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Abstract. In the Global Positioning System (GPS) radio oc-

cultation (RO) technique, the inverse Abel transform of mea-

sured bending angle (Abel inversion, hereafter AI) is the

standard means of deriving the refractivity. While concise

and straightforward to apply, the AI accumulates and prop-

agates the measurement error downward. The measurement

error propagation is detrimental to the refractivity in lower

altitudes. In particular, it builds up negative refractivity bias

in the tropical lower troposphere. An alternative to AI is the

numerical inversion of the forward Abel transform, which

does not incur the integration of error-possessing measure-

ment and thus precludes the error propagation. The varia-

tional regularization (VR) proposed in this study approxi-

mates the inversion of the forward Abel transform by an opti-

mization problem in which the regularized solution describes

the measurement as closely as possible within the measure-

ment’s considered accuracy. The optimization problem is

then solved iteratively by means of the adjoint technique. VR

is formulated with error covariance matrices, which permit a

rigorous incorporation of prior information on measurement

error characteristics and the solution’s desired behavior into

the regularization. VR holds the control variable in the mea-

surement space to take advantage of the posterior height de-

termination and to negate the measurement error due to the

mismodeling of the refractional radius. The advantages of

having the solution and the measurement in the same space

are elaborated using a purposely corrupted synthetic sound-

ing with a known true solution. The competency of VR rel-

ative to AI is validated with a large number of actual RO

soundings. The comparison to nearby radiosonde observa-

tions shows that VR attains considerably smaller random and

systematic errors compared to AI. A noteworthy finding is

that in the heights and areas that the measurement bias is

supposedly small, VR follows AI very closely in the mean

refractivity deserting the first guess. In the lowest few kilo-

meters that AI produces large negative refractivity bias, VR

reduces the refractivity bias substantially with the aid of the

background, which in this study is the operational forecasts

of the European Centre for Medium-Range Weather Fore-

casts (ECMWF). It is concluded based on the results pre-

sented in this study that VR offers a definite advantage over

AI in the quality of refractivity.

1 Introduction

The Abel transform pairs (Abel, 1826) are widely used to

reconstruct radially (or spherically) symmetric physical pa-

rameters from their line-of-sight (LOS) projections in a va-

riety of disciplines in engineering and science. In the Global

Positioning System (GPS) radio occultation (RO) technique,

inverse Abel transform (often-called Abel inversion, AI here-

after) of the bending angle in particular has become a corner-

stone, serving as the standard means of deriving the refractiv-

ity. Knowledge of the refractivity structure in the atmosphere

is important for numerous applications relevant to weather

and climate. The LOS projection in RO corresponds to the

phase or ray’s bending angle. Hence, these are referred to as

RO measurements hereafter, unless otherwise mentioned.

The AI is mathematically exact, meaning that AI is sup-

posed to facilitate a unique and perfect reconstruction of the

symmetric media, given the measurement of infinite accu-

racy and resolution. However, measurements in real life are

noisy and available only at a discrete set of data points. Some

of the previous studies in the literature focused on dealing

with the data resolution issue and others on reducing ad-
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verse effect of the measurement noise. Existing methods at-

tempt to improve the accuracy of discrete Abel transforms by

employing higher-order numerical schemes (e.g., Kolhe and

Agrawa, 2009), polynomial interpolation or fitting methods

(e.g., Deutsch and Beniaminy, 1983), the Fourier transform

(Kalal and Nugent, 1988), and the Fourier–Hankel trans-

form (Ma, 2011). The relative significance of the two issues

(i.e., data resolution and measurement noise) depends on the

medium (problem) of interest and the observing system used

to sample the LOS projection, and so does the performance

of these methods.

In case of RO, the data resolution might be high enough

to not cause significant discretization error. Here, the term

“discretization error” means the error incurred from approxi-

mating the analytical integral transform using a finite number

of discrete data points. Nevertheless, RO measurements are

subject to non-negligible errors arising from diverse sources

(e.g., Kursinski et al., 1997; Hajj et al., 2002; Steiner and

Kirchengast, 2005) to which AI is sensitive. In addition,

the premise of AI (i.e., spherically symmetric atmosphere)

is never strictly fulfilled. Gorbunov et al. (2015) claim that

strong horizontal refractivity gradients can cause the bend-

ing angle to be a multivalued function of the impact param-

eter (IP). This relates to the fact that the IP is not conserved

along a ray path in the horizontally inhomogeneous atmo-

sphere (Healy, 2001). The change of IP along the ray path

can be as large as 80 m, which corresponds to ∼ 4 % de-

viation in refractivity (Wee et al., 2010). This in turn indi-

cates that it is generally impossible to assign a specific IP

to a single ray or to a unique value of the bending angle. In

other words, an IP can be associated with multiple values of

the bending angle. This causes a highly scattered distribution

of “raw” (unsmoothed) bending angles in the IP coordinate.

The bending angle that is not a well-defined function of IP

(i.e., multi-valued or greatly dispersed) accompanies a large

data uncertainty, which in turn propagates into the refractiv-

ity. Thus, horizontal inhomogeneity (either large-scale gra-

dient or small-scale fluctuations) of the refractivity causes

additional measurement error, which is largely random and

greater in the lower atmosphere.

RO measurements contain systematic error as well. For

example, the phase and bending angle are often undermea-

sured in the lower troposphere. Some of the potential causes

are imperfect signal tracking (Sokolovskiy et al., 2010), crit-

ical refraction (Sokolovskiy, 2003; Ao et al., 2003; Xie et al.,

2006), and small-scale refractivity fluctuations (Gorbunov et

al., 2015). The critical refraction is probably the most well

understood among the causes, thanks to ingenious previous

studies. When the critical refraction occurs, the bending an-

gle is unbounded. Specifically, the bending angle goes to in-

finity at the height of the critical refraction (e.g., see Fig. 5b

of Sokolovskiy, 2003). In RO, the refractivity is obtained

from integrating the bending angle vertically, where the ver-

tical weighting is given by the Abel kernel. Since measured

bending angles are finite in magnitude, the Abel integral re-

sults in a negatively biased refractivity below the top of the

ducting layer. (Throughout this paper and for the sake of

convenience, the term “bias” is used interchangeably with

systematic error when the reference for the bias is omitted.)

Even under conditions of subcritical refraction, RO bend-

ing angles tend to be negatively biased. A brief explanation

can be as follows. Highly bending rays arrive at the receiver

when the receiver is far behind the Earth’s limb. The ar-

rivals are recorded at the trailing (leading) epochs of sinking

(rising) occultation events. Being weak and noisy, the sig-

nals received during the epochs have a higher chance of not

being used for bending angle estimation. The exclusion of

those measurement pieces leads to the loss of information on

highly refracting rays and in turn to a negatively biased bend-

ing angle. In that case, RO bending angle is inclined to have

local peaks weaker than they are supposed to be. Readers are

referred to Sokolovskiy et al. (2010) for more details. AI in-

tegrates the negative bias of the bending angle and turns it

into a negative refractivity bias.

What is more concerning in the use of AI is not the mea-

surement error itself but its vertical propagation. AI accu-

mulates and propagates the measurement error in vertical di-

rection. Consequently, a single corrupted piece of the mea-

surement affects not just the location of the particular datum

but a wide area that the Abel kernel dictates, and thereby

deteriorates the derived refractivity even in the region that

received RO signals are clean. Therefore, it is crucially im-

portant to moderate the unwanted effect of measurement er-

ror. When AI is used, one can take two straightforward ap-

proaches: (1) employ noise-resistant numerical methods for

the discrete AI or (2) apply a data smoothing to the measure-

ment in advance of the AI. In regard to the former, it is dif-

ficult to ascertain which of the numerical methods performs

the best. For instance, a method that is more sensitive to noise

also shows a higher inversion accuracy for data without noise

(Ma, 2011), because high-frequency signal components (i.e.,

legitimate small-scale structures in the measurement caused

by the atmosphere) are seldom distinguishable from noise.

The latter has the same difficulty because the data smooth-

ing can be either insufficient or excessive. Hence, neither of

those approaches can provide a decisive answer to the issue.

Moreover, these approaches are hardly effective for reduc-

ing systematic error and for restraining the error propagation.

This necessitates alternative approaches.

The critical refraction is an excellent example for under-

standing the effect of error propagation. It also gives some

insights into potential remedies. The use of AI under criti-

cal refraction conditions results in a negatively biased refrac-

tivity, even with unbiased bending angles (Gorbunov et al.,

2015). Indeed, the bending angle bias due to the critical re-

fraction could be confined in the close vicinity of the ducting

layer, which is usually very thin. A bending angle sounding

unbiased elsewhere can then be considered to be “virtually”

unbiased. No matter how shallow the ducting layer is, how-

ever, AI propagates the bending angle bias in the layer down-
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ward and yields a refractivity sounding that is negatively bi-

ased below the ducting layer. A noteworthy point here is that

in the reverse modeling perspective, the biased refractivity is

not the unique solution attainable from the “unbiased” bend-

ing angle. As a matter of fact, multiple refractivity soundings

can replicate the bending angle very closely when mapped

into the bending angle through the forward Abel transform

(FAT) that is the exact mathematical inverse of AI. For in-

stance, any refractivity soundings that are identical with the

AI-produced refractivity above the ducting layer but are dif-

ferent by a constant offset below can reproduce the bending

angle nearly perfectly except for within the layer of the sin-

gularity. That is because the vertical gradient of the refractiv-

ity is of prime importance in FAT, but the refractivity itself

is not. Hypothetically, one of those soundings is the perfect

bias-free refractivity sounding that AI could have attained if

the critical refraction had not occurred. This suggests that

the agreement between measured and modeled bending an-

gles can be a clue to finding a refractivity sounding that is

less biased than what AI provides. An important implication

here is that the solution search does not incur propagation of

the bending angle bias, which is unavoidable with AI. The

prospect can be extended to conditions of subcritical refrac-

tion, as long as the measurement error is not so small that

its downward propagation is worrisome. The question is how

the “best” refractivity sounding can be chosen among an in-

finite number of candidates that can replicate approximately

well a given bending angle sounding. A sensible metric in

the maximum likelihood framework might be able to assist

the selection. Another question is how to choose a reason-

ably small number of good candidates that are around the

unknown “true” solution to begin with, given that the cost of

FAT can be prohibitive when applied to a large number of

soundings. Instead of choosing arbitrary candidates, an ap-

proximate inverse solution of FAT can be sought numerically.

The approximate solution can then be perturbed to provide

the candidates or it can be successively corrected to approach

the true solution. Based on this idea is the regularization ap-

proach.

Regularization methods solve the inverse problem numer-

ically. In our setting, the methods seek the inverse solution

of FAT, which is the refractivity sounding that reproduces

a given bending angle sounding. For measurements without

noise, an ideal numerical inversion (note that it differs from

numerical implementations of the analytical AI) yields the

same solution with AI. In the presence of measurement noise,

however, numerical inversions for problems of the kind of

FAT are known to be ill-posed and incapable of providing

stable solutions. For instance, different realizations of mea-

surement noise albeit small in magnitude could lead to en-

tirely different solutions. It is thus difficult to obtain use-

ful solutions by applying straightforward algebraic inverse

operators to the discrete FAT with noisy measurements. To

tackle the ill-posedness, regularization methods enforce reg-

ularity on the computed solution, while allowing the solution

to deviate from the approximately accurate measurements.

The methods search for the solution by minimizing a joint

function that consists of the data fidelity term (which gauges

the discrepancy between measurement and its model coun-

terpart) and the penalty term (also called regularization term

as it regularizes the solution). These terms used for practical

applications are usually simple in the form. For instance, the

Tikhonov regularization (TR; Tikhonov, 1963) expects a de-

sirable solution to be spatially smooth and the penalty term

widely used for the method is the sum of squared gradients of

the solution. Sofieva et al. (2004) claim that the smoothness

constraint improves significantly the quality of their ozone

retrievals. However, they report the difficulty of using the

constraint optimally in the TR, which is due to the fact that

the smoothness measure is sensitive to the data resolution.

While the smoothness constraint may work acceptably for

some general problems, it alone would be insufficient for

more demanding applications since it does not hold any spe-

cific information on the desired solution. Generally speaking,

the regularization must be customized for individual applica-

tions in order to be maximally effective. For instance, differ-

ent observing systems differ in the measurement character-

istics and the solution’s desired behavior. Thus, the specifics

of an optimal regularization differ from one problem to an-

other and those for the Abel transform in RO are underex-

plored. Another practical difficulty is the fact that regular-

ization methods can be expensive when applied to RO. That

is because the limb-viewing geometry offers high-resolution

measurements and one typically attempts to retrieve a profile

of refractive index in as much detail as the data permit.

This study proposes and studies a variational regulariza-

tion (VR hereafter) for the Abel transform in GPS RO. The

purpose is to improve the quality of RO refractivity by en-

hancing RO measurement with the aid of prior information.

The focus is on the lower troposphere where AI is hampered

by larger measurement uncertainty, especially by a consid-

erable negative measurement bias. This study aims to tackle

the root cause that degraded the AI-produced refractivity in

the first place, which is hypothesized as uninhibited vertical

propagation of the measurement error. The observation used

in VR is RO bending angle and the state (and control) vari-

able is the refractivity as a function of the refractional radius

(RR; the Earth’s radius multiplied by the refractive index).

As will be explained later, it is essential to define the state

variable as a function of the RR. The aptness of data fidelity

and penalty terms is vital for a successful regularization. The

two terms exploit the prior information on the characteristics

of the measurement and solution, which can be either statis-

tical or empirical. In this study, the two terms are formulated

with error covariance matrices (ECMs), which succinctly de-

scribe the statistical error characteristics. Needless to say,

these ECMs must be factual for the formulation to be effec-

tive. Meanwhile, regularization methods need a first guess

to start off. The first guess used in this study is short-term

operational forecasts of the European Centre for Medium-

www.atmos-meas-tech.net/11/1947/2018/ Atmos. Meas. Tech., 11, 1947–1969, 2018



1950 T.-K. Wee: Abel transform for GPS radio occultation

Range Weather Forecasts (ECMWF). Modern-day numerical

weather forecasts are comparatively accurate and routinely

available. More importantly, a number of well-established

methods such as those based on innovation (observation mi-

nus forecast) statistics are available for the forecasts, offer-

ing reliable error estimates and supporting the construction

of ECMs. These methods make available the error estimate

of observations as well as that of the forecasts. Hence, short-

term forecasts are a compelling source of the first guess. The

computational cost is an impediment to the practical use of

regularization methods. The proposed method solves the un-

derlying inverse problem iteratively by means of the adjoint

method, which is a very efficient way of calculating the gra-

dients of the cost function with respect to all control param-

eters at once. Accordingly, the variational technique (i.e.,

gradient-based optimization method) reduces otherwise ex-

cessive computational expenses and is thus indispensable for

VR. While the TR is devised based upon the variational prin-

ciple, it does not necessarily employ the variational technique

to be applied to practical problems. It must be mentioned that

the adjective used to describe the proposed method (i.e., vari-

ational) is meant for the variational procedure, rather than

for the variational principle. Therefore, VR purports to indi-

cate a regularization that makes use of the variational tech-

nique. Using the ECMs derived based on error statistics and

relying on the iterative minimization procedure, the proposed

method can also be described as an iterative, statistical regu-

larization.

The variational method has been applied to a variety of

problems in diverse areas. The most popular use of the

method in GPS RO is data assimilation, but the method is

also applied to other estimation problems. An example is the

variational combination of dual-frequency RO measurements

(Wee and Kuo, 2014), which attempts to optimally separate

ionospheric and atmospheric effects. The focus of data as-

similation is on the maximal utilization of all available ob-

servations, where the forecast model is used as sophisticated

physical and dynamical constraints. While assimilating RO

data, it is important to take into account contemporaneous

observations including those made available by other observ-

ing systems. For instance, an overweighting given to RO data

leads to an underutilization of other observation types, which

in turn results in a suboptimal data assimilation. In addition,

RO data assimilation is constrained by the geometry of the

model grid, which is not the case for VR.

The proposed method is more akin to one-dimensional

variational (1D-Var) retrieval methods (e.g., Healy and Eyre,

2000; Palmer et al., 2000; Palmer and Barnett, 2001; Von

Engeln et al., 2003). The Data Analysis and Archive Center

(CDAAC) at the University Corporation for Atmospheric Re-

search (UCAR) has also been using a 1D-Var, developed by

the author, for the last 15 years. The key differences between

VR and 1D-Var lie in the problem dealt with and the pur-

pose, which deserve further explanations. The main purpose

of RO 1D-Var is to challenge an underdetermined problem in

which three variables (i.e., temperature, moisture, and pres-

sure) must be retrieved out of a single observed parameter.

Hence, 1D-Var seeks the optimal combination of the state

variables utilizing the physical relationship among them and

possibly the multi-variate character of the background ECM.

Another important difference between 1D-Var and VR is that

the state variables of 1D-Var are given as functions of the

height (or pressure), whereas the sole state variable of VR,

refractivity, is defined in the RR coordinate. In order to model

the bending angle, 1D-Var must simulate the refractivity with

the state variables prior to using a discrete FAT. Next, the

simulated refractivity is used to compute RR, which defines

the location of measured bending angles in the model space.

It is worth mentioning that when associated with measured

bending angles, the RR represents the one for the ray’s tan-

gent point and is the same with the IP in magnitude. It means

that the RR in relation to the bending angle is the model

counterpart of an IP. It must be pointed out that there are

an infinite number of different combinations of temperature,

pressure, and moisture that lead to an identical refractivity.

Likewise, a countless number of dissimilar combinations of

the refractivity and radius result in the same RR. In the re-

verse modeling sense, these ambiguities, absent in VR, in-

troduce extra uncertainty to the 1D-Var retrieval. Moreover,

the state variables of the 1D-Var usually contain significant

errors and so is the modeled refractivity. Again, the refrac-

tivity error is carried forward into RR. The problem here is

that the erroneous modeled RR is used by 1D-Var as the co-

ordinate to locate the measurement and is thus assumed to

be correct by definition. As a result, 1D-Var cannot perceive

a measured sounding of the bending angle as it is. Instead,

only distorted (or fuzzy) images of the original sounding are

visible to 1D-Var. That is to say, the measurement is always

incorrect in the model’s perspective, unless the modeled re-

fractivity is perfect. That introduces additional uncertainty to

the measurement, although the measurement is not to blame.

Eventually, the RR error depreciates the value of measured

bending angles.

An important implication here is that the 1D-Var (and DA

as well) provided with error-free measurements is unable to

recover the refractivity as a function of the height perfectly,

unless the state variables are initially perfect. In VR, how-

ever, the soundings of bending angle and refractivity have

one-to-one correspondence in the RR space through a FAT,

unless the critical refraction occurs. Given the perfect bend-

ing angle, it is thus possible for VR to at least hypothet-

ically reconstruct the perfect refractivity. Therefore, VR is

well poised to estimate the refractivity with measured bend-

ing angles. In addition, the problem of retrieving tempera-

ture, moisture, and pressure can be dealt with separately once

the optimal refractivity is made available and is thus put aside

in this study. Doing so eliminates the above-mentioned am-

biguities and greatly simplifies the estimation of refractivity

with VR.
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This study is motivated by the conception that the vertical

propagation of measurement errors in AI is detrimental to the

derived refractivity and VR is deliberated as a potential rem-

edy to the problem. While VR propagates the model error

through FAT, it is not a major concern since VR iteratively

corrects the model state to approach the true state with the

aid of the measurement. The focal point of this study will be

examining whether and how the deprivation of the measure-

ment error propagation with VR is beneficial to the quality

of RO refractivity. The remainder of this paper is organized

as follows. Section 2 describes the methods relevant to this

study, which include the Abel inversion, the TR, and the pro-

posed variational regularization. Section 3 compares the pro-

posed method against the Abel inversion with a synthetic RO

sounding. Section 4 presents real data tests, along with the

verification with two radiosonde data sets. Section 5 offers

concluding remarks.

2 Method

2.1 Abel inversion

The total transpired phase path of a radio wave that propa-

gates through the atmosphere between a transmitter and a re-

ceiver can be described by an integral equation (e.g., Wallio

and Grossi, 1972):

8(x) = 2

∫ ∞

x

n(r)rdr
√

r2 − x2
, (1)

where 8 is the phase path, r is the radius from the Earth’s

curvature center, and n is the refractive index that relates

to the refractivity N = 106(1 − n). A change of variable can

show that Eq. (1) is equivalent to standard form of the Abel

transform (Bracewell, 1978). A geometrical interpretation of

Eq. (1) is that the Abel transform of n(r), right-hand side

(RHS) term, is the projection of n(r) onto the space of the

traverse coordinate, x, which indicates the nearest approach

of the line of sight to the Earth’s curvature center. Being an

Abel transform, the analytical inverse of Eq. (1) also exists

(Ahmad and Tyler, 1998):

n(r) = −
1

π

∫ ∞

r

d8

dx

dx
√

x2 − r2
. (2)

The inverse Abel transform, Eq. (2), provides a straight-

forward solution to the reconstruction of the refractive in-

dex given measurements of phase path. However, the inverse

transform is of limited usefulness for practical applications

with real-world data because the derivative in RHS term ex-

acerbates the phase noise or the artifacts introduced by arbi-

trary noise mitigation. Another limitation of Eqs. (1) and (2)

is being valid only for a thin, spherically symmetric atmo-

sphere in which the ray’s path can be adequately approxi-

mated by the straight line that connects the transmitter and

receiver. A variant of Eq. (1) suitable for dense, optically

stratified media (Fjeldbo et al., 1971) is

α(a) = −2a

∫ ∞

ro

dln(n)

dr ′
dr ′

√
(nr ′)2 − a2

, (3)

where α is the ray’s bending angle, a is the IP, and ro is the

radius to the ray’s tangent point. With a change of variable,

x = nr , Eq. (3) can be rewritten as

α(a) = −2a

∫ ∞

a

dln(n)

dx

dx
√

x2 − a2
. (4)

The corresponding inverse transform is

ln(n) =
1

π

∫ ∞

a

α(x)dx
√

x2 − a2
. (5)

Equation (5) has the advantage of not having the derivative in

RHS term, in addition to accounting for refracting ray paths.

For these reasons, Eq. (5) is the AI commonly used in GPS

RO. However, there is a caveat – GPS RO does not mea-

sure the bending angle directly. Accordingly, the bending an-

gle must be estimated in some ways in connection with the

Doppler shift, which again relates to the phase derivative in

either time or frequency domain (e.g., Kursinski et al., 1997;

Hajj et al., 2002). Therefore, the AI using Eq. (5) is not en-

tirely free from the derivative operator. Instead, the procedure

of retrieving the refractivity from the measured phase, equiv-

alent to Eq. (2), is split into two sequential steps: bending

angle estimation and subsequent Abel inversion. The deriva-

tive operator is put to use before or within the bending angle

estimation, although it does not appear explicitly in Eq. (5).

No matter when the derivative is used, it intensifies the effect

of measurement noise. A data smoothing might be applied to

the bending angle in advance of AI. However, the smoothing

degree is very difficult to control. Moreover, data smoothing

does not reduce systematic measurement error. As explained

in the introduction, the vertical propagation of measurement

error due to AI is detrimental to the derived refractivity. An

alternative to AI is the regularization approach, described in

the following.

2.2 Tikhonov regularization

The TR is the most widely used regularization method and

is indeed the very method that opened up the concept of reg-

ularization. Here, a sketch of TR is provided in the context

of GPS RO data processing. The general purpose of TR is to

solve ill-posed inverse problems in which the forward oper-

ator H (x) = y defines a mapping H : X → Y , between the

solution (model) space X and the data (measurement) space

Y . Here, x is the state vector, consisting of model parameters

and y is the vector of modeled observation. In our setting, the

forward operator is Eq. (4), and x and y hold the refractive

index and bending angle, respectively. The method solves a
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minimization problem of a real-valued function J such that

the minimizer, x, is a suitable approximate solution:

J (x) = F (x) + ξS(x), (6)

where F is the data fidelity term, S is the penalty (regu-

larization) function, and ξ is the regularization parameter.

The data fidelity term F measures the misfit between mea-

sured and modeled observations, whereas the penalty term

ξS weighs the degree of irregularity in the solution. The

scalar parameter ξ controls the relative contribution of the

two terms to J . A widely used form of F is the squared L2

norm, F (x) =
∥∥H (x) − yo

∥∥2
, where yo contains the mea-

sured bending angle. A popular choice for S aimed at noise

reduction is a seminorm, ∇S (x) = ‖x‖2, where ∇ is the gra-

dient operator. Determining the trade-off between the two

terms, a decreasing ξ steers Eq. (6) toward Eq. (4). There-

fore, the solution of TR approaches AI as ξS vanishes.

A drawback of this penalty term is the difficulty of deter-

mining the proper ξ that can achieve the optimal smoothness

of the solution. Another difficulty relates to the fact that the

vertical refractivity gradient has a high spatiotemporal varia-

tion. For instance, ∇n near the Earth’s surface can be a few

orders greater than that in the stratosphere. As such, the par-

ticular S of the form shown above is lacking as it does not

account for the height dependency. Likewise, the F shown

above tacitly assumes that the magnitude of H (x) − yo is

unvarying in space and time, which is not the case for the

bending angle. While the generic TR comes in handy for ap-

plications to general problems, it is desirable to utilize the

problem-specific prior information in order to make the regu-

larization more effective. In addition, regularization methods

can be costly when applied to RO data. It is thus crucial to

reduce the cost to a feasible level. The variational regulariza-

tion proposed in this study aims to address these issues.

2.3 Proposed method of variational regularization

2.3.1 Formulation

The proposed regularization searches for the solution, x, by

minimizing a cost function defined as follows:

J (x) =
1

2
(x − xb)

T B−1 (x − xb) +
1

2

{
yo − H (x)

}T

R−1
{
yo − H (x)

}
, (7)

where xb is the background, a priori of x; B and R are the

ECM of xb and yo, respectively; and superscripts “T” and

“−1” indicate transpose and inverse of a matrix, respectively.

Conceptually, the method seeks the optimal solution that

replicates the observation as closely as possible (compelled

by the second RHS term) in the vicinity of a priori state (con-

strained by the first RHS term). The departure of x from the

background (observation) is determined by the assumed error

of xb (yo), represented by B (R). The background (first RHS)

term corresponds to the penalty term of TR in the role and

the observation (second RHS) term is equivalent to the data

fidelity term. Despite the correspondence, the use of ECMs

makes VR advantageous over TR, allowing VR to incorpo-

rate the prior information about the data uncertainty of yo

and xb into the regularization. The forward observation op-

erator used in VR is Eq. (4), which models the observation

(bending angle) with the state variable (refractivity). Equa-

tion (4) states that the only information needed to evaluate

the Abel integral is the refractivity as a function of the RR.

Therefore, it is unnecessary for VR to relate the state variable

to the temperature, pressure, and moisture during the mini-

mization. In addition, the reverse (adjoint) modeling as well

as the forward modeling does not incur any coordinate trans-

form between RR and height, which is inevitable for data as-

similation and 1D-Var. This greatly simplifies the problem of

refractivity estimation. The coordinate transform entails two

issues of great consequence, as explained in the following.

In data assimilation, the location of observations, as well

as that of the state-vector elements, must be represented in re-

lation to the model’s native grids. For RO bending angle, the

location refers to the tangent point at which the IP coincides

with the RR. As such, RO data assimilation uses the RR, the

model counterpart (x = nr) to be precise, as the coordinate

to place the observation in the model space and vice versa.

Unfortunately, the modeled x is not a definite measure of

the position due to the dependency on the model refractivity.

Besides, it always contains some error arising from the im-

perfect model refractivity. Consequently, the position of RO

bending angle in the model space cannot be determined ex-

actly. This is known as the errors-in-variables (EIV) problem

in which the error in the independent (or coordinate) variable

causes an apparent error in the dependent variable (observa-

tion). In data assimilation, the EIV error leads to a suboptimal

use of the observation. In VR, in contrast, the EIV error is at-

tributed to the uncertainty of the background refractivity be-

cause the model space coincides with the observation space.

In the proposed method, the geometric height of the solution

keeps changing implicitly during the iterative minimization

of the cost function, whereas the RR assigned to the solution

remains fixed. Upon the completion of the minimization, the

solution’s height z is determined by z = r −Rc = xn−1 −Rc,

where Rc is the local curvature radius of the Earth. There-

fore, the solution’s height in VR is undecided until the solu-

tion is acquired, which is the same as in AI. This posterior

height determination (PHD) reduces a substantial portion of

retrieval error when viewed in the height coordinate. More

details on the topic are presented in the next section.

In the proposed method, a good background furnishes

faster convergence to the solution and assists in attaining the

desired global minimum of the cost function. Another fac-

tor of particular importance in VR is the adequacy of ECMs.

That is, the ECMs must be factual, representing well the er-

ror characteristics of the background and observation that

are actually used in VR. In that respect, a short-term fore-
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cast of a numerical weather prediction (NWP) model is the

best source of the background. In addition to being routinely

available and of good quality, the forecasts, when used along

with relevant observations, offer rigorous error estimation

and realistic modeling of the ECMs. Although a climatology

is usable as the background, for instance, it does not precisely

describe the atmosphere at the exact moment and location of

the observation. Besides, it is not as easy to estimate or define

the error of the climatology. In this study, short-term opera-

tional forecasts of the ECMWF are used as the background.

Additional description of the ECMWF data will be provided

later in Sect. 4.1.

2.3.2 Error covariance matrices

Error standard deviation

A diagonal element of ECM is the error variance, the square

root of which (error standard deviation) represents the er-

ror estimate at the location linked to the element. The er-

ror variances are estimated by applying the Hollingsworth–

Lönnberg (HL) method (Hollingsworth and Lönnberg, 1986)

to ∼ 1.5 million closely located (< 3 h and < 300 km) pairs

of RO soundings available for a 7-year period (April 2007–

April 2014). This method is based on the innovation statis-

tics with the assumption that forecast errors are mutually

(spatially) correlated, whereas observation errors are uncor-

related with themselves and with the forecast errors. In the

following, the usage of HL in this study is briefly described.

Because the error variances can be estimated independently

at individual height levels, let Yo be the collection of RO

observations for a particular impact height (≡ a − Rc). That

is, Yo =
(
yk

o ,k = 1, . . .,m
)
, where yk

o is the observation from

kth RO sounding out of total m soundings. Likewise, let

Zf = (z1
f , . . .,z

m
f ) be the forecast counterpart of Yo, where

zk
f = H̃

(
xk

f

)
, H̃ being the relevant observation operator. The

innovation (d ≡ Yo − Zo) variance can then be written as

Var {d} = E
[
{d − E(d)}2

]
= E

{
(εo − εf)

2
}

= σ 2
o + σ 2

f , (8)

where E(·) denotes the statistical expectation (i.e., the mean

over the m samples) and σ 2
o and σ 2

f are the variance of obser-

vation error εo and forecast error εf, respectively. The mean

difference between Yo and Zf is subtracted in Eq. (8) and

so it does not contribute to σ 2
o and σ 2

f . The random errors,

εo and εf, are further assumed to be mutually uncorrelated:

E(εoεf) = 0.

Meanwhile, the innovation covariance between a pair of

observations, yi
o and y

j
o , can be written as

cov
{
yi

o − zi
f,y

j
o − z

j

f

}
= E

{
(εi

o − εi
f)(ε

j
o − ε

j

f )
}

= E
(
εi

fε
j

f

)
= ρij · σ 2

f
∼= exp

(
−

d2
ij

2L2

)
· σ 2

f , (9)

where dij is the horizontal distance between yi
o and y

j
o , ρij is

the spatial correlation between εi
f and ε

j

f , and L is the error

correlation length scale. Note that only forecast errors are as-

sumed to be spatially correlated in the above: E
(
εi

oε
j
o

)
=

E
(
εi

oε
j

f

)
= E

(
εi

fε
j
o

)
= 0. Equation (9) indicates that the

variation of the innovation covariance with dij is attributable

exclusively to the spatial correlation of forecast errors. The

forecast error variance σ 2
f can be estimated by extrapolating

the innovation covariance to the zero separation (dij = 0).

In this study, a least-squares fitting of distance-binned

covariance values to a Gaussian function is carried out

and the value of the Gaussian function at the zero sepa-

ration is assigned to σ 2
f . Gaussian functions are frequently

used to approximate error correlations (Daley, 1991; Gaspari

and Cohn, 1999). The algorithm used for the fitting is the

bounded and constrained least square (Lawson et al., 1979).

Once σ 2
f is determined, Eq. (8) gives σ 2

o . In essence, HL

splits the innovation variance into a spatially correlated part

(σ 2
f ) and the remainder (σ 2

o ). The error estimates, σo and σf,

over a specific area and period (e.g., within 5◦ S–5◦ N latitude

zone and during the months of July) can be diagnosed by ap-

plying HL to the RO–RO pairs available within the area and

period. Figure 1a–b show the composite distribution of the

error estimates: (a) bending angle σo and (b) refractivity σf,

which are averaged zonally and over the whole data period.

The error estimates further stratified into three latitude zones

(low, 0–30◦; middle, 30–60◦; and high, 60–90◦) are shown in

Fig. 1c–e. The error estimates show a number of remarkable

features in the distribution. Not being the focus of this study,

however, the features and potential causes are not discussed

in this paper. (A separate paper is in preparation.) Instead,

let it suffice to say that the error estimates show remarkable

spatial variations that must be properly taken into account by

regularization methods.

Background error correlation

The off-diagonal elements of B are diagnosed with the so-

called NMC (National Meteorological Center) method (Par-

rish and Derber, 1992). The method uses the difference be-

tween short and long forecasts that are valid at the same time

as a proxy for forecast error. Hence, the ECM can be approx-

imated by

BNMC = E(δf δf T), (10)
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Figure 1. An example of diagonal elements of (a) R and (b) B diagnosed with HL. Shown are the error standard deviations (%) of (a) observed

bending angle and (b) forecast refractivity, averaged along the longitude and over the whole data period. The bending angle σo averaged in

three latitude bands (low latitude, red dashed; middle latitude, solid green; high latitude, blue dashed dot) is shown in the unit of (c) 10−6

rad and (d) %. Panel (e) is the same as in panel (d) except for refractivity σf.

where δ is the difference operator between two forecasts of

different lead times (12 and 24 h in this study) and f is the re-

fractivity sounding modeled with the forecast and placed to

a fixed set of RR values. The NMC method does not make

use of observations at all. It instead relies on the natural

variability of the forecast model. Therefore, the sampling of

the forecast difference is not restricted by the availability of

RO soundings, meaning that the difference soundings can be

taken from every horizontal grid point of the forecast model.

The sampling frequency used in this study is 0.5◦ in latitude

and longitude and 12 h in time; the temporal data coverage

is the same 7-year period used for HL. Again, the ECM over

a specific area and period can be estimated by limiting the

sampling to the area and period.

While very practical to apply, the NMC method has limi-

tations and is often criticized for lacking theoretical basis. In

poorly observed regions, it underestimates the error variance

(Berre, 2000). In addition, the choice of forecast lead times,

which affects the size of the forecast difference, is arbitrary at

most. Consequently, BNMC often requires adjustment of the

variance (Derber and Bouttier, 1999; Ingleby, 2001). For the

reasons, BNMC is not used in its form in this study. Instead, it

is converted to the error correlation matrix C:

ci,j =
bi,j√

bi,i

√
bj,j

=
bi,j

σiσj

, (11)

where bi,j and ci,j indicate the elements of BNMC and C at

ith column and j th row, respectively, and σi is the square

root of bi,i , the error standard deviation. Figure 2 shows an

example of C in two latitude bands: (a) 5◦ S–5◦ N and (c) 70–

80◦ S. These are averaged along the longitude and during the

months of July. The profiles of error correlation centered at

four arbitrarily chosen heights are shown in panels b and d.

The error correlation in the tropical latitudes (Fig. 2a) shows

oscillatory structures in the stratosphere, which could be re-

lated to vertically propagating wave modes that are not well

resolved by the forecast model. The exact atmospheric pro-

cesses behind the oscillation are uncertain for now and an in-

depth analysis is underway. Finally, the B used in this study

is modeled as follows:

B = D
1
2 CD

1
2 , (12)

where D is the diagonal matrix of forecast error variance pro-

vided by HL, D
1
2 being the square root, and C is the corre-

lation matrix diagnosed with the NMC method. For the sake

of computational simplicity, R is assumed to be diagonal.

2.3.3 Implementation

A practical difficulty facing those trying to solve inverse

problems of a large size is the computational cost. It is un-

feasible to perturb individual elements of the control vector
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Figure 2. An example of forecast error correlation matrix made available through the NMC method. (a) Forecast error correlation in a 10◦

latitude bin (5◦ S–5◦ N), which is averaged along the longitude and during the months of July. The coordinate 1a indicates the distance (km)

in the refractional radius from the lower bound. (b) Profiles of error correlation centered at four arbitrarily chosen heights. Panels (c) and

(d) are the same as in panels (a) and (b) except for in 70–80◦ S bin.

arbitrarily in all directions and sizes and then search for the

very combination of the perturbations that leads to the min-

imum of the cost function. As mentioned earlier, this study

employs the adjoint technique (Lewis and Derber, 1985; Le

Dimet and Talagrand, 1986) in order to reduce the cost. The

method efficiently computes the steepest gradient of the cost

function with respect to all elements of the control vector at

once, which is needed for the optimization algorithm used in

this study, a quasi-Newtonian limited-memory algorithm for

large-scale optimization (Zhu et al., 1997). In order to further

improve the computational efficiency, the control-variable

transform (Parrish and Derber, 1992) is used. To begin with,

the incremental form (Courtier et al., 1994) of Eq. (7) is con-

sidered:

J (δx) =
1

2
δxTB−1δx+

1

2
(Hδx − d)TR−1 (Hδx − d) , (13)

where δx = x−xb, d = yo−H (xb), and H is the tangent lin-

ear version of H . The incremental formulation circumvents

the nonlinearity of Eq. (7) and reduces computational com-

plexity of the minimization problem. Next, J (δx) is refor-

mulated as a function of a new variable, v = B
−1
2 δx:

J (v) =
1

2
vTv +

1

2
(Hδx − d)TR−1 (Hδx − d), (14)

where B
1
2 is a square root of B so that B = B

1
2 B

T
2 . The v

representation of the cost function is the actual form used in

this study. As a result of the control-variable transform, the

background ECM becomes the identity matrix and is thus

trivial to deal with (Bannister, 2008). The control-variable

transform greatly reduces the conditioning number of back-

ground ECM. Consequently, it is easier for the minimization

algorithm to find the solution. In practice, VR does not per-

form v = B
−1
2 δx; instead, it carries out the inverse transform

δx = B
1
2 v, compelling B

1
2 instead of B

−1
2 . This is favorable

since it is demanding to invert large matrices. In order to con-

struct B
1
2 , the method proposed by Kaiser (1972) is used to

conduct the eigendecomposition of C:

C = 6 36T = 63
1
2

(
63

1
2

)T
, (15)

where columns of 6 are eigenvectors of C, which are mu-

tually orthogonal (6T6 = I, where I is the identity matrix),

and 3 is the diagonal matrix of eigenvalues. As C = C
1
2 C

T
2 ,

Eq. (15) gives C
1
2 = 6 3

1
2 . Eventually, B

1
2 can be expressed

as

B
1
2 = C

1
2 D

1
2 = 6 3

1
2 D

1
2 . (16)

Since the size of B used in this study is fairly large

(900 × 900), computation of B
1
2 at the runtime for each

RO event is impractical, particularly for real-time RO data

processing. Therefore, C
1
2 is precomputed and stored on a

5◦ × 5◦ (latitude–longitude) grid for each month of the year,

and VR ingests the C
1
2 that is nearest to each RO sound-

ing. Moreover, only the largest 100 eigenvalues of C
1
2 and

the corresponding eigenvectors are retained and stored be-

cause the large number of C
1
2 files necessitates voluminous

storage space. The truncated eigenmodes can replicate C
1
2

almost perfectly since the number of modes above the noise

floor is generally less than 20. A minor setback is that C
1
2 is

available on a predefined set of RR values, whereas the lower

bound used in VR varies from one RO sounding to another.

Therefore, C
1
2 and VR differ in the lowest RR.

To deal with the issue, a coordinate of scaled RR is defined

as

η =
x − xb

xT − xb
, (17)

where xb (xT) denotes the RR at the bottom (top) of the grid.

Next, the background in VR is placed to the η grid of C
1
2 .

The purpose is to reduce the cost by using the C
1
2 as it

is without any modification. A drawback is that the C
1
2 and
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the background are defined on different grids in terms of RR,

which may reduce the accuracy of C to some degree. The

reduced accuracy might be insignificant compared to the un-

certainty involved in the diagnosis of C and is thus consid-

ered as a worthy trade-off with the cost reduction. The stor-

age space is no concern for D
1
2 , which is basically a column

vector comprises the diagonal elements. Hence, D
1
2 is stored

separately in the full resolution. In addition, D
1
2 is interpo-

lated to the exact RR values of the background (rather than

to the η grid) at the runtime.

3 Test with a synthetic sounding

It is hypothesized in this study that the major weakness of AI

when applied to RO is the uninhibited propagation of mea-

surement error, and the variational regularization is proposed

as an alternative. Meanwhile, a common issue that arises

while verifying hypotheses with real-world data is that the

verifying data accompany their own error, which often im-

pedes drawing decisive conclusions. In order to overcome the

difficulty, we begin the verification with a synthetic sound-

ing of bending angle. The synthetic case provides the known

true solution against which inversion methods can be ver-

ified without any ambiguity. We intend to consider large-

amplitude errors so as to emphasize their influence on the

solution’s quality and to assess the relative robustness of the

inversion methods to the erratic observations. This section is

also purported as an extended description of the methods but

with a tangible example.

3.1 Data generation

The tracking of RO signal is often challenging, in particu-

lar in the lower tropical troposphere where sharp refractivity

gradients frequently exist. As an example, a high-resolution

radiosonde sounding, observed at a tropical site in Nauru

(0.52◦ S, 166.93◦ E) at 12:00 UT on 3 March 2011, shows

a complicated structure in the refractivity mainly due to

abrupt small-scale moisture variations across multiple inver-

sion layers (Fig. 3). The station was one of the Global Cli-

mate Observing System (GCOS) Reference Upper-Air Net-

work (GRUAN) sites until its closure in August 2013. The

refractivity in the neutral atmosphere can be approximated

as (Smith and Weintraub, 1953)

N ≡ 106 (n − 1) = k1
p

T
+ k2

pw

T 2
, (18)

where T is temperature in K, p is (total) pressure in hPa, pw

is water vapor pressure in hPa, and k1 = 77.6 hPa K−1 and

k2 = 3.73 × 105 K2 hPa−1 are coefficients.

The discretization error of AI is significant when the reso-

lution of the measured bending angle is poor. Therefore, the

radiosonde sounding in the highest resolution available to us

is used for the simulation of the bending angle. The intent

is to improve the discrete AI, because the discretization er-

ror of VR relates to the resolution of the background. The

sampling rate of the radiosonde data is 1 s in time, which

corresponds to about 5 m on average in height interval. The

bending angle simulated with the radiosonde data and using

Eq. (4) also presents rapid variations (green line in Fig. 4a).

This bending angle is assumed to be of absolute accuracy

(error-free) and is referred to as the perfect (true) observa-

tion. The measurement error of the radiosonde data carried

forward into the bending angle is considered as legitimate

small-scale variations in the true atmosphere. After that, a

synthetic observation is generated by adding a suppositional

measurement error to the perfect observation. The measure-

ment error ε is assumed to follow a first-order autoregressive

process and modeled as

εk = σkµk = σk

(
ρk,k−1 µk−1 + ηk

)
, (19)

where σ is the statistical measurement error (Fig. 1a) at the

time and location of ε, µ and η are random normal (zero

mean and unit variance) variables, subscripts indicate the

height indices of measurement samples (top-down order with

increasing k), and ρk,k−1 is the error correlation between the

two height levels. The error correlation is modeled with the

Gaussian function:

ρk,k−1 = e
− (ak−ak−1)

2

2L2 , (20)

where a is again the IP and L is the length scale of error

correlation. Assuming that the measurement error correlation

is very weak, we set L to 10 m. The black line in Fig. 4a is

the error-added, “measured” bending angle.

3.2 Abel inversion of low-pass filtered bending angle

Noise in the measured bending angle negatively affects the

quality of RO refractivity, unless properly mitigated. It is thus

customary to smooth the bending angle prior to AI. In order

to mimic the practical application of AI, a low-pass filter-

ing, the fourth-order Butterworth filter (Butterworth, 1930)

with a cutoff wavelength of 200 m, is applied to the mea-

sured bending angle (red line in Fig. 4b). The following step

is obtaining refractivity soundings through AI from the true,

measured, and filtered bending angles. It must be mentioned

that the resulting true refractivity (i.e., the one derived from

the true bending angle via AI) differs slightly from the re-

fractivity used to generate the true bending angle (shown in

Fig. 3c). The discrepancy stems from the numerical approxi-

mations made for the analytical AI.

Figure 4c shows the refractivity errors, which are the dif-

ferences from the true refractivity. The red line indicates the

refractivity error when the filtered bending angle is used for

AI. The result with the “raw” bending angle (black line) is

shown as the reference against which the effect of the low-

pass filtering can be evaluated. A common problem with any

low-pass filtering is that the degree of smoothing is hard to
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Figure 3. High-resolution radiosonde sounding at a tropical site in Nauru (0.52◦ S, 166.93◦ E) at 12:00 UT on 3 March 2011: (a) temperature

(◦C), (b) water vapor pressure (hPa), and (c) refractivity (N unit).

Figure 4. Simulated bending angles and their errors propagated into the refractivity via Abel inversion. (a–b) Green line (denoted TRUE)

indicates the bending angle modeled with the exact refractivity profile shown in Fig. 3c; black line (MEASURED) represents the “measured”

bending angle for which assumed measurement errors are added to the perfect bending angle; red line (SMOOTHED) denotes a low-pass

filtered version of the MEASURED. Note that the black line in panel (b), which is the same as that in panel (a), is duplicated to ease the

comparison. (c) Errors in the refractivity; the refractivity profiles are obtained from the bending angle of matching color via Abel inversion

and the error is defined as the difference from the perfect refractivity, which is the one derived from the TRUE bending angle. See text for

more details.

control. An excessive smoothing leads to a loss of obser-

vational information, whereas a minor filtering causes in-

sufficient noise attenuation. On top of that, measurement

noise is often non-stationary, meaning that the noise spectra

vary with height in accordance with vertically varying atmo-

spheric structure. For instance, the low-pass filtering used in

this study tends to reduce the refractivity error below 2 km

and above 6 km, where the true bending angle varies rather

slowly. In contrast, the filtering increases the refractivity er-

ror around the local peaks of the bending angle in 2–6 km

height range. As different occultation events encounter dif-

ferent atmospheric conditions, it is impractical to design a

customized low-pass filter for each occultation that is adap-

tive to the local noise spectrum that varies with the height.

Another limitation of the sequential approach (i.e., filtering

followed by AI) is the one-way flow of information in the

process. That is, AI does not pass any information about the

effect of unattenuated noise back to the filtering. The penalty

term of regularization methods acts like a low-pass filtering.

The difference is that the penalty term invokes a reverse com-

munication about the perceived noise power while the term is

minimized iteratively and jointly with the data fidelity term.

In VR, the feedback to the control vector is given through the

adjoint of the observation operator.

3.3 The errors-in-variables problem

The EIV problem occurs when the independent variable (po-

sition in space or time) of measurements is not known per-

fectly. Suppose that a particular type of radiosonde system

has an offset error in the height. In that case, a flawless tem-

perature sensor of the system is bound to produce a temper-

ature bias, which is the height offset multiplied by the lo-

cal temperature lapse rate, when monitored at a fixed height.

The EIV error also emerges while comparing a measurement

with its model, if the independent variable of the measure-

ment is not one of the model’s coordinates. This is exactly

the case for RO bending angle. The location of RO bending
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angle is defined with the IP and the model counterpart is the

RR. As explained in Sect. 2.3, the modeled RR cannot be per-

fect because the model refractivity is never perfect. The RR

error increases the discrepancy between measured and mod-

eled bending angles, which is interpreted as a measurement

error from the model’s perspective. This issue is closely rele-

vant to the data assimilation of RO bending angle, at least for

the methods in which the control variables are defined in the

model space. The physical-space statistical analysis (Cohn et

al., 1998) can be an exception but is not considered in this

study because model-space methods are currently in prevail-

ing use for operational weather forecasting.

The EIV error in bending angle εα can be estimated as

εα = dα
da

·εa εa = rεn, where εa and εn are model’s error in the

IP and refractive index, respectively. In this study, the error

estimate of 12 h ECMWF forecasts in the refractivity (σ b
N )

(Fig. 1b) at the time and location of the synthetic sounding

is considered as the representative of εn (Fig. 5a). The corre-

sponding εa is shown in Fig. 5b and the black line in Fig. 5c

indicates εα , where the bending angle gradient is based on the

true observation. The dashed red line in Fig. 5c indicates the

statistical observation error in the bending angle (σ o
α ) shown

in Fig. 1a. Overall, the EIV error (εα) is comparable to the

statistical estimate (σ o
α ) in magnitude for the particular syn-

thetic sounding used in this study. However, εα is exceed-

ingly larger than σ o
α at the heights of sharp bending angle gra-

dient. As explained in the introduction, the EIV error makes

the true bending angle inaccessible to RO data assimilation.

What is visible to the data assimilation is the one to which σ o
α

is added. As a result, the assimilation of the true bending an-

gle cannot yield the true refractivity. However, the VR with

the true observation is able to reproduce the perfect refrac-

tivity at least hypothetically, because the method holds the

solution and observation in the same space. Namely, a per-

fect bending angle in IP space is the condition for a perfect

reconstruction of the refractivity.

3.4 The proposed variational regularization

Figure 6a shows the trace of the cost function of VR with

iteration. Because the initial solution is the same with the

background, the background term Jb (dashed blue line) starts

from zero and gradually increases with iteration as the solu-

tion deviates more and more from the background. The ob-

servation term Jo (thick red line) decreases rapidly with iter-

ation as the mapped solution approaches the observation. The

iteration continues as long as the total cost function JT (thick

black line) keeps decreasing and a norm of ∇xJT falls be-

low a prescribed threshold. In the case considered here, all of

the cost functions are nearly flat after 15 iterations. Figure 6b

compares errors in the refractivity. The background error σ b
N

(dashed blue line) is sizable at a number of heights. That is

mainly because the vertical resolution of the 12 h ECMWF

forecast used here (91 levels) is insufficient to represent all

small-scale details of the true refractivity, especially the lo-

cal peaks (Fig. 3c). The proposed method (red line) yields

a refractivity error considerably smaller than σ b
N . The heavy

black line is the refractivity error resulting from the AI with

the “measured” (rather than the smoothed) bending angle,

which is the same as in Fig. 3c and overlaid for comparison.

VR is smaller than the AI in the refractivity error almost ev-

erywhere. As described earlier, the low-pass filtering shown

in Fig. 4b is unable to reduce the refractivity error (Fig. 4c)

and the use of different cutoff wavelengths does not make

any notable difference in the result. The pre-filtering is inef-

fective in the error reduction at least for the particular syn-

thetic sounding used in this study, where the true bending

angle contains high frequencies that cannot be isolated from

the noise. Although VR is able to cut down the refractivity

error by more than half compared to AI, it is difficult to fur-

ther reduce the remaining error because the measured bend-

ing angle is severely corrupted here and there by the large-

amplitude noise. It is worth noting in Fig. 6b that VR ap-

proaches AI, deviating significantly from the ECMWF fore-

cast. This suggests that the influence of the background on

the solution of VR is minor, as long as the observation is un-

biased and of good quality in the larger-scale perspective.

3.5 Posterior height determination

In our experience, RO refractivity tends to agree with correl-

ative data better than the bending angle (used to derive the re-

fractivity) suggests. For instance, the comparison of RO data

with independent verifying data (e.g., short-term NWP fore-

cast or high-resolution radiosonde observation) can be made

separately in bending angle and refractivity. The comparison

provides 1α = αo − αm, where αo and αm indicate the ob-

served and modeled bending angle, respectively. Likewise,

the comparison in the refractivity gives 1N = No − Nm.

Once available, 1α and 1N can be compared to each other.

For example, 1α can be propagated into the refractivity by

1Nα = 〈H〉T1α, where 〈H〉T denotes the linearized AI that

includes the conversion between n and N . As said in the be-

ginning, 1N is generally smaller than 1Nα in magnitude.

The same is observed in the comparison of error estimates

(e.g., Fig. 1a–b). For instance, the bending angle error prop-

agated into the refractivity by means of the Monte Carlo ap-

proach is larger than the refractivity error that is estimated

separately. The reason that 1N is smaller than 1Nα relates

to the way that the height of derived refractivity is deter-

mined in AI. As can be understood from Eq. (5), AI pro-

vides the refractive index as a function of the IP, n = n(a).

Afterward, the height is determined by z = an−1 − Rc. In

the above-mentioned examples that convert 1α into 1Nα ,

in contrast, the height of the refractivity is predefined and

does not change afterwards. That is because the conversion

is based on linear approximations and so the perturbations

do not change the location assigned to the variables as well

as the reference state. In that regard, data assimilation meth-

ods are the same because the location of the solution (state
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Figure 5. Errors involved in the test with a synthetic sounding: (a) statistical estimate of model error in the refractivity at the time and location

of the sounding; (b) model error in the refractional radius resulting from that in the refractivity; (c) statistical error estimate of bending angle

observation (dashed red line) and the bending angle error due to the errors-in-variables problem (solid black), which is the modeling error of

the synthetic bending angle stemming from the model error in the refractivity.

Figure 6. (a) Change of the cost function with iteration in the variational regularization: observational term (denoted Jo, thick red line);

background term (Jb, dashed blue), and the total cost function (JT = Jo + Jb, thick black). (b) Refractivity error of the background (dashed

blue), of the Abel inversion (thick black), and of the variational regularization (red).

variables) is kept unchanged during the minimization of the

cost function. Otherwise, the cost function fails to remain

consistent in the course of the minimization. As described

in Sect. 2.3.1, VR also uses the PHD. The control variable

in VR is defined as a function of RR. After the solution is

found at the minimum of the cost function, VR determines

the height using the optimal refractive index and the RR.

The PHD may sound trivial, but it has a substantive ef-

fect on the interpreted quality of the solution. An example

is illustrated in Fig. 7. The heavy solid line in Fig. 7a is the

sounding of true refractivity. The solution will appear some-

where on a horizontal line at the true height of a given IP,

deviating arbitrarily from the true refractivity. (In this con-

text, RR and IP are the same in the meaning; hereafter, IP is

thus used preferably for the sake of simplicity.) The example

considered here is the horizontal line with open-headed ar-

rows around 2.8 km and next to N(a). The solution’s error is

indicated by the distance from the true refractivity (i.e., the

open circle in the middle of the line). Now suppose that the

solution is smaller than the true refractivity at the given IP.

Because r = an−1, PHD places the solution at a higher loca-

tion in the height coordinate than the true height. Likewise,

a positive refractivity error pushes down the solution. As a

result, the trajectory of possible solutions is slanted as shown

by the dashed line next to N (r|a).

An example inside the small box is shown in Fig. 7b to

offer a detailed depiction, where the solution (denoted P )

is smaller than the true refractivity (denoted T ) by an error

δN < 0. It can be shown that the height displacement of the

solution due to PHD is δr ≃ −rδn = −10−6rδN . The solu-

tion is thus placed at a higher location (r ′) than the true ra-

dius (r). What is important here is that the solution’s error

in the height coordinate is to be perceived as the difference

from N(r ′) rather than from N(a), because the solution’s

true height is never known in the real world. For the partic-

ular example shown in Fig. 7b, the solution’s apparent error

|P ′T ′| is smaller than that the true error |PT | = δN , where

the overbar denotes the line connecting two points and ver-
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Figure 7. Illustration of solution’s trajectory in the posterior height determination (PHD). (a) The heavy solid curve represents the true

refractivity sounding. The solid line with open-headed arrows around 2.8 km, denoted N(a), indicates the actual trajectory (i.e., connected

line of positions) of potential solutions for a given refractional radius (or true height). PHD relocates the solutions, making the trajectory

to be interpreted as the dotted, slanted line next to N (r|a). (b) Magnified view of a relocation in the rectangular inset in panel (a). In this

example, the solution P is smaller than the true refractivity T and is thus relocated to P ′, which is from the true radius r to a higher location

r ′ since r = xn−1. This leads the apparent error
∣∣P ′T ′∣∣ to be smaller than the true error |PT |. The slope of P ′T is constant, −157 km−1,

regardless of the true height or the size of true error as shown by the dotted lines in panel (a). See text for more details.

tical bars indicate the line length. By linearizing a = nr , the

slope of |P ′T | can be shown as

dN (r|a)

dr
= −

106n

r
≃ −157km−1, (21)

where r|a stands for the conditional radius of the solution

given the IP. The slope is indeed the critical refractivity gradi-

ent at which the ray’s curvature radius is equal to the Earth’s

radius and is thus the threshold for the occurrence of the crit-

ical refraction. By inspection, the solution’s true error δN =
Gcδr and the apparent error δN ′ = |P ′T ′| = (Gc − G)δr ,

where Gc is the critical gradient (−157km−1) and G is the

local refractivity gradient. Given that δN ′

δN
= 1 − G

Gc
, δN ′ is

smaller than δN in the absolute size if 2Gc < G < 0. In gen-

eral, PHD reduces the apparent error since G is known to be

about −40 km−1 in the standard atmosphere (United States,

1946). An example for which the apparent error is larger than

the true error is shown at the point denoted as B in Fig. 7a,

where the true refractivity increases with height. It must be

underscored here that not only the derived refractivity but

also the height assigned to it possesses error, and the errors

are negatively correlated. Therefore, the derived refractivity

is also subject to the EIV problem. However, in practical cir-

cumstances (e.g., when a comparison to other data is made),

the errors are attributed entirely to the refractivity and the

height is assumed to be free of error.

Figure 8 illustrates the response of δN ′

δN
to varying G. The

solid black line in Fig. 8a is the true refractivity sounding

in the IP coordinate and black dashed line indicates a hypo-

thetical solution in the same coordinate, which is set to be

5 % larger than the true solution everywhere. In the example,

the gradient of the true refractivity, G, ranges from −135 to

22 km−1 (Fig. 8b). The red lines in Fig. 8a are the same re-

fractivity soundings but seen in the height coordinate. Again,

the solid line and dashed line indicate the true refractivity

and the solution, respectively. As shown in Fig. 8c, δN ′ is

less than 5 % (δN) except for around 3.25 km where G is

positive. In particular, δN ′ is significantly smaller than δN

near 2.3 km where δN ′ ≈ 0 as G ≈ Gc. The tracking of RO

signals that are affected by the critical refraction, which oc-

curs when G is negatively large, is known to be challeng-

ing. In the heights where G ≤ Gc, therefore, the quality of

RO refractivity is not expected to be the best. Surprisingly,

however, Fig. 8c shows an opposing result: PHD results in

the smallest refractivity error when G ≈ Gc. That is because

PHD purges all the apparent error no matter how big the true

error is. However, PHD increases the apparent error in case

of strong sub-refraction (G > 0), which is often observed at

the immediate underside of local refractivity peaks. There-

fore, the apparent refractivity error depends on the optical

structure in the atmosphere as well as quality of the bend-

ing angle data. Syndergaard (1999) described the reduction

of refractivity error resulting from PHD but without relating

it to Gc.

4 Test with real data

In this section, we apply AI and VR to actual RO events and

compare the resulting refractivity soundings with nearby ra-

diosonde observations. In doing so, we use two sets of ra-

diosonde data in order to complement each other’s weakness.
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Figure 8. An illustrative example of true error versus apparent error. (a) Black lines represent the true refractivity (solid) and a hypothetical

solution (dashed) in the refractional radius coordinate. The hypothetical solution is set to be 5 % larger than the true refractivity in all heights.

Red lines indicate those in the height coordinate, the true refractivity (solid) and the solution (dashed). (b) The vertical gradient of the true

refractivity. (c) The true error (dashed black) and apparent error (dashed red), which are defined as the departure from the true refractivity in

the same coordinate, i.e., dashed line minus solid line of the same color in panel (a).

In the following, the data sets used here (including RO, NWP,

and radiosonde) are briefly described and next the validation

with respect to the radiosonde data is presented.

4.1 Data

The GPS RO data used in this study are made available

from the Constellation Observing System for Meteorology,

Ionosphere, and Climate (COSMIC) mission and are pro-

cessed by the CDAAC. The six COSMIC satellites have been

producing 1000–2500 globally distributed soundings each

day since the launch in April 2006 (Anthes et al., 2008).

Kuo et al. (2004) and Schreiner et al. (2011) describe the

CDAAC’s data processing. VR takes the COSMIC neutral

atmospheric bending angle as the input, as does CDAAC’s

AI. This is to ensure the consistency between the meth-

ods in the observation. In addition, we take CDAAC’s re-

fractivity as the solution of AI, instead of carrying out an

AI ourselves, in order to avoid the potential uncertainty in-

volved in the practical implementation of AI. Hence, the

CDAAC’s refractivity is considered as the standard solution

obtainable from the CDAAC’s bending angle and via AI. The

COSMIC data used here (version 2013.3520) are available

online at http://cdaac-www.cosmic.ucar.edu/cdaac/products.

html. The background soundings of VR are generated from

the operational ECMWF forecasts (ECMWF, 2016), which

are on a reduced Gaussian grid (∼ 25 km spacing in latitude

and longitude) with 91 vertical levels between the Earth’s

surface and 80 km. The same resolution is used through-

out the study period for the sake of convenience, although

the model’s spatial resolution has been increasing with time

(e.g., ∼ 9 km and 137 levels as of March 2017). When the

upper bound of Abel transform is not high enough, the inte-

gral becomes negatively biased in high altitudes. To reduce

the bias, the empirical model of the US Naval Research Lab-

oratory (NRL), MSIS (Hedin, 1991), is used to provide the

refractivity above the ECMWF model top up to 2000 km.

One of the radiosonde data sets used in this study is

the Automatic Data Processing (ADP) upper-air observa-

tion provided by the Data Support Section (DSS) of UCAR

(available online at http://rda.ucar.edu/datasets/ds337.0). The

data are the global 6-hourly upper-air reports routinely col-

lected by the National Centers for Environmental Prediction

(NCEP) for operational uses through the Global Telecom-

munications System (GTS). The reports consist of messages

that are prepared using a set of World Meteorological Organi-

zation (WMO) alphanumerical TEMP (upper-air soundings)

codes, e.g., FM-35 (land stations) and FM-36 (ship based).

The codes were designed to keep the messages as short as

possible whilst retaining all noteworthy features observed

during the balloon’s ascent. As a result, TEMP codes sup-

port a limited vertical resolution, allowing reports only on

the standard (mandatory) pressure levels and significant lev-

els (if there are any). The other set of radiosonde observa-

tion is the high vertical resolution data from the radiosonde

stations operated by the National Oceanic Atmospheric Ad-

ministration (NOAA), available online at ftp://ftp.ncdc.noaa.

gov/pub/data/ua/rrs-data/. Beginning in 2005, NOAA began

transitioning from radio-theodolite balloon tracking to GPS

tracking. The data from this new system, called Radiosonde

Replacement System (RRS), are recorded at 1 s resolution,

permitting good representation of small-scale atmospheric

structures. A particular advantage of this data set regard-

ing the comparison to RO data is that it provides balloon’s

height at every recorded moment of the flight. The oper-

ational radiosonde data (ORD hereafter), in contrast, have

height reports only on the standard pressure levels. Thus, the

heights on significant levels must be estimated based on the

measured values of pressure (p), temperature (T ), and hu-

midity (U ). The reconstructed heights are of suitable quality

in general, but at times have larger uncertainty due to the

poor data resolution as well as measurement error in pT U .

The pT U -height error is interpreted as a refractivity error

when the radiosonde data are compared to RO refractivity
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in the height coordinate, which is another EIV problem. Us-

ing the high vertical resolution radiosonde data (HVRRD),

the pT U -height error on significant pressure levels can be

avoided.

4.2 Validation with operational radiosonde data

ORD has a larger number of soundings and a superior ge-

ographical coverage compared to HVRRD, the stations of

which belong to a small subset of ORD sites. Hence, ORD

provides more soundings that are closely located (collo-

cated hereafter) with RO soundings for a given period of

time. It also allows the collocated soundings to be sam-

pled at various locations and under diverse atmospheric con-

ditions. Focusing on tropical and subtropical regions, we

used 24 328 collocated (< 2 h and < 200 km) ORD–COSMIC

matches in latitudes between 35◦ S and 35◦ N for the period

from 17 February 2007 to 7 November 2010 (Fig. 9). The

radiosonde data that are unphysical or deviate unrealistically

far from ECMWF forecasts are discarded prior to the val-

idation through a series of data screening as done by Wee

and Kuo (2014). Also, COSMIC soundings flagged as bad

by CDAAC are dropped.

The particular latitude zone is chosen to ease the compari-

son between AI and VR. However, the sharp refractivity gra-

dient in the lower troposphere over the regions could cause

the critical refraction, which results in a significant nega-

tive bias in the AI-produced refractivity all the way down

to the surface from the top of the ducting layer. The critical

refraction thus gives a serious penalty to AI. While the AI-

produced refractivity in the heights affected by the critical

refraction tends to appear as outliers in the comparison, the

PHD described in Sect. 3.5 makes the outlier detection futile.

Therefore, the critical refraction makes the statistical com-

parison more difficult. For this reason, this study attempts

to detect the occurrence of critical refractions for each RO

sounding and exclude the affected heights, if they exist, from

the comparison to ORD. This step is considered as a quality

control. To do so, ducting layers are searched in the back-

ground (G < −150km−1, slightly relaxed from Gc) starting

from 7 km and downward. The procedure is repeated with

ORD sounding but not with AI sounding, because the refrac-

tivity gradient of AI cannot be smaller than Gc. When a duct-

ing layer is detected for the first time, the refractivity below

the layer’s top is discarded from the comparison. In VR, the

top of the ducting layer becomes the lower bound of the com-

putational domain. Consequently, both the background and

measured bending angle below the top of the ducting layer

are not used in VR. Needless to say, the refractivity compari-

son to ORD is limited to the height range common to AI, the

background, and VR. In order to make the comparison ro-

bust to outliers, the lower and upper 1 % of AI soundings in

the difference from ORD are discarded at each height level.

The matching soundings of VR and the background are also

rejected.

Figure 10a compares the difference from ORD in the mean

refractivity. AI (thick dark grey line) results in a distinct

negative bias below 3 km, which increases with decreasing

height, reaching −1.5 % near the surface. This means that

the above-mentioned quality control is not perfect although

it has reduced the maximum bias from −3.5 % (not shown).

The persisting bias might be due to sub-critical refractions or

some ducting layers undetected by the forecasts and ORD.

AI shows a small positive bias above 4.5 km, which are about

0.2 % at 6.5 km. The refractivity bias of AI mainly stems

from the bias in the observation. What intensifies the negative

refractivity bias in the lower troposphere is the downward

propagation of the observation bias. However, 12 (solid blue)

and 24 h (dashed green) ECMWF forecasts in that height

range deviate very little from ORD. In the lowest 2 km, the

forecasts show positive systematic deviations that increase

with the forecast lead time. Considering that moisture is the

dominant contributor to the variability of refractivity in the

height range, the ECMWF forecast model is likely to have a

wet bias in the planetary boundary layer as shown by Flentje

et al. (2007), at least with respect to ORD. In both cases that

12 (solid red) and 24 h (dashed gold) forecasts are used as

the background, VR is less biased than AI throughout the en-

tire height range. In particular, the negative refractivity bias

below 4 km is greatly reduced. This is reasonable because

VR does not propagate the negative measurement bias down-

ward. Moreover, VR can reduce the effect of measurement

bias with the aid of background, especially for the exceed-

ingly large biases around the local peaks of the bending an-

gle and when the background is largely unbiased, like the

ECMWF forecasts used here. Overall, VR is in between AI

and the background and is closer to the background in the

lowest 4 km. VR approaches the background in the mean be-

cause doing so describes the measurement better. As shown

by the synthetic data test, the influence of the background

on VR is very limited when unbiased measurement is given

(Fig. 6b). With biased measurement, therefore, the approach

of VR to the background is desirable.

In the standard deviation from ORD (Fig. 10b), AI is

slightly larger than 24 h forecast (FCST) in the lowest 2 km

and is comparable elsewhere. Thus, AI is no better than 24 h

forecast. As expected, the random error of the forecast in-

creases with the lead time. Encouragingly, VR is smaller

than the background throughout the height range regardless

of the forecast lead time. This indicates that VR works as

designed attaining an error variance smaller than those of

observation (represented by AI) and the background. Nev-

ertheless, it is noticeable that AI, FCST, and VR are similar

in magnitude and structure, and the difference among them

is very small, less than 0.5 % at most. The main reason be-

hind the similarity is the large error of ORD, which is shared

by AI, FCST, and VR. An error estimation in which HL is

applied to nearby COSMIC–ORD pairs for the same 7-year

period described in Sect. 2.3.2 suggests that the refractivity

error variance of ORD is slightly larger than that of AI (not
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Figure 9. Location of COSMIC soundings (red dots) collocated with the operational radiosonde soundings in latitudes between 35◦ S and

35◦ N for the period from 17 February 2007 to 7 November 2010.

Figure 10. Comparison with collocated operational radiosonde data (ORD). (a) Mean difference from ORD of CDAAC’s refractivity derived

via Abel inversion (thick dark grey line, denoted AI), ECMWF’s 12 h forecast (solid blue) and 24 h forecast (dashed green), and VR-produced

refractivity for which 12 (solid red) or 24 h (dashed gold) forecast is used as the background. The unit used here is %, i.e., the percentage

with respect to the mean value of ORD. (b) Same as in panel (a) except for the standard deviation. The inset shows the difference from AI in

the standard deviation from ORD. (c) Number of samples used in the comparison. Note that scales of the x axis in panel (b) and (c) are not

linear.

shown). It means that the actual errors of AI, FCST, and VR

are about 70 % of the standard deviations shown in Fig. 10b.

The differences among the three appear small because those

are added on top of the same large ORD error. Another rea-

son for the large standard deviations (and small differences

among them) is the spatiotemporal distance between COS-

MIC and ORD soundings. Although the collocation thresh-

old used in this study is reasonably tight, the significant hor-

izontal inhomogeneity (especially in moisture) over the trop-

ical region causes the two nearby soundings to differ consid-

erably from each other. The difference is particularly large

if the small-scale features in those two soundings are out of

phase. The systematic difference, however, is insensitive to

the distance.

The vertical resolution of verifying observation is also rel-

evant to this issue. As mentioned earlier, ORD has a low reso-

lution and the data points are distributed irregularly in height.

Moreover, the depths between adjacent data levels differ sub-

stantially from one sounding to another depending on the

number and location of significant pressure levels that are

reported. The significant levels are where the observed atmo-

spheric structure turns or changes abruptly. The rapid change

around the significant pressure levels, in conjunction with the

limited data resolution, results in sizable error if one attempts

to interpolate ORD to a regular height grid. Therefore, all

other correlative data (AI, FCST, and VR) are interpolated to

the heights of ORD in this study. Afterwards, the data points

are binned according to the pressure of each ORD height for

the statistical comparison. For standard pressure levels, all

data samples of the same pressure are grouped together and

assigned to the pressure level. For significant levels, however,

bins are allocated in the middle of adjacent standard pres-

sure levels, accommodating all data samples whose pressure

are between the neighboring standard levels. For instance,

all significant pressure levels between 700 and 850 hPa are

assigned to the same bin. For this reason, the data counts

exhibit a saw-toothed distribution as shown in Fig. 10c. For

each bin, the mean refractivity and mean height are repre-

sented by those of ORD. The shortcoming of the binning ap-

proach is that the samples in a bin are different in height.

Given that the refractivity varies exponentially with height

to a good degree, the height discrepancy increases the sam-

ples’ spread (standard deviation), which could have been re-

duced greatly if all the samples were taken at the same height.

Namely, a good portion of the standard deviation shown in

Fig. 10b is attributable to the vertical variation of the true

refractivity. In other words, some of the standard deviation

is the EIV error, which is caused by disregarding the height
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difference among individual samples. Another issue with the

binning is that the statistics is sensitive to the way that the

binning is done. For example, the statistics obtained using

a height-based binning (not shown) appeared different from

those shown in Fig. 10. That was more evident in the mean

difference, which is greatly influenced by the distribution of

the heights of individual samples in each bin. While the bin-

ning approach is compelled by the poor vertical resolution of

ORD, it is not so dependable, introducing substantial extra

uncertainty (i.e., EIV error) to the statistics. A correction ac-

counting for the inter-sample height difference might be pos-

sible, but no attempt in the direction with ORD data is made

in this study. These issues with the binning can be addressed

by using radiosonde data of higher resolution.

4.3 Validation with high vertical resolution radiosonde

data

In this comparison to HVRRD, all data sets (HVRRD, AI,

FCST, and VR) are interpolated to a regular height grid of

50 m interval. Thanks to the high vertical resolution, the

interpolation of HVRRD does not cause large error unless

the reported heights are corrupted. Besides, data binning is

unnecessary since all data samples are placed in the same

height. Therefore, the uncertainty arising from the inter-

sample height discrepancy (i.e., EIV error) is eliminated. Fig-

ure 11 shows the location of 92 HVRRD stations used in this

study. The stations are classified into three regions: the trop-

ics (15 sites, red filled circles), US (64 sites, green open di-

amonds), and Arctic (Alaska; 13 sites, blue filled squares).

With the same distance threshold used for ORD, 30 796 col-

located COSMIC–HVRRD pairs (2602 in the tropics; 25 128

US; and 3064 Arctic) are found for the period from 17

February 2007 to 31 August 2015 (insets in Fig. 12a–c).

For COSMIC data, two slightly different data versions are

used: 2013.3520 until 30 April 2014 and 2014.2860 after-

wards. Without the smearing due to the binning, the compar-

ison shows a more detailed vertical structure of the statistics.

Another difference from the comparison to ORD is that the

detection of the critical refraction is carried out with only the

background. The reason for not using HVRRD-based detec-

tion is that the derivative between very shallow layers (due to

the high resolution) intensifies measurement noise and leads

to rapidly oscillating refractivity gradients.

Figure 12a–c compare the refractivity biases with respect

to HVRRD in the three regions. In the tropics (Fig. 12a),

AI again shows a large negative bias near the surface and a

moderate positive bias in 6–10 km range. Without the spread

due to the data binning and the HVRRD-based detection

of critical refractions, the peak values of the bias (−2.6 %

near the surface and 0.5 % at 7 km) are larger in magnitude

than those obtained by the comparison to ORD. The back-

ground, 24 h ECMWF forecast (denoted as FCST), is bi-

ased negatively below 6 km and positively in 5–10 km range.

This is quite different from the comparison to ORD, where

the background shows a positive bias near the surface. This

may indicate the uncertainty of these radiosonde data in the

mean refractivity. The two radiosonde data sets used in this

study, ORD and HVRRD, differ in a number of aspects. One

is the geological coverage of the observation network. The

HVRRD stations are smaller in the number and located in

small specific areas. For instance, about 10 out of 15 HVRRD

stations are in latitudes lower than 20◦, whereas the major-

ity of ORD sites are located in the subtropics. Therefore,

the atmospheric conditions over the two sets of radiosonde

station differ, leading to different error characteristics of RO

bending angle. The same is true for the data quality of AI-

produced refractivity and the background. The radiosonde

data sets also differ in the instrumentation and reporting prac-

tice. For instance, the height reports in HVRRD are based

on GPS tracking, whereas those in ORD are a mixture of

the pT U height and the GPS-based height. Needless to say,

the vertical resolutions of ORD and HVRRD are different.

The comparison to ORD is subject to extra uncertainty due

to the data binning and the subsequent EIV error. All these

factors and others contribute to the difference in the assessed

statistics. Nonetheless, the high vertical resolution is an ir-

refutable strength of HVRRD in regard to the verification of

RO data. Hence, the comparison to HVRRD is believed to

provide trustworthier results in this study. That being said, it

is remarkable that VR follows AI very closely above 2 km,

deserting the background. In the lowest 2 km where AI is

greatly biased, VR shows a diminished negative bias. This

again indicates that the influence of the background on VR

is not worrisome unless the observation is biased. The close-

ness between AI and VR also suggests that the common de-

viation from HVRRD is indicative of the systematic error of

HVRRD. The bias of AI in the lower altitudes is near neutral

over the US (Fig. 12b) and turns into positive over Alaska

(Fig. 12c). In contrast, the bias in the middle troposphere re-

mains positive and does not change much in the magnitude.

The differences among AI, FCST, and VR are small over the

US and the three are almost on top of each other over Alaska.

Despite the smaller differences, VR is less biased than AI in

all heights and in both regions. In higher altitudes, AI devi-

ates a bit more from VR. As shown by Wee and Kuo (2015),

the bias of AI in the stratospheric heights might be caused

by interannual atmospheric variations that are unrepresented

by the climatology used for the statistical optimization of the

bending angle.

The difference among AI, FCST, and VR is more pro-

nounced in the standard deviation (Fig. 12d–f). In the com-

parison to ORD (Fig. 10b), AI is no better than the 24 h

ECMWF forecast especially in the lowest 2 km. In the stan-

dard deviation from HVRRD, in contrast, AI is smaller than

the forecast in the tropospheric heights of all regions. This

suggests that the EIV error caused by the data binning is large

enough to bring forth a misleading conclusion in the compar-

ison to ORD. In the stratosphere above 13 km over the US

and Alaska, AI is slightly larger than the forecast. It is found
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Figure 11. Location of US-owned HVRRD stations used in this study. The stations are classified into three latitudinal regions: the tropics

(15 sites, red filled circles), US (64, green open diamonds), and Arctic (Alaska; 13, blue filled squares).

Figure 12. Comparison with collocated HVRRD. (a–c) Mean difference (%) from HVRRD of CDAAC’s refractivity derived via Abel

inversion (dashed blue line, denoted AI), ECMWF’s 24 h forecast (heavy solid grey, FCST), and VR-produced refractivity (solid red) for

which the FCST is used as the background. Shown are the statistics over (a) the tropics, (b) the US, and (c) Alaska. The insets show the

vertical data counts. (d–f) The same as in panels (a–c) except for the standard deviation. The insets show the differences from FCST in the

standard deviation from HVRRD.

through the error estimation described in Sect. 2.3.2 that the

stratospheric degradation of AI is due to a rapid, unsmooth

transition of bending angle estimation, which is from the geo-

metrical optics method applied above 20 km to a wave optics

method below. Nonetheless, VR agrees better with HVRRD

than the others do in all heights regardless of the geographi-

cal area. As a result of the high vertical resolution, HVRRD

has small-scale vertical variations in the refractivity, which

might not be easy to be observed concurrently by other ob-

serving systems. Therefore, the evident error reduction at-

tained by VR in both measures (i.e., systematic and random

errors) is very impressive.

5 Summary and concluding remarks

The refractivity soundings provided by Global Positioning

System (GPS) radio occultation (RO) have been used widely

for weather and climate research. Typically, the refractivity is

obtained from the inverse Abel transform (Abel inversion) of

measured bending angle (measurement). The foremost prob-

lem of AI is that it allows the measurement error to propagate

downward freely. The measurement error includes artifacts

introduced by arbitrary noise mitigation that are applied prior

to AI. It is challenging to improve the noise mitigation be-

cause the separation of signal components and noise is never

easy. After considerable deliberation, we come up with the
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idea that it is synergetic to combine noise attenuation and re-

fractivity inversion together into an estimation problem. An-

other contemplation is that the issue of measurement error

propagation can be addressed by instead using the forward

Abel transform (FAT). As the realization of these hypothe-

ses, a variational regularization (VR) of the FAT is proposed

in this study.

The proposed method considers the numerical inversion

of the FAT. Doing so does not require the vertical integration

of error-possessing measurement and precludes the measure-

ment error propagation that is the root cause for the degra-

dation of AI-produced refractivity. While AI considers the

measurement to be complete, VR regards it approximately

accurate. Hence, instead of solving the inverse problem di-

rectly, VR turns it into an optimization problem in which

the fitting to the measurement is used as a weak constraint,

while the solution’s behavior is regularized as per the prior

information. The optimization problem is solved via the ad-

joint technique, which is a very efficient way of calculating

the gradients of the cost function with respect to all control

parameters at once. The essential feature of VR in the for-

mulation that differentiates the method from classical regu-

larizations is the use of error covariance matrices (ECMs),

which permits a rigorous incorporation of prior information

on measurement error characteristics and solution’s desired

behavior into the regularization. The proposed method needs

a first guess to kick off. This study considers NWP forecasts

to be the most adequate as the first guess because they are of

good quality and routinely available and offer reliable error

estimates of the observation as well as themselves that in turn

support the construction of realistic ECMs. The specific first

guess used in this study is short-term operational forecasts

of the ECMWF. The diagonal elements of the ECMs are es-

timated by applying the Hollingsworth–Lönnberg method to

closely located pairs of RO soundings, whereas off-diagonal

elements of the forecast ECM are approximated by employ-

ing the NMC method. The observation ECM is on the other

hand assumed to be diagonal for the sake of computational

simplicity.

The regularity imposed on the solution is accomplished

through the filtering effect of the background ECM, which is

controlled by the off-diagonal elements (spatial error correla-

tions) that spread information from each measurement sam-

ple to neighboring locations. In addition to being smooth, the

solution of VR attains the statistical optimality delineated

by the ECM. This study limits the scope of the proposed

method to the relationship between bending angle and re-

fractivity in order to circumvent additional uncertainty and

complication that give to rise when the regularization prob-

lem is extended to other variables (i.e., temperature, pressure,

and moisture) in such methods as RO data assimilation and

1D-Var. A unique feature of VR in that respect is the coin-

cidence of the solution space with the data space that elimi-

nates the ambiguity resulting from the coordinate transform

between the refractional radius (RR) and the height, which is

inevitable in the RO data assimilation and 1D-Var. The sig-

nificance of having the solution and observation in the same

RR space is that it permits the perfect retrieval of refractiv-

ity from error-free measurements, which is unviable for RO

data assimilation and 1D-Var. That is, the flawless replica-

tion of measurement in the RR coordinate is the sufficient

condition for the perfect refractivity retrieval. In that sense,

VR can be understood in that it enhances the measurement,

aided by the background, with the regularized refractivity as

the consequence.

The proposed method along with AI is tested by means

of a synthetic sounding with error. The known true solution

in the controlled setting resolves a long-standing problem in

real-data tests, which is the ambiguity stemming from the

uncertainty of verifying data. The weakness of AI is demon-

strated with the focus on the effect of measurement error

propagation.

It is shown with an example that the smoothing of

measured bending angle prior to AI does not reduce

the refractivity error when the measurement is corrupted

with large-amplitude, non-stationary noise. The errors-in-

variables (EIV) problem is identified as a notable source of

measurement error for RO data assimilation and 1D-Var. At

the heights that the bending angle varies rapidly, the EIV er-

ror is revealed to be exceedingly larger than the statistical

measurement error. Another point highlighted in the test is

the posterior height determination (PHD). It is described in

detail with examples and illustrations that PHD reduces the

refractivity error substantially. We have utilized the synthetic

case in order to articulate the reason that we had decided to

define the control variable of VR in the observation space.

That is to reduce the EIV error and to take advantage of PHD.

The test with the synthetic data has demonstrated that VR is

able to yield an accurate solution that is superior to the AI-

produced refractivity. An important finding is that the solu-

tion of VR approaches the true solution deviating from the

background of sizable error, once the observation provided

is unbiased.

The proposed method is applied to actual COSMIC events

and the result is validated with nearby radiosonde sound-

ings. For the validation two radiosonde data sets, the opera-

tionally collected TEMP-format global data and the high ver-

tical resolution data collected at stations operated by NOAA,

are used to complement each other’s weaknesses. The for-

mer is lower in the resolution but has a superior geographi-

cal coverage, and vice versa. The validation shows that the

standard deviation of refractivity from the radiosonde data

is persistently smaller with VR than with AI and the back-

ground. Both radiosonde data sets equally show the smaller

standard deviation of VR in all heights and latitudes. VR also

agrees better with the radiosonde data than AI does in the

mean of refractivity, especially in the lowest 2 km. We have

seen in some heights that VR is slightly larger than the back-

ground in the mean difference. Although not certain for sure,

the likely cause is the systematic error of the radiosonde data.
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It is found that the limited vertical resolution of the TEMP-

format radiosonde significantly reduces the adequacy of the

data set for a precise verification of RO data. The compari-

son to the high vertical resolution radiosonde data confirms

that the influence of the background on the VR-retrieved re-

fractivity is minor in the heights and regions that the sys-

tematic error of RO bending angle is relatively small. Even

in the lowest few kilometers that AI-produced refractivity

has large negative bias, VR reduces the refractivity bias con-

siderably by preventing measurement bias from propagating

downward.

Based on the results presented herein it is concluded that

VR is a considerable improvement over AI in the quality of

refractivity. This suggests that VR is able to enhance the data

value of RO bending angle with the aid of prior information.

Our study has an important implication for the data assim-

ilation of GPS RO data. These days most of global NWP

centers prefer bending angle to refractivity for data assim-

ilation. Although there are good supporting reasons for the

preference, this study finds that the assimilation of bending

angle has drawbacks that were often disregarded in previous

studies. It appears that VR is very promising as it reduces

the EIV error and benefits from the PHD. It is straightfor-

ward to assimilate the refractivity produced by VR. In order

to take the full advantage of VR and to ensure consistency

with the background, however, it will be desirable to incor-

porate the regularization into data assimilation methods. The

recent version of COSMIC one-dimensional variational re-

trieval method (1D-Var), for instance, conducts VR on the

fly prior to the actual retrieval. Alternatively, stand-alone VR

that shares the background with data assimilation can be car-

ried out as a RO data pre-processing step so as to reduce the

computational complexity. An example is the 1D-Var + 4D-

Var approach for assimilation of precipitation-affected mi-

crowave radiance at ECMWF (Bauer et al., 2006).
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