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A Vector Approach for Noise Parameter 
Fitting and Selection of Source Admittances 

Juan M. O’Callaghan and Jyoti P. Mondal, Senior Member, IEEE 

Abstract -Simple vector concepts can be used to determine 
noise parameters from measured data. The use of such concepts 
leads to a simplification in the least-square fitting algorithm, 
complete determination of the admittance loci that produce ill 
conditioning, and simple criteria for the selection of source 
admittances that minimize the sensitivity of the noise parame- 
ters to experimental error. The sensitivity of the noise parame- 
ters to small perturbations in the reflection coefficients is com- 
pared for a group of source admittances selected with the 
techniques described here and a group of admittances presented 
in a previous work. The results show that a great reduction in 
the error of the noise parameters can be achieved by properly 
selecting the source admittances. 

I. INTRODUCTION 

T the source admittance is given by 
H E  dependence of the noise factor of a two-port on 

Computer simulations in a previous work [2] indicated 
that a proper distribution of source impedances in the 
Smith chart (rather than an increase in the number of 
impedances) is necessary to minimize the fitting errors; 
however, no selection criteria were given. 

The algorithm presented in this work uses a vector 
approach which leads to a quasi-graphical interpretation 
of the fitting process and an improved understanding of 
the ill-conditioning phenomenon. A quantitative descrip- 
tion of the degree of ill conditioning that a group of 
source admittances produces comes naturally from this 
formulation, as well as criteria for the selection of source 
admittances that avoid ill conditioning. The proposed 
formulation accepts redundant and nonredundant data 
and least-squares fitting is performed without an iterative 
search. 

where 

FMI, =minimum noise figure of the device, 
Go + jBo = source admittance for minimum noise figure, 

G, + jB, = source admittance. 
R ,  =noise resistance, 

Using this equation, the noise parameters ( F M I ,  , 
R,,G,, Bo) can be determined if F is measured with at 
least four different sets of source admittances (G, + jBs) 

Most of the algorithms already developed use more 
than four data sets to minimize the effect of measurement 
errors. However, depending on the selection of the source 
admittances, these algorithms may produce ill condi- 
tioning, i.e., a strong dependence of the results (noise 
parameters) on small perturbations in the data (source 
reflection coefficients, measured noise figures) caused by 
measurement and/or computation errors, and inaccurate 
extraction of parasitic elements. Ill conditioning occurs 
whenever the source admittances lie very close to one of 
the loci derived in Appendix 11. 
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11. FORMULATION: PROJECTION THEOREM 

Equation (1) can be easily rearranged to 

Gs2 + Bs2 
F = ( FMIN -2RNGo)  + RN 

G, 

where each of the four terms has a different dependence 
on the source admittance. At this point, it is convenient to 
define the following vectors: 

i = l . . . n  

F M  = ( F M ,  9 .  . . , FMi >.  . . > FMn) ’ 
VI = ( 1 , l  . . .1)‘ 

where F,,,,;, G,;, and B,, are the measured noise figure, 
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Z Equation (8) defines a system of linear equations from 

techniques. However, advantage can be taken of the fact 
that the coefficient matrix in this system is symmetric and 
positive definite. This allows the use of Cholesky's method 
[3] for solving a linear system of equations, which leads to 
closed-form equations for the coefficients C, (refer to 

Once these coefficients are found, the noise parameters 

c which the values of the C,'s can be found using standard 

(F'-CC,S;) = Error Vector 

,Y Appendix I). 

can be determined through 
RN = C2 
B,, = - c, / 2 R N  

X 

Approximation Vector = 1 CI vi 
Fig 1. -Pr_jection theorem in a 3-D space with two approximatrng 
vectors V,'Vi The magnitude of the error vectorls minrmum when wch 
vector is perpendicular to the plane defined by V ;  and Vi and 

conductance, and susceptance, respectively, associated 
with the zth measurement set, and n is the total number 
of sets measured. A proper fitting of (2) for all the n 
different data sets is equivalent to the following vector 
approximation: 

- 
F, C,v,  + C2v2 + C,Y, + C,& (4) 

where 

cl = ( FMIN - 2 R N G O )  C ,  = RN 

C ,  = - 2R,B,, C, = R N ( G  + q. ( 5 )  

The problem of finding the noise parameters for a best 
fit of (1) can now be reduced to finding the coefficients 
C, * . . C, to minimize the error vector between FM and 
the linear combination of vectors y .  The magnitude of 
this error vector is given by 

I / 2  

6 = [ i ( FMl - Ffitted .)'I (6) 
1 = 1  

where 
4 

F f l t t e d r =  C,V,,, 1 = 1 , 2 , . . . , n  

and V,, is the zth component of y .  This problem can be 
solved with the help of the projection theorem in Hilbert 
spaces (see Fig. l), which states that the magnitude of the 
error vector is-minimum when such a vector is orthogonal 
to all vectors y ,  i.e., 

I =  I 

where ( ) indicates the inner product of two vectors. By 
using basic properties of the inner product, (7) can be 
rearranged to 

FMIN = c, +2RNG,. (9) 
The results obtained up to this point are very similar to 
those reported in [4], where the vector formulation is not 
used. For least-squares fitting purposes, such formulation 
has the advantage of providing a simple description of the 
linear system that allows the use of Cholesky's formulas 
for the coefficients C,. However, the major advantage of 
the vector approach can be found in the prevention of ill 
conditioning and minimization of the sensitivity of the 
noise parameters to measurement errors. 

111. ILL CONDITIONING AND ERROR SENSITIVITY 
I11 conditioning occurs when the vectors TI . . . 6 in (3) 

are not linearly independent. Then the coefficients C, . . 
C,  in (4) are not uniquely defined. The 3-D equivalent to 
this case (Fig. 1) occurs when the vectors 7,' and Fi are 
aligned. The orthogonal projection of F' onto this line is 
still uniquely defined, but the coefficients C, and C , ,  
which relate this projection to a linear combination of v; 
and vi, are not. 

There are 11 possible ways in which the vectors v, . . . 6 
in ( 3 )  may not be linearly independent: 

- v, = a,Vz 

VI = a,?, 

v, = a,?, 

I/, = a7V2 + p 7 V 3  

v, = a,v2 + p,v, 

F, = a& + p& 

v2 = .I"& + PI06 
v, = a , F 2  + PIP, + Yl lv ,  

VI = a p 3  

v2 = a4v3 

F3 = ap,  

- 

- 

- 

(10) 
where a ( ,  p,, and y, are constants (other than zero) with 
proper dimensions. Each of the vector equations in (10) 
results in a family of admittance loci that can be repre- 
sented as lines or circles in the admittance plane (refer to 
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Fig. 2. Effect of the errors on the plane defined by p,' and pi. Error 
sensitivity is minimized when V,' and V; are orthogonal. 

Appendix 11). The determination of the noise parameters 
will be ill conditioned whenever all the admittances lie on 
-or are very close to-one of these loci. 

Caruso and Sannino [5] describe a technique to avoid ill 
conditioning based on distributing the source admittances 
along two different ill-conditioning loci belonging to the 
same family. This is equivalent to avoiding only one 
condition in (10). To ensure that no ill conditioning will 
occur, none of the 11 conditions in (10) should be satis- 
fied, or, equivalently, no ill conditioning locus will come 
close to all selected source admittances. Since there are 
11 different families of ill-conditioning loci and they have 
up to three degrees of freedom, this is difficult to check. 

The vector approach presented here allows simple se- 
lection criteria for the source admittances that guarantee 
the linear independence among all vectors v, . . . v, and 
therefore ensures that none of the equations in (10) will 
hold. These criteria also minimize the sensitivity of the 
results (noise parameters) to perturbations in the data 
(source reflection coefficients and noise figures). Further 
insight into the mechanisms that translate errors from the 
data to the results is needed to establish these selection 
criteria. 

In the 3-D analogy of Fig. 1, errors in the components 
of the vectors v; and v; generate an uncertainty in 
the plane that they define. This causes an uncertainty in 
the projection of the vector F' onto this plane, which is 
the ultimate cause of errors in the coefficients C; and C;. 
If there is some degree of freedom in the selection of V; 
and V; (as in V,, V,, and V, in (3)),  they should be chosen 
so that errors in their components have a minimum effect 
in the plane that they define. 

Fig. 2 illustrates the changes in a plane caused by 
perturbations in the two vectors that define it. When no 
errors are present in Vi and V i ,  they generate the plane 
A ,  whereas if some uncertainty exists (represented by 
dotted spheres in Fig. 2) the resulting plane could have 
any orientation included between planes B and C. The 
angle between these two planes is a measure of the 
uncertainty in plane A caused by uncertainties in v,' and 
vi. This angle increases when the uncertainty in v,' and 

(radii of the dotted spheres in Fig. 2) increases or 
when v; and tend to be aligned. For a given uncer- 
tainty in v; and vi, minimum uncertainty in the plane 
that they define is obtained when the two vectors are 

orthogonal; for a given angle between and vi, the 
uncertainty in the plane can be reduced by making the 
ratio of the vector magnitude to the error magnitude 
large. 

The above discussion can be applied to the selection of 
the source admittances that define v,, v,, and v, in (3) as 
follows: 

1) The uncertainty in v,, v3, and 6 should not be 
heavily dependent on the uncertainty in the values 
of the source reflection coefficient. Moreover, the 
uncertainty in any vector should be much smaller 
than its magnitude. 

2)  Ideally, v, . . should be orthogonal. In practice, 
the components of these vectors are dictated by the 
value of the source admittances (eq. (3)) and they 
cannot be chosen to achieve complete orthogonality. 
The degree of orthogonality between two vectors is 
given by 

Equation (11) can be identified as the cosine of the 
angle between and in a 3-D space.& our case 
there are six possible combinations of cos(V,,q). Selec- 
tion of the source admittances should involve a simulta- 
neous minimization of the magnitude of all these fac- 
tors. Note that this is equivalent to maximizing the 
diagonal terms of the coefficient matrix in (8). Linear 
system theory [3] shows that this will prevent a strong 
dependence of the resulting noise parameters on errors 
in both source admittances and measured noise figures. 

IV. EXAMPLE: PRACTICAL SELECTION CRITERIA 
In this section, a selection procedure is described to 

choose a set of seven so_urce adtflittances. As shown in (31, 
the components of VI, V,, and V, are always positive. This 
prevents their dot products from being zero; however, 
gocd orthogonality among these vectors can be obtained 
if V2 and 6 have one component muzh larger than the 
rest and the domina%t component in V, does not corre- 
spond to the one in V,. In this case, the admittances are 
chosen to satisfy 

G:, + Bi,  G:l + B:l 
>> , i Z l  

Gs 1 GS, 

Gs2 Gs, 

1 1 
-->>--, i Z 2  

under these assumptions: 

cos 

cos 
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R,, and B,, are chosen to be zero to minimize cos(v,, v,). 
The remaining source admittances have to be chosen to 
satisfy (12) and to ensure good orthogonality of V, with 
PI, v2, and 7,. A possible choice is to make B,T, = 0 and 
G,, = 20 mS (matched load) and f I5,  = - LIS(,+,, and 
G,, = Gs(, + ,), i = 4,6, . . . (conjugate loads). The final 
group of source reflection coefficients to be presented to 
the transistor has been determined to be 

r,, = 0.7 < 1800 

r,y, = 0.3 < - 90" 

r,, = 0.6 < - 90" 

= 0.7 < 0 rs, = 0 
rs5 = 0.3 < + 90" 

r,, = 0.6 < + 900 . ( 14) 
Gradient optimization has been used to obtain this result. 
The function minimized was defined as the maximum 
absolute value of six possible c o s ( e , y )  factors. For the 
values shown in (141, this maximum was determined by 
cos(v,,v,) = cos(v, ,K) = 0.76 (equivalent to 40.5" in a 
3-D space). This figure could be further reduced by 
allowing lrsll and lrs21 to take a-higher value. This would 
increase the first component in V, and the second compo- 
nent in E, improving the orthogonality of both vectors 
with VI; however, small errors in r,, when its magnitude 
is large provide large variations in G,s, and Bsl and, 
therefore, a high uncertainty in F,, whose first component 
is dominant with respect to the others. Similarly, small 
variations in r,, when its magnitude is large provide large 
variations in l/G,s, and high uncertainty in v,; therefore, 
it is important not to increase r,, and r~y, beyond the 
value for which acceptable orthogonality is achieved. 

The values of r,, and r,, were optimized simultane- 
ously in order to maintain their complementary nature. 
This was also done for r,, and r.y,. In both cases, 
optimum orthogonality was obtained when the magnitude 
of the reflection coefficient was zero or unrealistically 
small. This solution was not acceptable since the magni- 
tude of y3 was too small, making the uncertainty in this 
vector comparable to its magnitude. Minimum boundaries 
for had to be set in the optimization of rs4, r,, and 
r.s6, r,, to avoid this effect (lr.54lMlN = I r S S / M I N  = 0.3, 
lrs6lMlN = lrS71MIN = 0.6). The optimum phase was found 
to be +90° regardless of the limits in the magnitude. For 
these phases, cos(I/,, v,> = cos(vI, V,). 

The set of source admittances in (14) was intended to 
be used in an experimental determination of our 0.25 p m  
MESFET devices at Ka band. Some of these source 
admittances had to be reselected because either the de- 
vice was not stable or its measured noise figure was 
judged too high to allow an accurate reading of the noise 
figure meter; however, the criteria given in this and the 
previous section proved to be helpful in ruling out admit- 
tances that would have given rise to ill conditioning. 

V. SOFTWARE DEVELOPED FOR NOISE 
PARAMETER FITTING 

The essential features of the software developed for 
noise parameter fitting are shown in Fig. 3. First, the six 
factors cos(?, y )  are calculated at each frequency point. 

Start (All Data 
Sets Enabled) 

Calculate Orthogonality 
Enabled Sets 

4 

+ 
4 

Calculate Noise 
Parameters for Best Fit with 

Enabled Data Sets 

Calulate Error for 
Each Data Set 

Select 

Error Sensitivity 
Analysis 

1 

No 

4-d Enable/Disable I Some DataSets I 
I 

I 

Fig. 3. Block diagram of the software developed for noise parameter 
fitting. 

TABLE 1 

DATA SETS 
CUMPARISON OF RESULTS WITH DIFFERENT CHOIC'FS OF ENABLFD 

3, 4, 7, 9 0.4567 6.077 38.20 40.65 8.8 
1, 4, 5, 6 0.4539 4.893 41.71 39.65 3.8 

All 0.4576 4.654 41.05 39.56 3.3 

This gives the user an indication of how ill conditioned 
the system is at each frequency. Second, the noise param- 
eters are calculated at each frequency using (8) and (9). 
Once the tentative noise parameters are known, they are 
used to calculate the tentative noise figure (Fcalc) for each 
measurement set with (I). When Fcalc is known, an error 
function is calculated for each set using 

n f  being the number of frequency points. 
A table is then generated displaying the values of these 

error functions. Based on this information, the user has 
the option of disabling some of the data sets and restart- 
ing the fitting process. This provides protection against 
errors not evenly distributed among data sets and an 
opportunity to alter the values of cos(i/I, <). 



1380 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 8, AUGUST 1991 

TABLE I1 
ORTHOGONALITY AND ERROR SENSITIVITY FOR T W O  DIFFERENT GROUPS OF SOURCE hMITrANCES 

Case cos ( V , ,  V z )  cos (vi, vJ COS (v,, v,) COS (v2, v,) COS (v,, v,) COS (v3, v,) 
1 0.97913 0.98398 0.99155 0.99193 0.95534 0.97627 
2 0.75964 0 0.75964 n 0.33081 n 

Error F,,, Error R ,  Error Ir,l Error < To 
Case (Percent) (Percent) (Percent) (Degree) 

1 3.57 71.86 19.75 4.78 
2 3.34 12.60 8.11 2.36 

Case 1 = source admittances as in [1, table 11 (nine sets). 
Case 2 = source admittances as in (14) (seven sets). 
The errors are obtained by perturbing the reflection coefficients with a vector of magnitude 0.02 

and a phase varying in steps of lo. 

The software can also perform an error sensitivity anal- 
ysis. In this analysis, the effect of errors is simulated by 
adding to a source reflection coefficient a vector of small 
magnitude (entered by the user) and varying phase 
(0-360" with phase steps entered by the user), while 
keeping the rest of source reflection coefficients constant. 
The noise parameters are fitted for each possible value of 
this perturbation vector and compared with their unper- 
turbed values. This process is repeated until all the source 
reflection coefficients have been perturbed and results in 
the determination of the perturbed noise parameters that 
deviate the most with respect to their unperturbed coun- 
terparts. The errors between these two sets of noise 
parameters give an indication of the sensitivity of the 
noise parameters to errors in the source reflection coeffi- 
cients. This perturbation analysis is done at each fre- 
quency point. 

VI. EXECUTION EXAMPLE 
The algorithm was tested with the measured data re- 

ported in [1, table 11. In that work, nine measurement sets 
were taken, but only four of them were used at a time to 
calculate the noise parameters. This was done for a 
number of combinations of four data sets. In each case, 
the noise parameters were obtained and an error function 
was calculated to assess the agreement between these 
noise parameters and the nine measurement sets. Proper 
noise parameter values are assumed when the value of 
such error function is small. By using sets 3, 4, 7, and 9, 
the following results were reported 111: 

F,,, = 0.4567 dB 

l / G O  = 38.2 R 

R,,, = 6.077 R 
l /& = 40.65 R .  

The same results were found with our software by consid- 
ering only the above sets in the determination of the noise 
parameters. The relative RMS error among the measure- 
ment sets, defined as 

with n (number of sets) = 9, was 8.8 x lo-'. 
Table I compares these results with others obtained 

with the computation approach presented here. First the 

noise parameters considering all the sets are determined. 
By progressive elimination of the set with highest relative 
error ((FmeSs - Fcalc)/Fme,,), a combination of four data 
sets is found whose error is lower than the one reported 
in [13. 

The results in Table I suggest that nonredundant noise 
parameter determination may give acceptable results pro- 
vided that all possible combinations (in this reported case 
(9,)= 126) are checked; however, this might be a slow 
technique and it is unlikely to perform better than those 
that minimize the overall error with noniterative tech- 
niques. 

The sensitivity of the noise parameters to errors in the 
source reflection coefficients has been compared for the 
source reflection coefficients shown in (14) and those 
used in [1, table 11. The noise figures in the latter were 
substituted for the errorless values that they would have 
with the noise parameters shown in the last row of Table 
I of this paper. Similarly, the theoretical noise figures 
were calculated for the group of reflection coefficients of 
(14). A sensitivity analysis was performed in each case 
following the procedure described in Section V. The 
magnitude of the perturbation error was 0.02 and its 
phase was changed in 1" steps. The maximum errors 
between the perturbed noise parameters and the unper- 
turbed ones are shown in Table 11, together with the 
associated c o s ( t ,  q )  factors. The group of reflection coef- 
ficients of (14) presents a much lower error sensitivity 
than the one in [l, table 11, even though the latter 
contains two extra measurement sets. The values of 
cos(c ,  q )  show a clear correlation between sensitivity and 
orthogonality of the vectors v,, v,, v,, and 6. 

VII. CONCLUSION 

Vector calculus concepts simplify the algorithm for 
noise parameter fitting and provide simple criteria for the 
selection of source admittances. Noise parameter fitting is 
made with an algorithm that approximates a vector whose 
components are the measured noise figures with a linear 
combination of vectors whose components depend on the 
source admittances. The coefficients of this linear combi- 
nation determine the noise parameters through simple 
equations. I11 conditioning occurs when two or more of 
the approximating vectors (or linear combinations of them) 
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tend to be aligned or when the uncertainty in a vector is 
comparable to its magnitude. Conversely, low sensitivity 
of the noise parameters to error in the source reflection 
coefficients is achieved when the components of the ap- 
proximating vectors do not change rapidly with small 
perturbations in the source reflection coefficients and 
when these vectors tend to be orthogonal. These two 
criteria help select the source admittances. A group of 
seven source admittances has been chosen following these 
rules. Its performance is compared with that of a group of 
nine admittances used in a previous work [ll. Computer- 
simulated errors in the reflection coefficients of the first 
group generate errors in the noise parameters that are 
much smaller than those obtained when the second group 
is used. 

APPENDIX I 
FORMULAS FOR c,  FROM CHOLESKY’S METHOD 

Intermediate Variables 

m l 1  = IVll 

m31= ~ 

( vdVl ) 
m41 = ~ 

( V*V, ) (V3Y ) 
m21 = ~ 

m11 m1 I m11 

APPENDIX I1 
ADMITTANCE LOCI THAT PRODUCE ILL 

CONDITIONING 

1 ( G, - & ) + P = q 

4 

G: + B: = a5 

B, = ah 

1 

m 4 3 =  [(‘4‘3)- m41m31 - m42m32]  
m 33 ACKNOWLEDGMENT 

The authors gratefully acknowledge the constant inspi- 
ration and great help from Dr. V. Sokolov throughout this 
work. Thanks are also due to Prof. J. Beyer of the 
University of Wisconsin for useful comments. 

m44 = ~ I K I ~  - m:l - mz2 - m t  

(VIF,) 1 
Y I = -  

m11 m22 

1 

m33 

Y 2  = - [ (6 F, ) - m21 Y I ]  ; 
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