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Abstract. The efficiency of a cooling fin of given weight is measured by the amount
of heat dissipated per unit time by the fin. It is known that the efficiency of a given fin
can be altered by changing the shape of the fin. In this paper we determine the shape
of the most efficient fin of given weight and length, and thickness <H and >h.

1. Introduction. Cooling fins are used to conduct heat away from machines to an
ambient medium. The question of the efficiency of a fin of given weight arises naturally.
One wishes to determine how a fin of given weight should taper so as to maximize the
amount of heat dissipated per unit time. It was conjectured by Schmidt in 1926 (cf. [1])
that optimum fins should taper, narrowing in the direction of heat flow, so as to make
the temperature gradient constant along the fin. In 1959 Duffin (cf. [2]) gave a varia-
tional formulation of the problem of designing cooling fins. The solution of this problem
proved the correctness of Schmidt's conjecture.

In this paper we consider Duffin's problem with the added constraint that the
thickness of the fin must not be greater than some constant H, nor less than some con-
stant h, at any point. Equivalent variational problems arise in several other contexts
(see, for example, [3] and the references therein). [3] describes an iterative procedure for
determining approximate solutions of these problems. Our purpose here is to derive
explicit formulae for these solutions.

Other variants of the cooling fin problem are discussed in [4-8]. In particular, [8]
treats problems where the thickness of the fin comes into consideration. For example,
for straight fins, the optimum ratio of length to thickness is determined. [8] also provides
a good discussion of the physics and geometry of cooling fins.

2. The variational problem. Let distance along the fin be measured by x. Let y(x)
denote the temperature in the fin at point x. Then, assuming that the temperature of
the machine is in a steady state, y satisfies the differential equation

(p(x)y')' - qy = 0, 0 < x < I, (2.1)
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with boundary conditions

y(0) = T, y'(l) = 0. (2.2)
p(x) denotes the thickness of the fin at x, q is a constant denoting the cooling coefficient
of the fin, T is the steady-state temperature of the machine and I is the length of the fin.

The amount of heat dissipated by the fin per unit time is given by

[ qy{x) dx. (2.3)
Jo

The weight of the fin is proportional to

f p{x) dx = W. (2.4)
•*0

W is a given constant, proportional to the weight of the fin. p(x) is required to satisfy
a constraint of the form

h < p(x) < H (2.5)

where 0 < h < H. We shall assume that hi < W < HI.
Our problem is to determine p satisfying the conditions (2.1), (2.2), (2.4), (2.5),

and maximizing the integral (2.3). For convenience we reformulate the problem. From
(2.1) we have that

[ l(p(z)y')' - qy]y dx = o
•^0

which can be written as

v(i)y\i)y(i) - p(0>/(0M0) = [' wf + qy2} dx, (2.6)
•'0

or, in view of the boundary conditions (2.2),

-p(0)y'(0)T = f [p{y'f + qy2] dx. (2.7)•fO

On the other hand, by simply integrating Eq. (2.1) we obtain

[ qy dx = p(l)y'(l) - p(0)y'(0) = -p(0)y'(0).
Jo

Combining this with (2.7) we obtain

[ qy dx = ^ [ [p(y')2 + qy2] dx. (2.8)
Jo 1 Jo

Now (2.1), together with (2.2), is just the Euler equation for the variational problem

minimize / [p{y')2 + qy2] dx subject to 7/(0) = T.
Jo

It therefore follows from (2.8) that the variational problem formulated above is equiv-
alent to the max-min problem

maximize S minimum
h<v(.x)<H I

y0'p(x)dz= W

I' lp(y')2 + qy2] dx} (2.9)
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where the minimum is taken over all absolutely continuous functions y having square
integrable derivatives on [0,1] and satisfying y(0) = T. We shall therefore solve problem
(2.9). This max-min problem has meaning even if p is only required to be measurable.
And since it is easy to prove the existence of a solution in the class of measurable functions,
we shall now expand our attention to this larger class of functions. The solution of (2.9)
in this class will turn out to be continuous.

Definition. A measurable function p, satisfying the condition (2.5), will be called
an admissible shape.

For convenience we introduce the function g defined on the class of admissible shapes
by

g(p) = minimum [ [p(x)(y'(x))2 + qy\x)] dx. (2.10)
v(0) = T Jo

The transformed version of our problem is then to

maximize g(p) subject to / p(x) dx = W, h < p(x) < H, p measurable. (2.11)
-0

To show that this problem is well defined, and also for purposes of the development
to follow, we shall verify that the minimum in (2.10) is actually attained.

Lemma 2.1. The minimum in (2.10) is attained by an absolutely continuous func-
tion y, having a square integrable derivative on [0, I].

Proof. Let d = inf JY [p{x)(y'(x)2 + qy'(x)] dx where the infimum is taken over
the class of absolutely continuous functions y, defined on [0, l\ and satisfying y(0) = T.
We also assume that y' is square integrable. Let {y„\ be a sequence of such functions
with the property that

lim [ [p(x)(yn'{x)f + qy2{x)] dx = d.
n-»oo J 0

Let e > 0 be given and choose N so large that

[ lp(x)(Vn'(x))2 + qy2{x)] dx < d + «
Jo

for n > N. Then for n and m > N we have

jf [v^-r^)' + «(!Vfa)']dx

= \ + dx + f0 ^PiVm')2 + qyJ\ dx

- I' + 'Mr15)1]d1

< d -|- e

Now since the function (yn + ym)/2 is absolutely continuous on [0, I] and has a square-
integrable derivative there, and has value T at x = 0, we have
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dx > d.

It follows that
rl T In ' — n '\2 /« _ 1/ \2~

dx < e.
i +«(")'.

Since p and q are bounded from below by positive numbers, this shows that the sequence
{Vn\, \y,!\ are Cauchy in the space L2[0, /] of square-integrable functions on [0, l].
Therefore, there exist functions y(x) and jj'(x) in L2[0, Z] with the property that

lim / (yn — y)2 dx = 0 and lim / (yn' — y')2 dx = 0.
n_»oo J0 n—»oo J0

(Here the prime on y is merely meant to be suggestive. It will turn out that y' is in fact
the derivative of y.) Since each y„ is absolutely continuous we have

Vn{x) = [ y„'(t) dt + T, 0 < x < I.
Jo

Furthermore, since

(yn'(t) - y'(t)) dt < lW2 ^ (yn' - y')2 dx~^ ,

it follows that

lim yn(x) = f y'(t) dt + T
n—* oo 0

for each x £ [0, I]. And since \yn\ converges in the mean square to y we must have

y(x) = [ y'{t) dt + T

for almost all x £ [0, l]. If necessary we redefine y on a set of measure zero so that this
equation holds for all x £ [0, /]. It then follows that y(x) is absolutely continuous and
that y'(x) = y'(x) for almost all a: £ [0, /]. Finally, we have

[ lp(y'f + qy2] dx = [ [p(y')2 + qy2] dx
Jo *'0

= lim f [p(yn')2 + qy2] dx = d.
n—»oo JQ

Since y is absolutely continuous and satisfies y{0) = T, we have established that the
minimum in (2.10) is actually attained.

In (2.1) we have tacitly assumed p to be continuous, whereas in (2.ll) we have
allowed p to be simply measurable. The solution of (2.ll) will turn out to be continuous,
and therefore to be a solution of our original problem.

When p is only measurable and y is a solution of the minimization problem (2.10),
we can only assert that y satisfies the integrated version of the Euler equation (2.1)
almost everywhere. That is

p{x)y'{x) = f qy(t) dt - [ qy(t) dt (2.12)
Jo Jo
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for almost all x in [0, l]. However, when p is continuous it can be shown that this condition
holds for all x and that therefore, (2.1) holds.

3. Analysis of the problem. In this section we prove the existence of a solution
of our problem and derive necessary and sufficient optimality conditions characterizing
the solution.

To begin, note that the function g is bounded from above. In fact if we take y(x) = T
in (2.10) we obtain, for any measurable p,

g(p) < f qT2 dx = IqT2. (3.1)
Jo

Theorem 3.1. For each continuous admissible shape p the function y which
achieves the minimum in (2.10) satisfies

\y'(x)\ < IqT/h (3.2)
for each x in [0, I].

Proof. Since p is continuous y satisfies (2.1) and (2.2). Moreover, y(x) > 0 on
[0, Z]. To see this, note that y(0) = T > 0. Let x, be the first point in [0, I] satisfying
y(xj) = 0. If there is no such point then y(x) > 0 on [0, I] as we claimed. On replacing
0 by Xi in (2.6) we obtain

0 = -p(x1)2/'(x1)i/(x1) = [ [p{x){y'{x))2 + qy2{x)] dx

which shows that y(x) = 0 on [x, , I]. Thus y(x) >0 on [0, I].
Now (2.1) states that

[p{x)y'{x)\ = qy(x) > 0

which shows that p(x)y'(x) is monotone nondecreasing on [0,1]. It follows that

P(0)y'(0) < p{x)y'(x) < p(l)y'(l) = 0
for 0 < x < I. And by (2.7) and (3.1) we have

p(0)y'(0) = g(p) > -IqT

so that — IqT < p(x)y'(x) < 0. Finally, we have, by (2.5),
-IqT/h < y'(x) < 0.

This completes the proof of the theorem.
Even if p is only measurable the condition (3.2) holds for almost all x in [0, l]. This

result will come as a corollary in the next section.

Theorem 3.2. If p, and p2 are continuous admissible shapes then

1 y.'\v> - Pt) dx - I (If) fo (p2 - Plf dx
< g(p?) - g(vi) < [ ViXv* - p.) dx, (3.3)

Jo

where yx is the solution of (2.10) corresponding to Pi .
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Proof. Let y2 be the solution of (2.10) for p = p2 ■ Then

g(p*) - g(pi) = [ [pt y*2 + qy*} dx - f [p^/2 + qy2} dx
Jo Jo

= f Vi'2(P2 - Pi) dx + [ [p2y2'2 + qy2} dx - f [p2y,'2 + qy2} dx. (3.4)
Jo Jo Jo

Now

[ [p2y2'2 + qy2] dx - f [p2y i'2 + qy2] dx < 0
Jo Jo

by definition. It therefore follows that

g(P2) - g(pi) < / yi'2(.P2 - Pi) dx,
Jo

which is the second inequality in (3.3).
To obtain the first inequality note that

f (V22 ~ y/2)(Pi ~ p2) dx = [ ) [pxy2'2 + qy2] - [piy/2 + qy2}} dx
Jo Jo

+ [ {[PiVx2 + qy2} - [p2y22 + qy^2}i dx. (3.5)
Jo

These last two integrals are >0 by the definitions of 2/1 and y2 . Consider the first of
these. It is equal to

[ [2piyi'(y2 ~ Vi) + 2 qy,(y2 - ?/,)] dx + f lp,(y2' - y/Y + q(y2 - 2/i)2] dx.
Jo Jo

Now

[ [2piVi'(y2' - Vi) + 292/1(2/2 - 2/1)] dx = lim - f [p^y/ + t(y2' - y/))2
Jo «-»o+ € LJo

+ 9(2/1 + t(y2 - 2/1))2] dx - j IpiVi'2 + qy2}

and consequently

[ [2t?i2/i'(2/2' - 2/i') + 292/1(2/2 - 2/i)] dx > 0.
Jo

It therefore follows that

f {[P12/2'2 + qy22} - [pij/Z2 + qy2}} dx > [ [pi{y2 - 2/1')2 + 9(2/2 - 2/O2] dx
Jo Jo

> f h(y2' - 2/1')2 dx.
Jo

Similarly

f {[p22/i'2 + 92/12] - [P22/2'2 + qy2}} dx > f h(y2 - 2h'T dx. (3.6)
-0 Jo
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From (3.5) we now deduce that

(V*2 - Vi'2)(Pi ~ V2) dx > jT 2/i(2/2' - Vif dx. ^ ^

On the other hand,

[ ft/2'2 - y/2)(pi - P2) dx = f (y2' + yi')(y2' - y/)(pi - p2) dx
Jo «'0

-2 ^ or(y/ ~y/r dxYxi(pi _ 7,2)2 dx)i/2 (3-s)
by Theorem 3.1. Together, (3.7) and (3.8) imply that

fg (2h' - Vi'f dx < £ (pi - p2f dx. (3.9)

Substituting this into (3.8), we obtain

fo (l/i'2 - 2/2'2)(Pi - p2) dx < | {^pj ^ (p! - p2)2 dx.

Finally we have

g(Pi) = [ lP2y2'2 + qy2} dx
Jo

= [ yi'2(p* - P1) dx - f (y2'2 - ?/i'2)(pi - p2) dx + f [p^i'2 + g2/22] dx
Jo J0 Jo

> j0 2/i/2(p2 - Pi) da: - | fg (Pi ~ P2)2 dx + gf(p,)-

This proves the first inequality in (3.3) and completes the proof of the theorem.

Corollary. Theorem (3.2) remains valid if pi and p2 are assumed to be only
measurable. Also, Theorem 3.1 holds for measurable shapes p. In this case (3.2) is an
almost-everywhere condition.

Proof. Since the only use made of the continuity properties of p, and p2 in Theorem
3.2 was the inequality (3.2) from Theorem 3.1, it suffices to prove that Theorem 3.1
is valid almost everywhere for measurable p.

Let jpnj be a sequence of continuous functions converging in the mean square to p.
Let \yn\ be the corresponding solutions of (2.10). Then by (3.9) we have

fg (Vi'(x) - y/(x)f dx < (jj^J £ (p.(a;) - p,(a;))2 dx

for any pair 7), , p, from the sequence {p„}. This shows that the sequence \yj(x)) is
Cauchy in the space L2[0,1] of square-integrable functions on [0,1], and hence converges
in the mean square to a function y'(x) £ L2[0, I]. We define

y(x) = f y'(x) dx + T.
Jo
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Then y'{x) = y'(x) for almost all x in [a, b], which implies that

lim f (yn'(x) — y'{x))2 dx — 0 (3.10)
n-> oo J 0

and since \yn'{x)\ < IqT/h for each x in [0, /] we must have \y'(x)\ < IqT/h for almost
all x in [0, l].

To complete the proof of the corollary we need only show that y is the solution of
(2.10) corresponding to p. To do this note that

lim [ (y„(x) - y{x)f dx = 0.
n—>oo *>0

This follows from (3.10). Now let y be any function having a square-integrable derivative
on [0, I] and satisfying y(0) = T. Then

f [VnV'2 + qy\ dx > f [pny„'2 + qyn] dx
Jo Jo

by the definition of yn . Letting n —» , we see that y solves (2.10).

Theorem 3.3. The problem (2.11) has a solution.
Proof. Let [j)n\ be a sequence of shapes satisfying the conditions in (2.11) and

having the property that lim„_ra g(Pn) = sup g(p) = g* where the supremum is taken
over all shapes satisfying the conditions in (2.11). This class of functions is weakly
compact in L2[0, /]. Therefore we can select an infinite subsequence of the pn , which we
again denote by , pn}, converging weakly to an element p* in the same class. By (3.3)
we have

g(Pn) - g{p*) < [ (y*'Y(p» - p*)
Jo

dx

where y* is the solution of (2.10) corresponding to p*. Letting n —» , we obtain

sup g(p) < g(p*)

which proves the optimality of p*.
Theorem 3.4. An admissible shape p*, satisfying J7 P*(x) dx = W, is optimal

if and only if there exists a constant ?j such that

f P*(x)l(y*'(x))2 - V]dx > [ p(x)[(y*'(x))2 - t?] dx (3.11)

for all admissible shapes p. y* is the solution of (2.10) corresponding to p*.
Proof. Assume that the condition (3.11) is satisfied for some rj and p*. Then for

any admissible p satisfying

/ p{x) dx= p*(x) dx =
Jo Jo

w
we have

giv) - giv*) = g(p) - g(v*) + v [ [p*(*) - p(x)] dx
J o

< f P(x)l(y*'(x)f - -n)dx - [ p*(x)[(y*'(x))2 - 17] dx
Jo Jo

< 0.
The inequalities are due to (3.3) and (3.11) respectively. They prove that p* is optimal.



A VARIATIONAL PROBLEM 9

Now assume that p* is optimal. We shall prove the existence of a constantjj satisfying
(3.11). First we assert that g is concave. To see this, let admissible shapes px and p2 ,
and a constant 0 < X < 1 be given. Then

g(\pl + (1 - X)p2) = min [ [(Xpj + (1 - \)p)y'2 + qy2] dx
v(o)-r Jo

> min / \\piy'2 + qy2] dx
v(0)-T Jo

+ min f (1 - \)[p2y'2 +
v(0) = T Jq

qy2] dx
1/(0)=T *>0

= xg(Pi) + (1 - X)?(P2), (3.12)

which proves that g is concave. Now consider the set S consisting of all pairs (a, 0)
with the property that

a = I p(x) dx and 0 < g(p)
Jo

for some admissible shape p. S is clearly a convex set, bounded from above. The point

(a*, 0*) = p*(x) dx, g(p*)j

is the highest point in S along the ray a = W. It is therefore a boundary point of S.
Consequently there exists an outward normal (v, v0) to S at the point (a*, 0*). We there-
fore have

(„,„„)• ((a, 0) - («*,/?*)) < 0 (3.13)

for every point (a, 0) £ S. The condition hi < W < HI, assumed at the outset, implies
that the ray a = W has points in the interior of S. If (a, /3) is such a point, then strict
inequality holds in (3.13), which now reduces to v0(/3 — fi*) < 0. This implies that
v0 > 0 since /3 < /3*. Without loss of generality we may assume that v0 = 1.

Now consider the points in S given by

(«, $) = (f p(x) dx, g(p)j
for p admissible. (3.13) then implies that

[ {pix) - p*(x)) dx + g(p) - g(p*) < 0.
Jo

V

In particular, if we replace p by the admissible shape p* + X(p — p*) for 0 < X < 1
we obtain

, f (p(x) - dx + + x(p -p,)) - ^ < 0.
J o A

Allowing X to approach zero, we deduce from this, together with the first inequality
in (3.3), that
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v f (p(x) - p*(x)) dx + [ (y*'(x))2(p(x) — p*{x)) dx < 0.

This inequality gives the conclusion of the theorem with ij = —v.
A more useful version of Theorem 3.4 is provided by the following corollary.
Corollary. An admissible shape p*, satisfying J0! p*(x) dx = W is optimal if

and only if there exists a constant tj such that

max p[(y*'(x))2 - i»] = p*{x)[(y*'(x))2 - ij] (3.14)
h<p<H

or almost all x in [0, I].

Proof. It suffices to show that (3.14) is equivalent to (3.11). We begin by observing
that (3.14) trivially implies (3.11).

Now assume that (3.11) holds for each admissible shape. Recall that if fix) is an
integrable function on [0, Z], the indefinite integral Jo* fit) dt is differentiate almost
everywhere (cf. [9], Theorem 6.3, p. 118) and at points x where the derivative exists
it is given by fix). (We have already made uses of this fact in Sees. 1 and 2.) Such a
point is called a Lebesgue point. Thus if x is a Lebesgue point for /, we have, by definition,

lim - [ f(t) dt = /(:c).
*-*0 + e Jx

Let 0 < x < I be a Lebesgue point for each of the functions

fi(x) = P*ix)[y*'ix))2 - tj], f2(x) = (y*'{x))2 - 17.

This is possible since almost all points in [0, l] are Lebesgue points for each of these
functions. Let p be any number satisfying h < p < H. Choose e > 0 so small that
0 < x + e < I. Then define the admissible shape p as follows:

p(x) — p if xt[x, x + t]

= p*(x) otherwise.

Substituting p into (3.11) and simplifying a bit, we obtain

P*(x)[{y*'(x)f - v] dx > £ p[(y*'(x)¥ - 17] dx.

Multiplying both sides of this inequality by 1/e and allowing e to tend to zero, we obtain

p*my*'(z))2 - u] > p[y*'(£))2 - vl
Now since p was chosen arbitrarily in [h, H] we have

p*{£)[(y*'{x)f - 17] > max p[{y*'{x))2 - 77]
h<v<H

and equality holds since p*(£) G [h, H], Since the choice of x only excluded a set of
measure zero, we have established (3.14) for almost all x.

Lemma 3.1. The constant 77 in (3.14) is positive.
Proof. Assume that 17 < 0. Then for each x in [0, I] we have (y*'(x))2 — r) > 0.

It follows that
max p[(y*'(x)y - 77] = H[(y*'(x))2 - ij]

h<p<H
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for each x in [0, l]. But this implies that p*(x) = H which is impossible since JV p*(x) dx
= W and we assumed at the outset that W < HI.

Now assume that 77 = 0. Since (3.14) and (3.11) are equivalent, we can deduce from
(3.11) that

[ (y*'(x))2(p(x) ~ P*(z)) dx < 0
«>0

for each admissible shape p. This inequality implies that g{p) < g(p*) for each admissible
shape p. To see this, take p2 — p and p, = p* in the second inequality in (3.3). In
particular, if we denote by H the admissible shape defined by p(x) = H, then

g(H) < g(p*). (3.15)
But this inequality is impossible. To see this let, yH denote the solution of the problem

min [ [Hy'2 + qy2] dx = g(H).
i/(0)-r Jo

We then have

g(p*) = min [ [p*y'2 + qy2] dx < [ [p*yH'2 + qy/] dx
v(o) = r Jo Jo

< f [HyH'2 + qyH2] dx = g{H). (3.16)
Jo

The last inequality follows from the fact that p*{x) < H. But we can say even more.
Since jV 7>*(x) = W < HI we must have p*{x) < H on a set of positive measure. I
claim that yH'(x) is not zero on this set and so the last inequality in (3.16) holds with
strict inequality. To see that yH'{x) is never zero on [0, I] notice that yHix) satisfies

Hy" + qy = 0, y( 0) = T, y'(l) = 0.
Solving this gives

Vn(x) = T cosh (I — x) I cosh i

and yH'(x) ^ 0 for 0 < x < I.
(3.16) now implies that g(p*) < g(H), which contradicts (3.15). It now follows that

we cannot have 7? = 0, and so 7; > 0 as claimed.

4. Computing the optimal shape. For the purpose of computing p* it is convenient
to introduce the variables yAx) = y*(x) and y2(x) = p*(x)y*'(x). On intervals where
p* is continuous we deduce from (2.1) that

yi' = 2/2 > 2/2' = qy 1 • (4.1)

We shall follow the optimal path traced out by this system starting at x = I and working
backwards. y2(l) = 0, but yAl) is an unknown value which we denote by K.

Since y*'(l) = 0, we have (y*'(x))2 < 17 for almost all x in some left neighborhood
of I. For x in this neighborhood we deduce from (3.14) that p*(x) = h. It therefore
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follows from (4.1) that

A
dx [g2/i2(z) - 12/22(*)] = 0

for x in this neighborhood. Thus initially the point (jjiix), y2(x)) travels along a branch
of the hyperbola

gyi2 - | v? = qK2 (4.2)

where K denotes the value y(l) to be determined (see Fig. 1). During this time (y*'(x))2
is increasing as x decreases and y*'(x) is negative. p*(x) = h is not a solution to our
problem since we have required that hi < JV P*{x) dx < HI. It therefore follows that
there is a point 0 < x2 < I satisfying (y*'(x?))2 = ??.

I claim that (y*'(x))2 remains constant with value i? for x in some positive interval
of the form [xt , x2}, where Xi > 0. To see this note that if (y*'(x))2 > v for x in some
left neighborhood of x2 , we have, by (3.14), p*(x) - H in this neighborhood. It follows
that

(p*(x)y*'(x))2 > H2V = h\ + {H2 - h2)v

= (P*(x2)y*'(x2)f + (H2 - h2)n]

0

-I
II
OJ

-2

-3

qy2 __Ly2=qK2
I h ' 2

qy f - 77 y| = qK2+(H-h)77

(y|(X|),y2(X|))

1 2 r
2 qy, y2 =

^(qK2-h^)

yi=y*M
Fig. 1. The optimal path is indicated by arrows.
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for x in this neighborhood. This contradicts the fact, which is evident from (2.12), that

lim (p*(x)y*'(x))2 = (p*(x2)y*'(x2))2.
x—»Ij

It follows that for x sufficiently close to x2 we must have (y*'(x))2 < y.
Similarly, we cannot have (y*'(x))2 < y = (y*'(x2))2 in some left neighborhood of x2

since this implies that p*(x) = h in an interval containing x2 in its interior. And, as we
have seen, on intervals where p (x) — h, y*'(x) is negative and decreasing with x.

Thus to continue the construction of the optimal path in Fig. 1 beyond the point
(i/i(x2), y2(x2)) we must move so that the condition (y*'(;c))2 = y is satisfied. Substituting
this into (4.1), we deduce that

(\qVi\x) + Vmix)) = 0.

This shows that the point (yi(x), y2(x)) is traveling along the parabola

hqyI + Vy y2 = hqy2(x2) + Vy y2(x2) (4.3)

on some interval of the form Xi < x < x2 , as in Fig. 1. On this interval, we deduce from
the first equation in (4.1) that

p*(x) = - (1 /Vy)y2(x). (4.4)

There are now two cases to consider. The first is where x decreases from x2 to zero
without p*(x), given by (4.4), violating the inequality p*(x) < 11. Let us consider
writing down the formula for p* in this case.

We have seen that y*'(x2) = — Vy, which implies that y2(x2) = —hVy- Substituting
this into (4.2) gives

HiiXi) = (q y + -K2) = y*(x2).

Now, by assumption y*' = — Vy on [0, x2] and so

*(x) = - Vy (x - x2) + y + K2^) (4.5)y*(

on this interval. Also on this interval, we deduce from (4.1) that y2'(x) = qyt(x) = qy*(x)
which implies that

y2{x) = —q^V (x - x2)2 + q(~ y + K2^ (x — x2) - hVy.

Finally we have, by (4.4),

a !h K2\w2
P*(x) = | (x - x2)2 - g(- H ) (x - x2) + h, 0 < x < x22 71 (4.6)

= h, x2 < x < \.

This expression for p* contains the three unknowns y, K and x2 . These quantities
can be determined from the conditions
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y* " \g

The first of these conditions can be written as

f p*(x) dx = W,
J 0

V*(0) = T, (4.7)

(x2) = (~v + K2)W2.

- qx23 + I + y)' ^22 + hl=W- (4"8a)6 '2 \q
Using (4.5), the second condition can be written as

Vvx2 + (_ v + K2
)l/2

= T. (4.8b)

To state the third condition explicitly, we substitute y, = y*(x), y2 = hy*'(x) into (4.2)
to obtain

qy*2(x) - h(y*'(x))2 = qK2

from which we deduce that

or

(4.5) shows that

that is, that

\h fK dy_ ___/"
yjq (y2 - K2)1/2 Jx

y*(x) = K cosh (I — x).

1 ^ ^ (h,K2\/2-7- y*(x2) = H ) ;
v v v1

dx

K cosh (I — x2) = (- + — ^ . (4.8c)Vv
This equation can be solved for K2/y in terms of x2 as

7" = ? (sinh Vf ~ ̂  ■ (4-9)Q
Substituting this into (4.8a), we obtain

- 2 J 1/2
2I Qx23 + 2 + g (sinh yfh (l ~ XJ) j + hi = W. (4.10)

At x2 = 0 the left side of this equation has the value hi < W. As x2 —> I, the left side
approaches + ». It follows that there is a value 0 < x2 < I for which (4.10) holds. This
value can be determined, at least approximately, by numerical methods. Given x2 ,
K2/ii can be determined from (4.9). Given these values p* is completely determined



A VARIATIONAL PROBLEM 15

by (4.6). If we divide (4.8b) by Vi we obtain a simple expression for tj. We can then
determine K since K2/r\ is known.

Suppose now that the shape p*, computed by the procedure just described, satisfies
p*(xi) = II for some point 0 < xy < x2. We are then in the second case alluded to above.
In this case it is easily seen that p*(x) remains fixed at the value II throughout the
interval [0, xj. We therefore have

p*(x) = H if 0 < x < Xi

Ih K2\1/2
= 7, (x — x2)2 — m- + —) (x — x2) + h if x, < x < x2 (4.11)

Z \q 7] /

= h if x2 < x < I.

As before, the conditions (4.7) are to be used to determine the unknowns Xi , x2 , y,
and K. The first of these conditions states that

(* + £\q t) .

1/2

Hxi + h(l — x2) + ^ (x2 - xx)3 + ~ (- + —) (x2 — a^i)2 + h(x2 — x,) = W. (4.12)

we have

P*(xl) = 2 (xi ~ X*Y ~ <l(~, + ~) (xi - x2) + h = H

which implies that

(h , K2\U2 (K2 , 2H - h\/2
"'-"'-[g + T) ~l7 + ~r~J ■ <4U)

From (4.8c) we deduce that

I — x2 = cosh-1 ^1 + • (4.14)

Combining these last two equations we obtain

, , (K2 , h\/2 (K2 , 2 H - h\/2 \h h r,\'2 ,A,r,
"-' + \T + q) \T ? / -VrOBh + ■ (415)

Substituting (4.13), (4.14), and (4.15) into Eq. (4.12), we obtain a nonlinear equation
for the unknown r = K2/-q. If this equation is solved for r, Xi and x2 are given by (4.15)
and (4.14) respectively. Given Xi , x2 , and r, p*(x) is completely determined by (4.11).

To determine ?j and K, first note that by (4.1) we have

A
dx ('qy2(x) - jj y22(x)^j = 0 (4.16)

for 0 < x < Xt . Thus to determine the motion of the point (iji(x), y2(x)) for 0 < x < Xi
we need only determine the values 2/i(zi) and j/2(x,). Since p*{xl) = H we deduce from
(4.4) that 2/2(^1) = —II Vv- To determine yi(xi) we substitute the values

y,(x2)
(\ \ 1/2

= (% + /H y2(x2)=-hVv,\(/ / ,



16 EARL R. BARNES

into (4.3), obtaining

iqyi\x) + Vrty2(x) = %(qK2 - hri) for xt < x < x2 .

In particular, for x = xx we have

Viixi) = (k2 + (2H — h) ^)12- (4.17)

Thus for 0 < x < Xi we have, by (4.16),

qyi\x) - jj y2\x) = qK2 + (// - h)v. (4.18)

The point (y^x), y2(x)) is therefore moving along a branch of the hyperbola

1
Hqyi2 — T7 2/22 = qK2 + (H - h)y

as in Fig. 1.
Substituting t/,(x) = y*(x), y2(x) = p*(x)y*'(x) into (4.18), we obtain

qy*\x) - H(y*'(x))2 = qK2 + (H - h)v.

Solving this equation gives

y*(x) = (k> + u) cosh [cosh"1 /_ /; y/2 - Vh

\

If we take a: = x: and equate this expression to (4.17) we obtain, by simple manipulations

T - cosh [cosh"1 _ I') + ■

If r and x, are known, this provides a simple expression for \/yj. Given Vn we have
K = (rt])1/2.

5. Determining the ratio K2/rWe have reduced the problem of finding the
optimal shape p* to the task of solving one or on two nonlinear equations for the unknown
r = K2/ij. In the case where p* < II for 0 < x < I we must first solve Eq. (4.14) for x2 .
We have already shown that this equation has a solution in [0, l]. This solution can be
obtained to any desired degree of accuracy by the secant method. Given x2, we determine
r = K2/t] from (4.9). Now consider the function p* specified by (4.6). If p*(x) < H
for 0 < x < I, then p* is the optimal shape we seek.

On the other hand, if p*(xi) = H for some point 0 < a'i < x2 , then the shape (4.6)
is not admissible and hence not optimal. Let Vi denote the value of the ratio K'/jj used
in determining this shape. Then, as we have seen, the optimal shape is given by (4.11)
where r = K2/rj satisfies a certain nonlinear equation. We wish to determine an interval
containing r. A precise estimate of r can then be determined by the secant method.

I claim that r > r, . To see this, recall that r, is given by (4.9) where x2 satisfies
(4.10). Now if p* is defined by (4.6), we have seen that there is an x, between 0 and x2
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satisfying p*{xx) = H. x, and x2 therefore satisfy (4.13), (4.14), and (4.15). The left
side of (4.12) is therefore given by

Hx i + f P*(z) dx < f p*(x) dx = W. (5.1)
•'i, ^0

On the other hand, as r = K2/r) —> °°, x2 —> I. This follows from (4.14). Also, by (4.13)
x2 — Xi —> 0 as K2/ti —* co. Consider now the left side of (4.12) for large r. We have

Hxi + h(l - x2) + f (x2 - Xi)3 + o (~ + ~~) (x"2 ~ xiY + h(x2 - xt)6 v-2 -i/ , 2

> HXi + h(l - x2) + (x2 - a:,)|g (^2 - Z1)2 + | (~ + - Xi) + \h

= Hxx + h(l - x2) + (*2 _ Xi) p*(Xl)

= H(\Xl + \x2) + h(l - x2). (5.2)

Since xx and x2 I as K2/ri —> <», and since W < HI by assumption, (5.2) shows that the
left side of (4.12) is >W for K'2/17 sufficiently large. Therefore, in order to find an interval
containing a value of the ratio K2/r\ which solves the system (4.12)-(4.15), we successively
substitute the values 2rx , 3^ , 4r, , • • • , of K2/ij into this system. Let nr, be the first
of these values for which the left side of (4.12) is >W. Then the value of K2/ti we seek
is in the interval [(n — l)r, , nrj, and can be found by the secant method.

Remark. We have shown that the optimal shape is given by (4.6) or by (4.11),
and have given equations for determining the unknowns xx , x2 , 77, and K. We have
demonstrated that these equations have solutions, and have described how these solutions
can be obtained. The question of the uniqueness of these solutions has been ignored.
This is permissible, since, as Theorem 3.4 shows, any p*, computed by the procedure
we have outlined, is optimal.
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