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Abstract

This paper interprets the stabilized finite element method via residual minimization as a variational
multiscale method. We approximate the solution to the partial differential equations using two discrete
spaces that we build on a triangulation of the domain; we denote these spaces as coarse and enriched spaces.
Building on the adaptive stabilized finite element method via residual minimization, we find a coarse-scale
approximation in a continuous space by minimizing the residual on a dual discontinuous Galerkin norm;
this process allows us to compute a robust error estimate to construct an on-the-fly adaptive method.
We reinterpret the residual projection using the variational multiscale framework to derive a fine-scale
approximation. As a result, on each mesh of the adaptive process, we obtain stable coarse- and fine-scale
solutions derived from a symmetric saddle-point formulation and an a-posteriori error indicator to guide
automatic adaptivity. We test our framework in several challenging scenarios for linear and nonlinear
convection-dominated diffusion problems to demonstrate the framework’s performance in providing stability
in the solution with optimal convergence rates in the asymptotic regime and robust performance in the
pre-asymptotic regime. Lastly, we introduce a heuristic dual-term contribution in the variational form to
improve the full-scale approximation for symmetric formulations (e.g., diffusion problem).

Keywords: Multiscale problems, Variational multiscale method (VMS), Residual Minimization,
Convection-dominated diffusion equation, Stabilized finite elements, Adaptive mesh refinement, Automatic
spatial adaptivity

1. Introduction

The convection-dominated diffusion equation is a challenging model problem for several physics and
engineering applications due to its singularly perturbed behaviour for high Péclet numbers, leading to sin-
gularities such as sharp inner and boundary layers. Brooks and Hughes [1] introduced the streamline-upwind
Petrov-Galerkin (SUPG) method to overcome some of these difficulties. This method adds a residual-based
stabilizing term to induce a numerical diffusion along the streamlines, which enhances control and stabil-
ity in the convective operator while conserving consistency in the formulation. The Galerkin/least-squares
method (GLS) [2] generalizes this idea by adding a least-squares term to the stabilization to enhance control
of the whole residual. Although these methods have proven effective at stabilizing the numerical solution of
convection-dominated problems, the accuracy of these approaches highly depends on a user-defined stabi-
lization parameter, which requires tuning in most real-world challenges [3]. In 1998, Hughes [4] unified these
ideas introducing the variational multiscale method (VMS). This method captures the variational subscales
and improves stability properties while maintaining the consistency of the former residual-based methods [5–
16]. VMS decomposes the solution into two scales and keeps their coupling to approximate the fine-scale
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solution effect that a given mesh cannot capture [17–20]. The VMS paradigm led to a reinterpretation of
the traditional residual-based methods as approximate sub-grid scale models and identified the unresolved
fine scales as an essential key in the stabilization, even for linear systems including the advection-diffusion
equations [21–23]. Related scale-separation models were generalized and extended to diverse applications
such as turbulence modeling and wave propagation [24–29]. Cohen et al. [30] extended the stabilization ideas
with least-squares/minimum residual minimization in GLS for more general dual norms. They introduced
a saddle point formulation of this residual method, which refers to a VMS formulation. These ideas are ex-
tended in the Discontinuous Petrov-Galerkin method (DPG) [31–37] using different non-standard dual norms
for stabilization [38–44]. DPG is introduced in the context of a VMS for the convection-diffusion equation
in [45], offering an alternative, well-behaved sub-grid model to approximate the fine scale [40, 43, 46]. The
Discontinuous Galerkin Method (dG), initially proposed in 1973 by Reed and Hill [47], has offered an alter-
native stabilization technique over the last few decades and was rapidly extended in numerous applications
due to its good stability properties [48–52]. dG is advantageous over classical methods in providing robust-
ness and high-order accurate approximations, especially for advective operators associated with hyperbolic
equations [53]. Its stability is induced by the numerical fluxes imposed on internal element interfaces, leading
to discretely stable solutions with local conservation. dG is related to residual-based stabilization methods
in [52–54] and is used for new stabilized methods based on VMS, including the Multiscale Discontinuous
Galerkin method (MSDG) [55–57], the Discontinuous residual-free bubble method [58], among other recent
approaches [59, 60]. Alternative stabilization techniques that generalize dG ideas are the Interior Penalty
methods that use continuous functions and can handle difficulties encountered by continuous finite element
methods in advection-diffusion problems [61, 62]. These methods penalize flux jumps at mesh interfaces
and were applied to biharmonic operators and second-order elliptic and parabolic problems [62]. Burman
and collaborators have advanced the error estimates for interior penalty methods [63, 64] and generalized
the ideas to introduce the high-order Continuous Interior Penalty (CIP) finite element method [65, 66].
Effectively, Burman [67] introduced a formulation relating stabilized continuous and discontinuous Galerkin
frameworks with the CIP formulation. Calo et al. [68] introduced a conforming finite element method that
constructs a discrete approximation by minimizing the residual on a dual discontinuous Galerkin norm.
This method combines the residual minimization ideas used in DPG with the reliability and inf-sup stability
offered by dG. This framework builds on a long tradition of adaptive finite element techniques [46, 69–72]
and were applied to several steady and unsteady partial differential equations [68, 73–80]. We recently used
CIP as the coercive discretization for continuous spaces as the underlying stable method to build an adaptive
stablized finite element method via residual minimization that uses continuous solutions that require much
fewer degrees of freedom than dG on a given mesh [81, 82]. This paper presents a new method integrating
ideas from [68] to derive a residual minimization approach from a VMS perspective. Our method builds on
the concepts from MSDG to decompose a full-discrete discontinuous finite element space into discontinuous
(fine) and continuous (coarse) components and leverages VMS analysis to define an inter-scale operator.
We begin with an arbitrary discontinuous finite element space and derive a continuous representation by
minimizing the residual on a dual discontinuous Galerkin norm. Using the VMS analysis and the residual
representative obtained from the dual Galerkin orthogonality, we derive an inter-scale problem to define the
stable fine-scale contribution and an error estimator to guide adaptivity. Our approach results in a stable
coarse- and fine-scale solution derived from a symmetric saddle-point formulation and an a-posteriori error
indicator. We validate our method by tackling challenging linear advection-dominated problems and extend
our approach for scalar nonlinear conservation laws by using the Lax-Friedrichs flux within the dG con-
text [51, 83, 84]. The aims of this paper are: first, to introduce the residual minimization method in [68] as
a variational multiscale method; secondly, to demonstrate the performance of the fine-scale approximation
and its influence on the full-scale approximation in terms of stability and convergence for challenging steady
linear and nonlinear convection-dominated diffusion equations. The remainder of the paper is organized
as follows: Section 2 introduces the continuous problems and the discontinuous discretization. Section 3
describes the residual minimization strategy. Section 4 presents the variational multiscale formulation. Sec-
tion 5 shows numerical examples of linear problems. Section 6 extends this approach to nonlinear systems
of conservation laws. Finally, we conclude the document with some closing remarks.
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2. Continuous problem and discontinuous discretization

2.1. Advection-diffusion equation

Let Ω ⊂ Rd with d = 2, 3 being a bounded domain with boundary Γ := ∂Ω. Let κ ∈ [L∞(Ω)]d,d represent
a positive definite diffusion tensor and β ∈ [L∞(Ω)]d a smooth velocity field. Let n be the outward unit
normal vector with respect to Γ; we define the inflow and outflow boundaries, respectively, by

Γ− := {x ∈ Γ | β · n < 0} , Γ+ := {x ∈ Γ | β · n ≥ 0} .

We denote by ΓD the Dirichlet and ΓN the Neumann boundary functions, which are a complementary subset
of Γ (i.e.,Γ = ΓN ∪ ΓD). Thus, we define the inner and outer parts of the Neumann boundary as follow:

Γ−N := ΓN ∩ Γ−, Γ+
N := ΓN ∩ Γ+. (1)

We consider the following advection-diffusion equation in strong form as:

−div (κ∇u) + β · ∇u = f in Ω,

u = uD on ΓD,

(−βu+ κ∇u) · n = hN on Γ−N ,

κ∇u · n = hN on Γ+
N ,

(2)

where we denote f ∈ L2(Ω) as the source term and uD ∈ H−1/2(ΓD) and hN ∈ H−1/2(ΓN ) as the Dirichlet
and Neumann boundary functions, respectively. Following the function spaces V :=

{
v ∈ H1(Ω) : v|ΓD

= 0
}

and Ṽ :=
{
u ∈ H1(Ω) : u|ΓD

= uD
}

, the continuous weak variational formulation of (2) reads:{
Find u ∈ Ṽ such that:

(∇v, κ∇u)Ω + (v, β · ∇u)Ω + (v, (β · n)u)Γ− = (v, f)Ω + (v, hN )ΓN
, ∀v ∈ V,

(3)

where (·, ·)Ω and (·, ·)Γ denote the L2-scalar product on Ω and Γ, respectively.

2.2. Discontinuous Galerkin (dG) discretization

Let T be a coarse triangulation, such that Ω is decomposed into n subdomains K as T : {Ki}ni=1. We
define the broken space of discontinuous functions as:

Vh := {v ∈ L2(T) : v|K ∈ Pp(K) ∈,∀K ∈ T} , (4)

where Pp denotes the set of functions of degree lower than or equal to p. Let K1 and K2 represent two
disjoint elements in T, and let F be their shared face. We define the set of all faces as Sh :=

⋃
K∈T F .

We further define the set of interior faces by S 0
h = Sh\Γ and the set of boundary faces by S ∂

h = Sh ∩ Γ.

We also define the set of inflow boundary faces as S ∂−

h := S ∂
h ∩ Γ−, the set of outflow boundary faces as

S ∂+

h := S ∂
h ∩Γ+, and we denote by SD

h = Sh∩ΓD and S N
h = Sh∩ΓN the sets of Dirichlet and Neumann

faces, respectively. Let hK be the element diameter, hF the face diameter, and nF be the unit normal vector
in the outer direction of F from K1 to K2. Given a scalar field v and denoting v1,2 := v|K1,K2

, we define
the arithmetic average {v}, weighted average {v}ω and jump [[v]] on an internal face F ∈ S 0

h by

{v} :=
1

2
(v1 + v2), {v}ω := v1ω1 + v2ω2, [[v]] := v1 − v2,

where ω1 + ω2 = 1 and ω1, ω2 ≥ 0. For heterogeneous diffusion, we use:

ω1 =
δ1

δ1 + δ2
, ω2 =

δ2
δ1 + δ2

, (5)

3



with δ1 = nF · κ1nF and δ2 = nF · κ2nF . In the homogeneous diffusion case, these weights reduce to ω1 =
ω2 = 1

2 , recovering the arithmetic average. We set on boundary faces F ∈ S ∂
h that {v} = {v}ω = [[v]] = v.

For further details in the discrete setting, see [85]. We use the following dG discrete form:{
Find uh ∈ Vh, such that:

bh(vh, uh) = `h(vh) ∀ vh ∈ Vh,
(6)

where bh defines the dG discrete bilinear form considering the contribution of the diffusive part from the
Symmetric Weighted Interior Penalty form (SWIP) and the advective part from the upwinding formulation:

bh(v, u) := bh(v, u)swip + bh(v, u)upw, (7)

with,

bh(v, u)swip :=
∑
K∈T

(∇hv, κ∇hu)K

−
∑
F∈S 0

h

(
([[v]] , {κ∇hu}ω · nF )F + ({κ∇hv}ω · nF , [[u]])F − ηeγκ([[v]], [[u]])F

)
−
∑

F∈S D
h

(
(v, κ∇hu · nF )F + (κ∇hv · nF , u)F − ηeγκ(v, u)F

)
, (8)

bh(v, u)upw :=
∑
K∈T

(v, β · ∇u)K +
∑

F∈S ∂−
h

(v, (β · nF )u)F

+
∑
F∈S 0

h

( (
[[v]], 1

2 |β · nF |[[u]]
)
F
− ({v}, (β · nF )[[u]])F

)
, (9)

where (·, ·)F and (·, ·)K represent the inner product over the discrete face and internal element, respectively.
The diffusion penalty γκ is defined for all internal faces F ∈ S 0

h as:

γκ :=
2κ1κ2

κ1 + κ2
,

and ηe denotes a positive penalty defined as [86]:

ηe :=
(p+ 1)(p+ d)

d


1
2

(
A(∂K1)
V(K1) + A(∂K2)

V(K2)

)
, if F = ∂K1 ∩ ∂K2,

A(∂K)
V(K) , if F = ∂K ∩ Γ,

(10)

where d denotes the problem dimension, and p represents the polynomial degree of the test space. In 3D, V
and A denote the volume and area of an element, respectively. In 2D, they represent the length and area of
the element. The right-hand side in (6) reads for weakly imposed non-homogeneous Dirichlet and Neumann
boundary conditions as:

`h(v) :=
∑
K∈T

(v, f) +
∑

F∈S D
h

(ηeκ(v, uD)F − (κ∇hv · nF , uD)F )

−
∑

F∈S D
h ∩Γ−

(v, (β · nF )uD)F +
∑

F∈S N
h

(v, hN )F . (11)

We endow Vh with the norm:

‖w‖2Vh
:= ‖w‖2upw + ‖w‖2swip, (12)
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with

‖w‖2adv := ‖w‖20 +
∑
F∈Sh

(
1
2 |β · nF | [[w]], [[w]]

)
0,F

+
∑
K∈T

hK‖β · ∇w ‖20,K , (13)

‖w‖2swip := ‖κ∇w ‖20 +
∑
F∈Sh

(ηeκ[[w]], [[w]])0,F , (14)

where ‖ ·‖0 represents the L2-norm on the domain Ω and ‖ ·‖0,Γ on its boundary Γ, while ‖ ·‖0,K and ‖ ·‖0,F
denote the L2-norm on the element K and faces F , respectively. Problem (6) is well-posed, and the inf-sup
stability is established through the norm (12). Refer to [49] for further details. The sub-index h for the test
and trial solutions (i.e., uh and vh) are dropped in the following sections to keep the notation simple.

3. Residual minimization formulation

This section briefly recaps the residual minimization strategy described in [68]. The main idea is to deliver
a stable approximation in a continuous space by minimizing the residual onto a discontinuous Galerkin norm.
First, we define a subspace V̄h ⊂ Vh, such that V̄h is the H1-conforming subspace. Then, from the stable
formulation in (6), we use the trial subspace V̄h to solve the following minimization problem:

Find ū ∈ V̄h ⊂ Vh, such that:

ū = arg min
z∈V̄h

1

2
‖`h −Bh z‖2V∗

h
,

(15)

where the operator Bh is defined by 〈·, Bhw〉Vh×V∗
h

:= bh(·, w),∀w ∈ Vh. We state (15) as a critical point of
the minimizing functional, which can be translated into the following linear problem:{

Find ū ∈ V̄h, such that:

(Bhδu, `h −Bhū)V∗
h

= g(R−1
Vh
Bhδu,R

−1
Vh

(`h −Bhū)) = 0 ∀δu ∈ V̄h,
(16)

where g(·, ·) represents the inner product that induces the discrete norm ‖ · ‖Vh
and RVh

denotes the Riesz
operator which maps the elements in Vh to the dual space V∗h, such that:

〈·, RVh
y〉Vh×V∗

h
:= g(·, y). (17)

Defining the residual representation function as

ε := R−1
Vh

(`h −Bhū) ∈ Vh,

which implies
g(ε, v) = lh(v)− bh(u, v), ∀v ∈ Vh;

thus, the residual minimization problem in (15) leads to the saddle point problem:{
Find (ε, ū) ∈ Vh × V̄h, such that:

g(v, ε) + bh(v, ū) + bh(ε, w̄) = lh(v), ∀(v, w̄) ∈ (Vh, V̄h),
(18)

where orthogonality condition between the residual representation and the H1−conforming subspace of
Vh is enforced as bh(ε, w̄) = 0. Features of the methodology and the properties of the error estimator and
continuous solution are discussed in detail in [68, 74] in the context of advection-reaction-diffusion equations.
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4. A variational multiscale interpretation of the residual minimization framework

4.1. A multiscale partition of the trial and test spaces

Following the variational multiscale arguments, we decompose Vh into coarse and fine scales. Since we use
a Petrov-Galerkin formalism, our test and trial spaces are different. Thus, starting from the H1−conforming
solution space V̄h and define appropriate direct sum partitions of the entire function space Vh using the
operators from the residual minimization framework.

First, we define the space V′h as the annihilator of the bilinear form bh(·, w̄) ∀w̄ ∈ V̄h (e.g., the residual
representative belongs to this set of linear functionals that map the operator’s range to zero). Thus, given
V̄h ⊂ Vh, we define V′h as the annihilator of the bilinear form bh acting on Vh, such that

V′h := {v ∈ Vh | bh(v, w̄) = 0, ∀ w̄ ∈ V̄h}, (19)

Next, we define V̂h as the orthogonal complement of V′h with respect to the inner product g(·, ·), that is:

V̂h := {v ∈ Vh | g(v, v′) = 0, ∀ v′ ∈ V′h}. (20)

Last, we define the complement of the coarse-scale solution space as the kernel of the bilinear bh when tested
by V̂h. Thus, given V̂h ⊂ Vh, we define Ṽh to be

Ṽh := {u ∈ Vh | bh(v̂, u) = 0, ∀ v̂ ∈ V̂h}. (21)

where the (full-scale) trial space is Vh := V̄h ⊕ Ṽh and the (full-scale) test space is Vh := V̂h ⊕ V′h.
We have a direct sum decomposition of the trial space to deliver a solution u ∈ Vh in (6), such that:

u = ū+ ũ. (22)

where we denote ū ∈ V̄h and ũ ∈ Ṽh as the coarse- and fine-scale trial functions. Similarly, for any test
function v ∈ Vh, we can write

v = v̂ + v′, (23)

where we denote v̂ ∈ V̂h and v′ ∈ V′h as the coarse- and fine-scale test functions. Thus, we have two
complementary direct sum decompositions of Vh.

Thus, the saddle point problem in (18) can be stated as follows:{
Find (ε′, ū) ∈ (V′h × V̄h), such that:

g(v, ε′) + bh(v, ū) = `(v), ∀v ∈ Vh
(24)

Splitting the test function using (23), we reformulate problem (24) as two complementary but independent
problems for the coarse-scale solution and the fine-scale residual representative:

• Residual reconstruction (fine-scale problem) as{
Find ε′ ∈ V′h, such that

g(v′, ε′) = `(v′), ∀v′ ∈ V′h,
(25)

• H1−conforming solution (coarse-scale problem) as{
Find ū ∈ Ū , such that

bh(v̂, ū) = `(v̂), ∀v̂ ∈ V̂h,
(26)

which corresponds to a Petrov–Galerkin method with optimal test functions [32, 38, 39, 44].
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From the definitions of the complementary direct sum decompositions (19)-(21), we have that bh(v̂, ũ) =
bh(v′, ū) = 0; thus, problem (6) can be split into the following two problems:

Find (ū, ũ) ∈ (V̄h, Ṽh), such that:

bh(v̂, u) := bh(v̂, ū) = `(v̂), ∀v̂ ∈ V̂h,
bh(v′, u) := bh(v′, ũ) = `(v′), ∀v′ ∈ V′h.

(27)

Consequently, from (25) and (27)2, we can rewrite the fine-scale component of the discrete solution in terms
of the residual error estimate

bh(v′, ũ) = g(v′, ε′) = `(v′), ∀v′ ∈ V′h. (28)

Thus, we can express (27)2 such that the fine-scale solution satisfies the following problem:{
Find ũ ∈ Ṽh, such that:

bh(v′, ũ) = g(v′, ε′), ∀v′ ∈ V′h.
(29)

Lastly, since b(v̂, ũ) = g(v̂, ε′) = 0, we can express the fine-scale problem equivalently as{
Find ũ ∈ Vh, such that:

bh(v, ũ) = g(v, ε′), ∀v ∈ Vh.
(30)

We solve the discrete problem resulting from the system (30) rather than (29) or (27)2 since the discrete
solution is identical, simpler to implement, and cheaper to compute.

Remark 1 (Relation between VMS reconstruction & dG solution). By construction, the partitioned full-
scale approximation in (22) is identical to the classical dG solution. Next, we introduce an adjoint multiscale
reconstruction; thus, we denote by (θ) the dG solution of (6).

4.2. Adjoint multiscale reconstruction
Using the direct sum partitions of the test and trial spaces, we exploit the insight behind the adjoint

residual-based estimator proposed for goal-oriented adaptivity in [76]; therein; the authors obtained a resid-
ual representative for the quantity of interest by solving a well-posed ad hoc discrete problem. In the present
context, this adjoint residual problem is driven by ε′. We introduce the adjoint reconstruction by revisiting
the multiscale partitions from the previous section. Given ε′ that solves (25), this error representation ε′ is
proportional to the discrete system’s residual [68, 76]. From the definition of V′h, we know that

bh(ε′, v̄) = 0, ∀v̄ ∈ V̄h.

Also, from (30), we have that
bh(v, ũ) = g(v, ε′), ∀v ∈ Vh;

next we add a heuristic interaction of ε′ with the whole test space Vh to the fine-scale driving force. Thus,
we postulate the following problem, where the heuristic fine scales ǔ ∈ V′h solve

bh(v, ǔ) = g(v, ε′) + bh(ε′, v) ∀v ∈ Vh. (31)

Thus, this heuristic fine-scale postprocessing of the error representative includes two extra contributions:

bh(v̂, ǔ) = bh(ε′, v̂) ∀v̂ ∈ V̂h, (32)

bh(v′, ǔ) = `h(v′) + bh(ε′, v′) ∀v′ ∈ V′h, (33)

where the first equation contributes to the coarse-scale trial space in V̄h while the second one contributes
to the fine-scale trial space V′h.

In short, we propose the following heuristic adjoint variational multiscale reconstruction such that:

φ = ū+ ǔ,

where ǔ ∈ Vh is the reconstructed fine-scale solution that solves (31) for a given error estimate ε′. In the
next section, we test the performance of φ in the L2 and energy (Vh) norms, showing an improvement in
the asymptotic regime, especially for diffusion-dominated problems (i.e., ||uexa − φ||Vh

. ||uexa − u||Vh
).
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5. Numerical examples

Level= 0 Level = 10 Level = 20

Figure 1: Solution for the re-entrant corner problem for different refinement levels

5.1. Refinement strategy

Next, we demonstrate the efficacy of our methods in different linear cases through a range of numerical
examples. We analyze the rate decay for both the coarse and reconstructed full-scale solutions in the L2

and energy (Vh) norms and compare these results with the classical dG solution. The convergence plots in
the following sections show the error norm versus the total number of degrees of freedom (DoF 1/d) (i.e.,
dim(V̄h) + dim(Vh) ). We validate our formulation by evaluating and comparing the performance of our
multiscale approach using some test problems described in [74].

We implement an adaptive refinement marking strategy for the following examples using an extended
version of the Dörfler bulk-chasing criterion. Our adaptive procedure considers an iterative process in which
each iteration consists of the following four steps:

SOLVE→ ESTIMATE→ MARK→ REFINE (34)

We mark the elements’ contribution to a user-defined fraction (ηref ) of the total estimated error ||ε||2Vh
. Let

ηref be 0.25 and 0.125 for 2D and 3D problems, respectively (see [80] for implementation details). We solve
the saddle point problem in (18) employing an iterative algorithm described in [68, 87] and use FEniCS [88]
as a platform to perform all the numerical simulations.

(a) Vh norm (b) L2 norm

Figure 2: Vh− & L2−norm convergence for Laplace problem
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5.2. Diffusion problem for a domain with a re-entrant corner

We study the method’s performance with the diffusion problem in a re-entrant corner domain [89].
The problem configuration induces a singularity at the inward-pointing vertex of the concave polygon.
Since capturing corner singularities is challenging for uniform refinement techniques, this problem tests the
adaptive grid refinement algorithms. We solve the following Laplace equation in an L-shape domain Ω:

∆u = 0, in Ω = (−1, 1)2\(−1, 0]2,

u = uD, on ∂Ω = ΓD,

where the Dirichlet boundary conditions (uD) are applied based on the exact solution:

uexa = rα sin(αθ),

with r =
√
x2 + y2, θ = tanh−1(y/x) and α = 2/3.

Figure 1 shows three surface plots of the full-scale solution and the corresponding meshes for different adap-
tive refinement levels. The results show the error estimator’s robustness and the energy norm’s effectiveness
at capturing the singularity. Convergence plots are presented in Figure 2 for different test-function poly-
nomial degrees (p = 1, 2, 3, 4) in the L2 and energy norms. Here, we show optimal rate decay for coarse ū
and full-scale ũ solutions and verify that the fine-scale contribution ũ recovers the dG approximation θ (i.e.,
u ≈ θ ). Besides, Figure 2 shows that the adjoint multiscale reconstruction (φ) improves the approximation
compared to the full-scale (u) and the dG (θ) solutions regardless of the polynomial degree.

(a) Vh norm (b) L2 norm

Figure 3: Vh− and L2−norm convergence for Fichera corner, q =
1

10

(a) L2 norm

Figure 4: Vh− and L2−norm convergence for Fichera corner, q =
1

3
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5.3. Diffusion problem for a 3D domain with a Fichera corner

In this example, we extend results in Section 5.2 for the 3D Fichera corner problem, where we induce
the singularity at the re-entrant corner of the domain Ω = (−1, 1)3\[0, 1)3. We consider the problem:

−κ∆u = f, in Ω,
u = uD, on ΓD,

(35)

where κ = 1 and source term f and Dirichlet boundary conditions (uD) are derived from the exact solution:

uexa =
(√

x2 + y2 + z2
)q

with q = 1/10 and q = 1/3. Similarly to the 2D case, uniform refinement techniques may struggle to
accurately capture the behavior in the Fichera corner. The high spatial gradients and the necessity for
fine meshes at the singularity lead to suboptimal convergence when no adaptive refinement techniques are
used [68]. Figures 3 and 4 display the convergence plots in L2 and Vh norms. Here, we test the robustness
of the error estimator to provide optimal convergence rates for the coarse solution and to recover the dG
solution and optimality in the full-scale solution for different q values. Moreover, as in Section 5.2, the ajoint
multiscale reconstruction (φ) provides a better approximation compared to the full-scale solution (u) in the
L2 and Vh norms, and improves the pre-asymptotic convergence rates, especially for linear trial functions.

(a) Vh norm (b) L2 norm

Figure 5: Vh− & L2−norm convergence for heterogeneous diffusion problem

5.4. Heterogeneous Diffusion problem

We solve the advection-diffusion equation with heterogeneous and anisotropic diffusion, following [74]:

−κ∆u+ β · ∇u = 0, in Ω,

u = uD, on Γ,
(36)

where β = (0, 1)T and κ is a second rank tensor with different εi values for each domain:

κ|Ωi
=

(
εi 0
0 1.0

)
.

We partition Ω = [0, 1]2 into two domains: Ω1 = [0, 1
2 ]× [0, 1] and Ω2 = [ 1

2 , 1]× [0, 1], such that ε1 = 0.1 and
ε2 = 1.0. We impose Dirichlet boundary conditions (uD) based on the exact solution for each domain [64]:

uexa =


(
u1/2 − exp

(
1

2ε1

)
+ (1− u1/2) exp

(
x
ε1

))
/
(

1− exp
(

1
2ε1

))
if x ∈ Ω1,(

− exp
(

1
2ε2

)
u1/2 + u1/2 exp

(
x− 1

2

ε2

))
/
(

1− exp
(

1
2ε2

))
if x ∈ Ω2,

(37)

10



where

u1/2 =

 exp
(

1
2ε1

)
1− exp

(
1

2ε1

)
 exp

(
1

2ε1

)
1− exp

(
1

2ε1

) +
1

1− exp
(

1
2ε2

)
−1

. (38)

Figure 5 plots the convergence in the L2 and Vh norms for polynomial orders 1 to 4. As noted in [74],
Figure 5(b) shows a loss in the convergence rate in the L2 norm for the coarse-scale solution (ū) for even
polynomial degrees. However, we can recover dG optimality by including the fine-scale contribution (u′),
regardless of the polynomial degree. The adjoint multiscale reconstruction (φ) is more accurate than the
other discrete approximations on the same mesh.

(a) Coarse-scale solution (b) Fine-scale solution

(c) Refined mesh

Figure 6: Coarse- & fine-scale solutions with final mesh for strongly anisotropic diffusion problem with r = 106 & p = 1

5.5. Strongly anisotropic diffusion

In this example, we test the performance of our method in a highly anisotropic diffusion problem. We
solve equation (35) with high contrast in the permeability tensor:

κ|Ω =

(
ακ 0
0 γκ

)
. (39)

We define the anisotropy ratio, rκ, as the ratio between the maximum and minimum values of the diffusion
coefficients; thus, we set rκ := ακ/γκ for (39). High rκ values are challenging in this problem, corresponding
to locally small weights in the diffusion tensor, leading to advection-dominated regimes. We study the
method’s performance by solving (39) for different values of the anisotropy ratio by imposing a sharp inner
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layer problem based on the following Gaussian-function-type manufactured solution, as described in [90]:

uexa =
exp(−[x2 + rκτy

2])

4π
√
rκτ

, (40)

with τ = 10−3. We use (40) and ακ = 1 to derive the source term (f) and Dirichlet boundary conditions
(uD) in the domain Ω = [−1, 1]× [−0.5, 0.5].

(a) Vh norm (b) L2 norm

Figure 7: Vh− and L2−norm convergence for anisotropy ratio rκ = 104.

(a) Vh norm (b) L2 norm

Figure 8: Vh− and L2−norm convergence for anisotropy ratio rκ = 106.

Figure 6 presents the coarse- and fine-scale solutions showing the discontinuity in y = 0 and the robustness
in the error estimator to effectively refine the inner layers. Figures 7 and 8 show the convergence plots for
rκ = 104 and rκ = 106, respectively. We obtain optimal rates for different polynomial degrees in the Vh and
L2 norms for all discrete approximations on the refined-mesh sequences.

5.6. 3D Eriksson-Johnson problem

We use a 3D version of the classical Eriksson-Johnson problem described in [45, 74]. We solve the
equation (36) in the domain Ω = [0, 1]3 with diffusion coefficient κ = 10−2, velocity field β = (1, 0, 0)T and
a source term f = 0. We impose Dirichlet boundary conditions from the analytical solution:

uexa =
exp(r1(x− 1))− exp(r2(x− 1))

exp(−r1)− exp(−r2)
sin(πy),

with r1,2 = 1±
√

1 + 4κ2π2/2κ. Figure 9 shows the coarse and fine scales for the problem for linear
polynomials, p = 1, and how the adaptive strategy captures the regions with sharp gradients, constructing
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Figure 9: Coarse- & fine-scale approximations for the 3D Eriksson-Johnson problem

(a) Vh norm (b) L2 norm

Figure 10: Vh− and L2−norm convergence for 3D Eriksson-Johnson problem, p = 1, 3

(a) Vh norm (b) L2 norm

Figure 11: Vh− and L2−norm convergence for 3D Eriksson-Johnson problem, p = 2, 4

a smooth solution. Figures 10 and 11 show the optimal convergence plot in Vh and L2 norms for the coarse-
and full-scale approximations. As before, the adjoint multiscale reconstruction improves the Vh norm and
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the pre-asymptotic convergence, especially for lower-order polynomials.

6. Extension to nonlinear conservation laws

This section presents a numerical stability analysis for the nonlinear conservation law for our variational
multiscale reconstructions. First, we formulate the discrete problem using the Lax-Friedrich flux for the
nonlinear advective flux within the discontinuous Galerkin (dG) framework. Then, we describe the varia-
tional multiscale method for nonlinear problems [83] and specialize it to the adaptive stabilized finite element
method [68] to obtain a nonlinear fine-scale approximation. We present some numerical results for Burgers’
equation to demonstrate the accuracy and efficiency of our approach.

6.1. Discontinuous Galerkin discretization

We consider the following nonlinear conservation law:

∇ · (f(u)− κ∇u) = f, in Ω,

u = uD, on ΓD,
(41)

where f(u) represents a nonlinear convective flux; thus, the dG discrete problem reads:{
Find u ∈ Vh, such that:

nh(v;u) = `h(v), ∀ v ∈ Vh,
(42)

where n(v;u) represents the nonlinear form including a SWIP contribution in (8) and the Lax-Friedrichs
numerical flux Φ for the nonlinear convective flux defined as follows:

nh(v;u) = bh(v, u)swip −
∑
K∈T

(∇hv, f(u))K +
∑
F∈Sh

([[v]],Φ)F , (43)

with,

∀F ∈ S 0
h , Φ :=

1

2
(f(u1) · nF + f(u2) · nF + ηf (u1 − u2)),

∀F ∈ SD
h , Φ :=

1

2
(f(u) · nF + ηf u) +

1

2
(f(uD) · nF − ηf uD).

(44)

ηf is a local dissipation parameter and is chosen based on the maximum eigenvalue of the flux function
Jacobian. In equation (61), we set

∀F ∈ S 0
h , ηf := max

w=u1,u2

|f ′(w) · nF |,

∀F ∈ SD
h , ηf := |f ′(u) · nF |.

(45)

The right-hand side in (42) for weakly imposed non-homogeneous Dirichlet boundary conditions reads:

`h(v) :=
∑
K∈T

(v, f) +
∑

F∈S D
h

(neκ(v, uD)F − (κ∇hv · nF , uD)F )

−
∑

F∈S D
h ∩Γ

1
2 (v, f(uD) · nF − ηfuD)F . (46)

We endow Vh with the norm:
‖w‖2Vh

:= ‖w‖2swip + ‖w‖2conv, (47)

with ‖w‖2swip the SWIP norm contribution (14) and ‖w‖2conv a convective norm defined as follows:

‖w‖2conv := ‖w‖20 +
∑
F∈Sh

‖[[w]]‖20,F +
∑
K∈T

hK‖∇w ‖20,K . (48)
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6.2. Residual minimization formulation

Following the residual minimization formulation in Section 3, and the nonlinear approach for residual
minimization problems [73], we formulate the following nonlinear saddle-point problem to obtain the coarse-
scale solution and an error estimate:

Find (ε, ū) ∈ Vh × V̄h, such that:

g(v, ε) + nh(v; ū) = lh(v), ∀v ∈ Vh,
n′h(ε, w̄; ū) = 0, ∀w̄ ∈ V̄h.

(49)

Here, n′h(v, u; δu) is the linearized form of the nonlinear operator (43), evaluated at ū ∈ Vh, and defined
through the discrete Gâteux derivative in the direction δū ∈ Vh as:

n′h(v; δū, ū) :=
d

dε
nh(v; ū+ εδū)

∣∣
ε=0.

(50)

We use the Newton-Raphson method to solve (49) so that at each step of the nonlinear iteration, we solve
the following linear problem:

Given (εi, ūi), find (δε, δū) ∈ Vh × V̄h, such that:

g(v, δε) + n′h(v, δū; ūi) = lh(v)− g(v, εi)− nh(v, ūi) ∀v ∈ Vh,
n′h(δε, w̄; ūi) = −n′h(εi, w̄; ūi) ∀w̄ ∈ V̄h,

(51)

where we update ui and εi at every iteration i such that:

ūi+1 = ūi + kδū, εi+1 = εi + kδε (52)

and assume convergence when ‖ūi+1 − ūi‖Vh
< 10−6. We use a damped Newton algorithm to solve the

corresponding nonlinear saddle point problem. We denote the relaxation parameter as k in (52), following [91]
(see algorithmic details in [73]). Regarding error estimation, we adopt a similar approach to that used in
the linear problem. Here, ε in equation (49) represents the residual error of the nonlinear operator, i.e.,
g(v, ε) = lh(v) − nh(v; ū). However, we use the updated residual error (εi+1) to guide adaptivity after the
solution of (51) converges.

6.3. Nonlinear variational multiscale method

Following the previous section, a natural approach to solve (42) uses the resulting linearized equation
and updates the solution with a correction term at every iteration as:

ui+1 = ui + δu. (53)

In a multiscale context, both ui and δu in (53) are decomposed into fine-scale (ũi, δũ) and coarse-scale (ūi,
δū) components. To circumvent the need for decomposing ui at each iteration, we use a decoupled scale
system by employing the subsequent approximation, as suggested by [83]:

ui ≈ ūi,

which assumes the following at each iteration,

ui+1 ≈ ūi+1 + δũ. (54)

We simplify the notation in (54) by dropping the sub-index i:

u ≈ ū+ δũ. (55)
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From this, we define a multiscale formulation through defining a nonlinear direct sum decomposition for
both the trial and test function spaces:

u = ū+ δũ ∀u ∈ Vh, (56)

v = v̂ + v′ ∀v ∈ Vh, (57)

where ū ∈ V̄h, δũ ∈ Ṽh, v̂ ∈ V̂h, and v′ ∈ V′h. Using (56) in the nonlinear problem (42), and a first-order
Taylor expansion about the coarse-scale solution ū, the nonlinear form becomes:

nh(v;u) = nh(v; ū+ δũ) ≈ nh(v; ū) + n′h(v; δũ, ū) v ∈ Vh. (58)

Drawing from the first equation in the nonlinear saddle-point problem in (49) and employing (42) and (58),
we obtain the following identity: {

Find δũ ∈ Vh, such that:

n′h(v, δũ; ū) = g(v, ε) ∀v ∈ Vh.
(59)

Here, we use ε and ū from (49) after the system converges. Similar to the linear case, in the subsequent
sections, we represent the reconstructed full-scale solution (Equation (56)) as (u) and the dG solution in
(42) as (θ). Unlike the linear problem, u is not equivalent to, but rather an approximation of, θ (i.e., u ≈ θ).
The decoupled multiscale formulation substantially reduces computational costs by eliminating the need
for explicit decomposition of ui into coarse- and fine-scale components during each iteration. Instead, the
decomposition is only performed once at each iteration level. In the next section, we demonstrate that our
approach and the adaptive strategy yield an accurate and stable approximation of the coarse-scale solution
and error indicator. This approximation enables the recovery of the full-scale solution following refinement.

6.4. Adjoint multiscale reconstruction

As for the linear case, we introduce an adjoint multiscale reconstruction φ defined as:

φ = ū+ δǔ,

where δǔ is fine-scale adjoint reconstruction, such that:{
Find δǔ ∈ Vh, such that:

n′h(v, δǔ; ū) = g(v, ε′) + n′h(ε′, v; ū) ∀v ∈ Vh.
(60)

The following example shows the improved accuracy of the adjoint reconstruction (φ) for the asymptotic
regime in the energy norm (i.e., ||uexa − φ||Vh

. ||uexa − u||Vh
).

6.5. Burgers’ equation

This section assesses the performance of the proposed variational multiscale reconstructions applied to a
nonlinear problem. We focus on the steady Burgers’ equation, a widely used partial differential equation for
modelling physical phenomena, including fluid dynamics, shock waves, and traffic flow. Subsequent sections
will showcase results derived from this equation’s isotropic and anisotropic variations.

6.5.1. Isotropic Burgers’ equation

In the first example, we solve the isotropic case where f(u) := bu2

2 with b = [1, 1]T . The problem reads:

∇ ·
(

bu2

2

)
− κ∆u = f, in Ω,

u = uD, on ΓD,
(61)
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(a) Coarse-scale solution

(b) Fine-scale solution

Figure 12: Solution for Burgers’ equation for κ = 10−3 & p = 1

Level= 0 Level= 10 Level= 20 Level= 25

Figure 13: Solution for the isotropic Burgers equation for different refinement levels at κ = 10−3

with Ω = [0, 1]2, κ = 10−3 and a initial condition u0 = 0.5 which rises to a inner discontinuity. We impose
the source term f and Dirichlet boundary condition (uD) from the exact solution:

uexa =
1

2

(
1− tanh

(
2x− y − 0.25√

5κ

))
.

We use f ′(w) = bw to impose the local dissipation parameter in (45).
Figure 12 shows solution plots for p = 1, illustrating the smooth approach of the continuous solution and its
correction for the fine-scale along the discontinuity. Figure 13 displays a sequence of four refinement levels
to demonstrate the effectiveness of the refinement strategy in capturing the sharp inner layer, irrespective
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(a) Vh norm (b) L2 norm

Figure 14: Convergence plots for Burgers’ equation in the L2 and Vh norms, p = 1, 3

(a) Vh norm (b) L2 norm

Figure 15: Convergence plots for Burgers’ equation in the L2 and Vh norms, p = 2, 4

of the initial mesh. Figures 14 and 15 depict optimal convergence rates for p = 1, 2, 3, 4 in the L2 and
Vh norms. Moreover, we show our method recovers the full-scale solution (i.e., u ≈ θ) after refinement,
regardless of the polynomial order. Furthermore, as in the linear case, the adjoint multiscale reconstruction
(φ) enhances the approximation quality in the Vh norm.

6.5.2. Single-component Burgers’ equation

We introduce a second scenario to test the numerical performance in the presence of a sharp shock layer.

We select a problem from [92] to solve Burgers’ equation in a single component, such that f(u) :=
[
u2

2 , u
]T

.

This problem represents a challenge, especially for convection-dominated problems, due to the shock presence
at x = 0. The problem reads:

1

2

∂u2

∂x
+
∂u

∂y
= κ

(
∂2u

∂x2
+
∂2u

∂y2

)
, in Ω, (62)

with Ω = [0, 1]2 and initial guess u0 = 1− 2x. We impose Dirichlet boundary conditions uD = u0 at y = 0,
x = 0 and x = 1 and zero Neumann boundary conditions at y = 1. The local dissipation parameter in (45)
uses f ′(w) = [u, 1]. We used a polynomial degree of p = 3 and a uniform element size of 4 × 4 for the
initial mesh. Figure 16 illustrates the coarse and fine solutions for κ = 10−2, κ = 10−3, and κ = 10−4.
Additionally, Figure 17 demonstrates how the adaptive strategy effectively reduces oscillations along the
shock for coarse meshes, regardless of the initial mesh [92].
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(a) Coarse-scale solution (b) Mesh (c) Fine-scale solution

Figure 16: Coarse-scale solution and scale approximations for different diffusivities. (top: κ = 10−2, middle: κ = 10−3 ,bottom:
κ = 10−4)

Level= 0 Level= 5 Level= 10 Level= 20

Figure 17: Solution for the Burgers equation for different refinement levels at κ = 10−2

7. Conclusions

We introduce an adaptive stabilized finite element method for convective-dominated diffusion problems
using variational multiscale fine-scale reconstructions. The method constructs a coarse-scale approximation
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by minimizing the residual in dual discontinuous Galerkin norm and employs a robust error estimation
technique to obtain a fine-scale solution and guide adaptivity. We show the effectiveness and reliability
of our method through various numerical experiments involving different types of linear problems, such as
highly heterogeneous, strong anisotropic diffusion tensors, and convection-dominated diffusion. Lastly, we
successfully extend the method to solve the nonlinear conservation law. We use Burgers’ equation as an
example where we obtain stable solutions and optimal convergence rates.
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