics $R^{ \pm}=(1 / 2, \pm r)$, with $0<r<1 / 4$; the choices \pm correspond to the two rhombic metrics ('variants') that exist in an EPN of S, which belong to the same $L(S)$-orbit. In the homogeneous configuration with metric S the basis vectors of the lattice are orthogonal: $r=\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$; when the lattice is transformed to one of the configurations with metrics $R^{ \pm}$, the distortion
breaks the orthogonality relation $r=0$, but leaves the basis vectors of equal length. This transformation is weak as for not too-large r the metrics involved do not exit from the maximal EPN of S constructed above (twinning arises when the lattice deforms in a piecewise linear fashion to a configuration involving both the variants $\left.R^{ \pm}\right)$. If the system is made to transform back to the square phase, it is reasonable to assume that it will all go back to the metric S, due to strong energy barriers in the direction of any other square metric, which are 'far-away' from (that is, they are not in any EPN containing) the metrics $S, R^{ \pm}$. This reasoning is the basis of the mathematical theory of the shape-memory effect - see the literature quoted in the Introduction.

If, on the other hand, the homogeneous lattice configuration is transformed from S to one or both of the variants $H^{ \pm}=(1 / 2, \pm r)$, with $r=1 / 4$, the strain is so large that the deformed system with metric H^{+}has actually gained full hexagonal symmetry: we have a reconstructive transformation (which cannot be weak because the metrics $S, H^{ \pm}$cannot all belong to a single EPN). Also in this case there can be twinning and the formation of microstructure in the transformed lattice, as its cells may find themselves either in the variant H^{+}or H^{-}(see Fig. 3(a)). However, things differ considerably from the weak case on going back to the square phase. In this instance, neglecting elastic interactions, the cells in the configuration H^{+} have in principle equal chances of going to any of the three neighboring square metrics $S_{1}=S=(1 / 2,0), S_{2}=(1 / 3,1 / 3)$ or $S_{3}=(2 / 3,1 / 3)$; likewise for H^{-}(Fig. 3(b)). In a large-enough lattice one expects that all these five square choices may be present in different parts of the crystal. Transformation cycling can thus have the result of moving different parts of the sample from S_{1} to four other square metrics. This generates defects which can be either localized (interstitials, vacancies) or long-range (dislocations). An energetic model for these effects is presented and discussed in the rest of this paper.

4 Elastic potentials for reconstructive phase changes and the square-to-hexagonal transformation

The free energy density ϕ of a lattice depends on the basis vectors \mathbf{e}_{a}, and due to Euclidean invariance, it actually depends only on their inner products, that is, on the lattice metric C, besides the temperature θ :

$$
\begin{equation*}
\phi=\phi(C, \theta) . \tag{14}
\end{equation*}
$$

From the discussion in the preceding section, we see that the phenomenological description of reconstructive transformations in (2-d) crystals entails energies ϕ whose domain in \mathcal{Q}_{2}^{+}is large enough to contain metrics not all belonging to a single EPN. These state functions also ought to identify the
different basis representations of the same lattice, so that, in the 2-d case, their invariance should be dictated by the action (4) of $G L(2, \mathbb{Z})$:

$$
\begin{equation*}
\phi(C, \theta)=\phi\left(m^{t} C m, \theta\right) \tag{15}
\end{equation*}
$$

for all θ, all C, and all $m \in G L(2, \mathbb{Z})$. This invariance requirement is achieved by setting

$$
\begin{equation*}
\phi(C, \theta)=\phi_{0}\left(C_{R}, \theta\right) \tag{16}
\end{equation*}
$$

where ϕ_{0} is a function defined on the fundamental domain \mathcal{D} in (9), and, for any $C \in \mathcal{Q}_{2}^{+}, C_{R} \in \mathcal{D}$ is the corresponding Lagrange-reduced form obtained as discussed in Sect. 2.2. One may choose any parameterization of ϕ_{0} in (16) - e.g. Fourier coefficients, polynomial expansions, etc. -, but in order to ensure suitable regularity of ϕ one needs to impose appropriate conditions on the boundary of \mathcal{D}, as discussed for instance by Parry (1976).

This procedure is simplified if one starts from a maximal EPN, as smoothness on most of the boundary of \mathcal{D} is then a consequence of the symmetry with respect to the lattice group of the center. In the following we require the continuity of the first and second derivatives of ϕ, which makes the elastic moduli of the lattice continuous. Since the determinant is invariant under $G L(2, \mathbb{Z})$, one can decouple the volumetric and the deviatoric parts of the energy by using scaled variables, i.e. writing ϕ_{0} as a function of $\operatorname{det} C$ and $C / \operatorname{det}^{1 / 2} C$. We will do so in our model, and assume the dependence on the latter variables to be polynomial.

We start by studying polynomials in the three variables C_{11}, C_{12}, C_{22}, with $C_{i i}>0$ and $C_{12}^{2}<C_{11} C_{22}$ as in Sect. 3.2 (no planar section of \mathcal{Q}_{2}^{+} is taken here). We first focus on a maximal EPN $\mathcal{N}\left(\bar{H}^{+}\right)$of the unimodular hexagonal metric $\bar{H}^{+}=(1,1 / 2,1)$, whose lattice group $L\left(\bar{H}^{+}\right)$is the hexagonal group in Table 1. A polynomial in C is invariant under $L\left(\bar{H}^{+}\right)$ if and only if it can be written as a polynomial in the following hexagonal invariants (see Smith and Rivlin, 1958):

$$
\begin{align*}
I_{1} & =\frac{1}{3}\left(C_{11}+C_{22}-C_{12}\right) \\
I_{2} & =\frac{1}{4}\left(C_{11}-C_{22}\right)^{2}+\frac{1}{12}\left(C_{11}+C_{22}-4 C_{12}\right)^{2} \tag{17}\\
I_{3} & =\left(C_{11}-C_{22}\right)^{2}\left(C_{11}+C_{22}-4 C_{12}\right)-\frac{1}{9}\left(C_{11}+C_{22}-4 C_{12}\right)^{3}
\end{align*}
$$

Then, let $\phi_{1}(C)$ be a generic sixth-order polynomial for $C \in \mathcal{D}$, expressed in terms of the I 's, and define $\phi(C)$ outside of \mathcal{D} by $G L(2, \mathbb{Z})$-symmetry as in (16). As the same polynomial form is retained in all of $\mathcal{N}\left(\bar{H}^{+}\right)$, we only need to impose C^{2} smoothness on the $C_{12}=0$ boundary (see Fig. 3 (b)). The extension through the latter is generated by a reflection, hence we need to require C^{2} smoothness for $\phi_{1}\left(C_{11},\left|C_{12}\right|, C_{22}\right)$ around $C_{12}=0$. This is
equivalent to

$$
\begin{equation*}
\left.\frac{\partial \phi_{1}}{\partial C_{12}}\right|_{C_{12}=0}=0 \tag{18}
\end{equation*}
$$

as the second derivative is automatically continuous. By imposing (18) to the sixth-order polynomial ϕ_{1} we obtain a 10-dimensional linear space, for which, as $\operatorname{det} C$ is $G L(2, \mathbb{Z})$-invariant, three basis vectors are trivially given by the determinant, its square and its cube. The remaining basis vectors are, for instance:

$$
\begin{align*}
& \psi_{1}=I_{1}^{4} I_{2}-\frac{41 I_{2}^{3}}{99}+\frac{7 I_{1} I_{2} I_{3}}{66}+\frac{I_{3}^{2}}{1056} \\
& \psi_{2}= I_{1}^{2} I_{2}^{2}-\frac{65 I_{2}^{3}}{99}+\frac{I_{1} I_{2} I_{3}}{11}+\frac{I_{3}^{2}}{264} \\
& \psi_{3}=\frac{4 I_{2}^{3}}{11}+I_{1}^{3} I_{3}-\frac{8 I_{1} I_{2} I_{3}}{11}+\frac{17 I_{3}^{2}}{528} \\
& \psi_{4}=\frac{9 I_{1}^{5}}{2}-4 I_{1}^{3} I_{2}+I_{1} I_{2}^{2}-\frac{I_{2} I_{3}}{48} \tag{19}\\
& \psi_{5}=48 I_{1}^{5}-24 I_{1}^{3} I_{2}+I_{1}^{2} I_{3} \\
& \psi_{6}=21 I_{1}^{4}-5 I_{2}^{2}+I_{1} I_{3} \\
& \psi_{7}=-\frac{5 I_{1}^{3}}{2}+I_{1} I_{2}-\frac{I_{3}}{48}
\end{align*}
$$

where the I 's are expressed in terms of C as in (17). The general sixth-order polynomial ϕ_{1} in C meeting (18) can thus be written as a linear combination of the above-mentioned ten basis vectors.

We can use this result to obtain energies ϕ_{0} which are polynomials in the scaled variables $C / \operatorname{det}^{1 / 2} C$, and have a generic dependency on $\operatorname{det} C$. Indeed, since the ψ_{i} are homogeneous the scaling of C with respect to $\operatorname{det} C$ gives a factor that we can incorporate into the coefficient. We obtain:

$$
\begin{equation*}
\phi_{0}(C)=h(\operatorname{det} C)+\sum_{i=1}^{7} \beta_{i}(\operatorname{det} C) \psi_{i}\left(\frac{C}{\operatorname{det}^{1 / 2} C}\right) \tag{20}
\end{equation*}
$$

which still satisfies (18) and hence can be extended with C^{2} smoothness to \mathcal{Q}_{2}^{+}. In particular, for constant coefficients β_{i} the above energy function ϕ_{0} completely decouples into the sum of a volumetric term and a deviatoric one.

In order to obtain a model energy for the s-h (first-order) transformation, we seek numerical values of β_{i} in (20) such that the global minimum is always either the square or the hexagonal state, and when changing a parameter, the system goes through the following three regimes: (i) the square state is the global minimum, and the hexagonal is unstable (precisely, a saddle point); (ii) both the square and the hexagonal states are local minima; (iii)

Figure 4: Bifurcation for the energy (21): dotted and solid lines indicate unstable and stable critical points, respectively. The bifurcation between the square and rhombic critical points is transverse in our C^{2} energy, but would be the usual pitchfork for C^{3} and smoother energies. The other bifurcation is generically 'transcritical' (i.e. transverse). The pattern shown here repeats itself according to $G L(2, \mathbb{Z})$-symmetry, so that three [two] rhombic branches meet each hexagonal [square] branch at the bifurcation point.
the hexagonal is the global minimum, and the square is unstable (see Fig. 4; stability here is always determined, away from bifurcation points, through the usual second-derivatives test). This leads to an underdetermined set of restrictions on the coefficients β_{i}, which are met for instance by choosing $\beta_{3}=1, \beta_{2}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{7}=0$, and $-1 / 4 \leq \beta_{1} \leq 4$. The parameter β_{1} now plays the role of 'temperature', hence we call it θ in the final form of our energy:

$$
\begin{equation*}
\phi_{0}(C, \theta)=\theta \psi_{1}\left(\frac{C}{\operatorname{det}^{1 / 2} C}\right)+\psi_{3}\left(\frac{C}{\operatorname{det}^{1 / 2} C}\right)+(\operatorname{det} C-1)^{2}, \tag{21}
\end{equation*}
$$

where the volumetric part has been taken to be quadratic. It is straightforward to verify that due to the $G L(2, \mathbb{Z})$-invariance of ϕ, the elastic moduli of the square and hexagonal energy minimizers, have square and hexagonal symmetry, respectively.

5 Transformation cycles: dislocations and plasticity phenomena

Some numerical examples illustrate how this model is useful in the study of reconstructive transformations in a planar crystal, with the associated phenomena of microstructure and dislocation formation. We take as reference a portion of the simple lattice (1), and assume its strain-energy density

Figure 5: Decomposition of the crystal in triangles, and construction of the basis vectors used in the numerical computations (see Sect. 5).
to be as in (21). The numerical approach we use for computing the total energy of any deformation of the reference lattice is based on a set of atomic coordinates, from which the deformation gradient is constructed using linear finite elements. Precisely, let $\left\{\mathbf{r}_{i}\right\}_{i=1 \ldots N}$ be the position vectors of the N atoms considered. The lattice is first subdivided into triangles, with vertices on the atoms; for example, the triangle T_{k} has vertices ($\mathbf{r}_{\alpha_{k}}, \mathbf{r}_{\beta_{k}}, \mathbf{r}_{\gamma_{k}}$). (The topology of this decomposition remains fixed during the computation.)

In each triangle T_{k} the continuous deformation \mathbf{u}_{k} is defined by means of the linear interpolation between the positions of the vertices, in the deformed configuration. The corresponding basis vectors are given by

$$
\begin{equation*}
\mathbf{f}_{1}^{(k)}=\mathbf{r}_{\beta_{k}}-\mathbf{r}_{\alpha_{k}}, \quad \mathbf{f}_{2}^{(k)}=\mathbf{r}_{\gamma_{k}}-\mathbf{r}_{\alpha_{k}}, \tag{22}
\end{equation*}
$$

and the metric is given by $C_{i j}^{(k)}=\mathbf{f}_{i}^{(k)} \cdot \mathbf{f}_{j}^{(k)}$, for $i, j=1,2$ (see Fig. 5). The energy density at temperature θ is then given by

$$
\begin{equation*}
E\left(\left\{\mathbf{r}_{i}\right\}, \theta\right)=\sum_{k}\left|T_{k}\right| \phi_{0}\left(C_{i j}^{(k)}, \theta\right) \tag{23}
\end{equation*}
$$

where the sum runs over all grid triangles T_{k}, as illustrated in Figure 5, and $\left|T_{k}\right|=1 / 2$ denotes the area of the triangle T_{k}, in the reference con-

Figure 6: Three different triangulations of a polygon, which according to Lemma 3 give the same energy for all affine deformations.
figuration. ${ }^{10}$ The invariance properties of the energy guarantee that any permutation of $\left\{\alpha_{k}, \beta_{k}, \gamma_{k}\right\}$ in (22) will not change $\phi\left(C^{(k)}, \theta\right)$, and that all subdivisions of the domain are equivalent, for Bravais lattices. Precisely, all triangulations of polygons which use only lattice points as vertices and only triangles of the minimal area $1 / 2$, as for example those illustrated in Figure 6 , give exactly the same energy under all affine deformations of the reference lattice.

Lemma 3. Let $P \subset \mathbb{R}^{2}$ be a polygon in \mathbb{R}^{2} with vertices belonging to \mathbb{Z}^{2}, and $F \in \mathbb{R}^{2 \times 2}$ have positive determinant. Then, for any triangulation $\mathcal{T}=$ $\left\{T_{1} \ldots T_{N}\right\}$ covering P, such that each T_{i} has area $1 / 2$ and vertices in $\mathbb{Z}^{2} \cap P$, we have

$$
\begin{equation*}
\sum_{k=1}^{N}\left|T_{k}\right| \phi_{0}\left(C_{i j}^{(k)}, \theta\right)=|P| \phi_{0}\left(F^{T} F, \theta\right), \tag{24}
\end{equation*}
$$

where $C_{i j}^{(k)}=\mathbf{f}_{i}^{(k)} \cdot \mathbf{f}_{j}^{(k)}$, for $i, j=1,2$, and $\mathbf{f}_{1,2}^{(k)}$ are any two sides of the deformed triangle $F T_{k}$, defined as in (22).

Proof. We first show that any pair of sides $\left(\mathbf{e}_{1}^{(k)}, \mathbf{e}_{2}^{(k)}\right)$ of any triangle T_{k} is, in the reference configuration, a basis for \mathbb{Z}^{2}. Indeed, since T_{k} has vertices in \mathbb{Z}^{2} the lattice generated by the pair $\left(\mathbf{e}_{1}^{(k)}, \mathbf{e}_{2}^{(k)}\right)$ is a subset of \mathbb{Z}^{2}, and conversely, since $\left|T_{k}\right|=1 / 2$, it cannot be a strict subset. Therefore the corresponding deformed pair $\left(\mathbf{f}_{1}^{(k)}, \mathbf{f}_{2}^{(k)}\right)=\left(F \mathbf{e}_{1}^{(k)}, F \mathbf{e}_{2}^{(k)}\right)$ is a basis for the deformed lattice $F \mathbb{Z}^{2}$. By the invariance properties discussed above, the energy density ϕ_{0} does not depend on the basis, only on the lattice, hence each term in the sum is given by the area of T_{k} (in the reference configuration), which is $1 / 2$, times the energy density ϕ_{0}, evaluated on any basis of the lattice $F \mathbb{Z}^{2}$.

Computing with the standard basis for \mathbb{Z}^{2}, namely, $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$, we get that

$$
\begin{equation*}
\mathbf{f}_{i}=F \mathbf{e}_{i}=F_{i}, \quad C_{i j}=\left(F_{i}\right) \cdot\left(F_{j}\right)=F^{T} F \tag{25}
\end{equation*}
$$

[^5]which concludes the proof.
This invariance implies that there is no need for relabeling, or, equivalently, for dynamic neighbor lists. This is the reason why we can keep the topology of the grid fixed during the transformation. Clearly one cannot expect the invariance under the choice of triangulation to hold strictly for all non-affine deformations of the lattice, since the three-body interactions we consider are local in nature. However, Lemma 3 shows that the dependence on the choice of the grid is strong only in the regions, such as dislocation cores, where deviations from homogeneous deformations are large, and any elastic treatment is necessarily only a first approximation.

The gradient of the energy with respect to the atomic positions can be computed analytically, but its explicit expression is rather cumbersome and is not given here. Our code is then based on a mixture of gradient flow and random displacements. More precisely, we perform gradient flow, and periodically displace randomly all atoms by a small fraction (around 2%) of the atomic spacing, to accelerate the exploration of the phase space. Note that the model on which our code is based is nonlinear elasticity, and thus markedly different from the pair-potential or embedded-atom models typical of numerical investigations of analogous phenomena performed with molecular dynamics (see, e.g., Morris and Ho, 2001).

By using this method, we now observe the quasistatic evolution of the lattice through two s-h transformation cycles. We start at $\theta=\theta_{s}=-0.2$, with the crystal in a homogeneous square configuration, which realizes a (homogeneous) minimizer of the energy functional, as in Fig. 7(a). Fig. 7(b) shows a state obtained by computing with the hexagonal energy $\left(\theta=\theta_{h}=\right.$ 3.5) starting from (a). We observe the formation of a twinned microstructure involving two hexagonal variants and two different lamination directions (the ground state would involve only one such direction). In Fig. 7(c) the crystal is brought back to the square phase, by computing with $\theta=\theta_{s}$ starting from (c). Here we observe the formation of several defects: a dislocation in the lower-right part of the crystal, and a bulk and a surface interstitial in the upper-right part. In Fig. 7(d) we show the result obtained by starting a second transformation cycle from (c), with the hexagonal energy. Again, we observe different twinned microstructures in different parts of the sample, and some strains arising from kinematic incompatibility. Finally, Fig. 7(d) shows the end of the second cycle, in which the sample accumulates defects in the square phase.

Acknowledgments. The work of S.C. was supported by the TMR contract FMRXCT980229 of the E.U. G.Z. acknowledges the partial support of the Italian Cofin. MURST2002 'Modelli matematici per la scienza dei materiali' and of grant 127P01 of the Università di Padova. We acknowledge helpful conversations with M. Pitteri.

Figure 7: Positions of the atoms in the numerical computation described in Sect. 5. (a) The initial square configuration. (b) A state obtained by evolving with the hexagonal energy $\left(\theta=\theta_{h}\right)$ starting from (a). (c) The result of evolution with $\theta=\theta_{s}$, starting from (b). (d) The result of evolution with $\theta=\theta_{h}$, starting from (c). (e) The result of evolution with $\theta=\theta_{s}$, starting from (d).

References

T. Ando, A. B. Fowler, and F. Stern. Electronic properties of twodimensional systems. Rev. Mod. Phys., 54:437-672, 1982.
J. M. Ball and R. D. James. Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal., 100:13-52, 1987.
J. M. Ball and R. D. James. Proposed experimental test of a theory of fine microstructure and the two well problem. Phil. Trans. R. Soc. London, 338A:389-450, 1992.
K. Bhattacharya. Microstructure of Martensite: Why it forms and how it gives rise to the Shape-Memory Effect. Oxford University Press, 2003
K. Bhattacharya, S. Conti, G. Zanzotto, and J. Zimmer. Symmetry and reversibility of martensitic transformations. MPI-MIS Preprint 81/2003.
J. M. Buerger. Elementary crystallography. Wiley, New York, 1963.
D. Chang et al. Interpretation of the neutron scattering data on flux lattices of superconductors. Phys. Rev. Lett., 80:145-148, 1998.
V. P. Dmitriev et al. Definition of a transcendental order parameter for reconstructive phase transitions. Phys. Rev. Lett., 60:1958-1961, 1988.
J. J. Duistermaat and J. A. C. Kolk. Lie Groups. Springer Verlag, Berlin, 1999.
P. Engel. Geometric crystallography. D. Reidel Publishing Co., Dordrecht, 1986.
J. L. Ericksen. Nonlinear elasticity of diatomic crystals. Int. J. Solids Structures, 6:951-957, 1970.
J. L. Ericksen. Special topics in elastostatics. In C.S. Yih, editor, Adv. Appl. Mech. Vol 17. Academic Press, New York, 1977.
J. L. Ericksen. Some phase transitions in crystals. Arch. Rat. Mech. Anal., 73:99-124, 1980.
J. L. Ericksen. The Cauchy and Born hypotheses for crystals. In M.E. Gurtin, editor, Phase Transformations and Material Instabilities in Solids. Academic Press, New York, etc., 1984.
J. L. Ericksen. Weak martensitic transformations in Bravais lattices. Arch. Rat. Mech. Anal., 107:23-36, 1989.
J. L. Ericksen. Equilibrium theory for X-ray observations. Arch. Rat. Mech. Anal., 139:181-200, 1997.
J. L. Ericksen. Notes on the X-ray theory. Journal of Elasticity, 55:201-218, 1999.
I. Folkins. Functions of 2-dimensional Bravais lattices. J. Math. Phys., 32:1965-1969, 1991.
I. Fonseca. Variational methods for elastic crystals. Arch. Rat. Mech. Anal., 97:189-220, 1987.
G. Friesecke and F. Theil. From discrete to continuum models: The CauchyBorn rule. J. Nonlin. Sci., to appear, 2002.
P. L. Gammel et al. Systematic studies of the square-hexagonal flux line lattice transition in $\mathrm{Lu}\left(\mathrm{Ni}_{1-x} \mathrm{Co}_{x}\right)_{2} \mathrm{~B}_{2} \mathrm{C}$: the role of nonlocality. Phys. Rev. Lett., 82:4082-4085, 1999.
D. M. Hatch et al. Systematics of group-nonsubgroup transitions: square to triangle transition. Phys. Rev. B, 64:060104.1-4, 2001.
A. Holz. Defect states and phase transition in the two-dimensional Wigner crystal. Phys. Rev. B, 22:3692-3705, 1980.
B. Horovitz, R. J. Goodinb, and J. A. Krumhansl. Order parameters for reconstructive phase transitions (comment). Phys. Rev. Lett., 62:843, 1989.
R. D. James and K. T. Hane. Martensitic transformations and shapememory materials. Acta Mater., 48:197-222, 2000.
M. Luskin. On the computation of crystalline microstructure. Acta Numerica, 5:191-257, 1996.
L. Michel. Bravais classes, Voronoï cells, Delone symbols. In T. Lulek, W. Florek, and S. Walcerz, editors, Symmetry and structural properties of condensed matter. Academic Press, Singapore, 1995.
L. Michel. Fundamental concepts for the study of crystal symmetry. Phys. Rep., 341:265-336, 2001.
J. R. Morris and K. M. Ho. Molecular dynamic simulation of homogeneous $\mathrm{bcc} \rightarrow \mathrm{hcp}$ transition. Phys. Rev. B, 63:224116.1-9, 2001.
S. Müller. Variational models for microstructure and phase transitions. In F. Bethuel et al., editors, Calculus of Variations and Geometric Evolution Problems, Springer Lecture Notes in Mathematics 1713, Berlin, 1999. Springer Verlag.
G. P. Parry. On the elasticity of monatomic crystals. Math. Proc. Camb. Phil. Soc., 80:189-211, 1976.
G. P. Parry. Low-dimensional lattice groups for the continuum mechanics of phase transitions in crystals. Arch. Rat. Mech. Anal., 145:1-22, 1998.
M. Pitteri. Reconciliation of local and global symmetries of crystals. J. Elasticity, 14:175-190, 1984.
M. Pitteri and G. Zanzotto. Continuum models for phase transitions and twinning in crystals. CRC/Chapman \& Hall, London, 2002.
M. Rao, S. Sengupta, and R. Shankar. Shape-deformation-driven structural transitions in Quantum Hall skyrmions. Phys. Rev. Lett., 79:3998-4001, 1997.
R. L. E. Schwarzenberger. Classification of crystal lattices. Proc. Cambridge Phil. Soc., 72:325-349, 1972.
G. F. Smith and R. S. Rivlin. The strain-energy function for anisotropic elastic materials. Trans. Am. Math. Soc., 88:175-193, 1958.
S. Sternberg. Group theory and physics. Cambridge University Press, Cambridge, 1994.
A. Terras. Harmonic analysis on symmetric spaces and applications II. Springer Verlag, Berlin, 1988.
P. Tolédano and V. Dmitriev. Reconstructive Phase Transitions. World Scientific, Singapore, 1996.
G. Zanzotto. On the material symmetry group of elastic crystals and the Born rule. Arch. Rat. Mech. Anal., 121:1-36, 1992.
G. Zanzotto. Nonlinear elasticity, the Cauchy-Born hypothesis, and mechanical twinning in crystals. Acta Cryst., A52:839-849, 1996.

[^0]: ${ }^{1}$ The literature also calls reconstructive the transformations involving either large lattice distortions, or a product phase whose symmetry group is not included in the one of the parent phase (Buerger, 1963, Tolédano and Dmitriev, 1996). The definitions coincide in all the main cases of interest.

[^1]: ${ }^{2}$ The modeling of reconstructive martensitic transformations has been considered by a number of authors during the last decade. One approach involves the extension of the Landau theory based on the adoption of a 'transcendental order parameter' which partially accounts for the infinitely-many lattice symmetries (see for instance Dmitriev et al., 1988, Horovitz et al., 1989, Tolédano and Dmitriev, 1996, Hatch et al., 2001). Numerically, such phenomena have also been also investigated with molecular dynamics, see e.g. Morris and Но (2001).
 ${ }^{3}$ The analogous criterion in 3-d produces the well-known fourteen Bravais types of lattices. These basic notions of crystallography can be given for any dimension n of the lattices - see for instance Engel (1986), Sternberg (1994), Michel (1995, 2001).

[^2]: ${ }^{4}$ We notice that the resulting theory is not of the Landau type, as the potential is defined on all of \mathcal{Q}_{2}^{+}(that is, also for large strains), and is invariant under the full group $G L(2, \mathbb{Z})$, not only under a finite crystallographic group. Its invariance reduces to the latter when the domain is cut down to an EPN. In particular, we remark that here, unlike in other theories, as a consequence of $G L(2, \mathbb{Z})$-invariance the elastic moduli relative to any energy-minimizing configuration exhibit the correct symmetry pertaining to that configuration.

[^3]: ${ }^{5}$ Fundamental domains have been explicitly described also in the 3-d case, see for instance Schwarzenberger (1972), Engel (1986), Terras (1988).
 ${ }^{6}$ Given any simple lattice $\mathcal{L}\left(\mathbf{e}_{a}\right)$, the definition in (9) corresponds to choosing a suitable 'reduced' basis $\overline{\mathbf{e}}_{a}$ for it, as follows: $\overline{\mathbf{e}}_{1}$ is a shortest lattice vector, $\overline{\mathbf{e}}_{2}$ is a shortest lattice vector non-collinear with $\overline{\mathbf{e}}_{1}$, with the sign chosen so that the angle between the two is acute. This basis always exists and is unique up to an inessential orthogonal transformation, so that its metric \bar{C} is unique.

[^4]: ${ }^{7}$ Analogous, more complex, reduction schemes, due to Seeber, Selling, Niggli, Minkowski, exist also for the 3-d case - see Engel (1986).
 ${ }^{8}$ Geometrically, this happens because the unit cell of a rhombic lattice can be of two different kinds: (i) a 'skinny' rhombus, one of whose angles is smaller than 60 degrees, so that a diagonal is shorter than the side; (ii) a 'fat' rhombus, with angles all between 60 and 120 degrees, whose diagonals are both longer than the side. The Lagrange reduction inequalities (9) then select a reduced basis constituted by two side vectors for the 'fat' rhombi, and by a diagonal and a side for the 'skinny' ones. The intersection of these two sets of rhombic metrics gives the set of hexagonal metrics in \mathcal{D}, as in Fig. 1. Note that this fact is preserved by any continuous change of chart, as it is based on the fact that any continuous deformation of a skinny rhombus into a fat one, which does not leave the class of rhombi, must pass through the state where an angle is exactly 60 degrees, which is the hexagonal configuration.

[^5]: ${ }^{10}$ In agreement with ideas by Ericksen $(1997,1999)$ and Friesecke and Theil (2002), our total energy computation for the crystalline body makes no assumptions relating atomic movements to macroscopic deformations, such as the 'Cauchy-Born hypothesis' (Ericksen, 1984, Zanzotto, 1992, 1996).

