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Abstract Weather forecasting is crucial to both the

demand and supply sides of electricity systems. Tempera-

ture has a great effect on the demand side. Moreover, solar

and wind are very promising renewable energy sources and

are, thus, important on the supply side. In this paper, a large

vector autoregression (VAR) model is built to forecast

three important weather variables for 61 cities around the

United States. The three variables at all locations are

modeled as response variables. Lag terms are used to

capture the relationship between observations in adjacent

periods and daily and annual seasonality are modeled to

consider the correlation between the same periods in

adjacent days and years. We estimate the VAR model with

16 years of hourly historical data and use two additional

years of data for out-of-sample validation. Forecasts of up

to six-hours-ahead are generated with good forecasting

performance based on mean absolute error, root mean

square error, relative root mean square error, and skill

scores. Our VAR model gives forecasts with skill scores

that are more than double the skill scores of other fore-

casting models in the literature. Our model also provides

forecasts that outperform persistence forecasts by between

6% and 80% in terms of mean absolute error. Our results

show that the proposed time series approach is appropriate

for very short-term forecasting of hourly solar radiation,

temperature, and wind speed.

Keywords Forecasting, Solar irradiance, Wind speed,

Temperature, Vector autoregression, Skill scores

1 Introduction

Electricity supply and demand are greatly influenced by

weather conditions. Temperature, wind speed, and solar

radiation are among the most influential factors. Temper-

ature has a great effect on energy use by individuals and,

thus, on the demand side of the electricity system. Heating

and cooling loads depend largely on ambient temperature.

Wind and solar generation are increasingly important as

renewable energy gains in popularity. Wind power is

growing at a rate of 30% annually, with a worldwide

installed capacity of 283 GW at the end of 2012. The

installed capacity of solar photovoltaic (PV) grew by 41%

in 2012, reaching 100 GW.

However, the limited predictability of wind speed and

solar radiation raises operational challenges for power

systems as the penetrations of these technologies increase.

Accurate very short-term forecasting (i.e., up to 12-hours-

ahead) of the two resources could improve operational

efficiency of power systems. Although it is not the focus of

this work, longer-term weather forecasting is also benefi-

cial for power system planning. For example, Maleki et al.

[1] employ Monte Carlo simulation of wind and solar
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conditions to optimally design a grid-independent hybrid

renewable energy system.

There are many works dealing with weather forecasting,

and Widén et al. [2] provide a comprehensive survey of

forecasting techniques in the literature. Some of these

works forecast temperature, frost, or related financial

derivatives. Others forecast solar radiation, cloud motion,

or solar production. Others still forecast wind speed and

wind production. Here we review some of the literature

that forecast temperature, solar radiation, or wind speed.

Most works focusing on temperature forecasting analyze

financial weather derivatives as the primary application.

Besides atmospheric methods, models attempting to cap-

ture these dynamics can be divided into two categories:

stochastic approaches (Monte Carlo simulation) and time-

series models.

There are numerous examples of the stochastic

approaches [3–5]. Alaton et al. [3] suggest a stochastic

process that describes the evolution of temperature for the

pricing of weather derivatives. Benth and Šaltyt _e-Benth [4]

model daily average temperature with a mean-reverting

Ornstein-Uhlenbeck process. Taylor and Buizza [5]

investigate temperature ensemble predictions and compare

them with time-series models.

There are also examples of time-series models [6, 7].

Campbell and Diebold [6] forecast daily average temper-

ature using a nonstructural time-series approach. Šaltyt _e-

Benth et al. [7] propose a stochastic model, which includes

trend, seasonality, and mean reversion. Oetomo and

Stevenson [8] review different temperature-forecasting

models, including those relying on autoregressive moving

average (ARMA) processes and Monte Carlo

simulation.

Numerical weather prediction (NWP) models are a

popular approach for solar radiation forecasting, and are

used to generate forecasts up to several days ahead. Most

short-term solar-radiation forecasts range from 30 minutes

to six hours ahead and rely on satellite-derived cloud-mo-

tion forecasts [9–12]. Akarslan et al. [13] incorporate

temperature, extraterrestrial irradiance, and derivatives of

these data with a multi-dimensional linear prediction filter

to improve solar forecasts. Alonso-Montesinos and Batlles

[14] forecast solar radiation up to three hours ahead under a

variety of atmospheric conditions, because such conditions

have a major influence on solar forecasting. Perez et al.

[15] use sky cover predictions as inputs when forecasting

solar radiation. Heinemann et al. [11] and Remund et al.

[16] note that comparing the forecasts of different methods

is useful in providing comparative statistics to validate a

forecasting model.

Wind speeds are typically forecasted several minutes to

several days ahead, with statistical methods being exten-

sively applied. For example, Erdem and Shi [17] use

ARMA-based approaches. Liu et al. [18] propose a novel

time-series technique that is based on the Taylor Kriging

model. Other works combine multiple numerical tech-

niques to produce ensemble wind forecasts [19–21]. Wang

and Xiong [22] develop a hybrid forecasting method based

on an ARMA process, outlier detection, and fuzzy time

series to forecast the daily wind speed in Taiwan. Jiang

et al. [21] propose a hybrid approach that employs a

Boosting algorithm to improve the forecasting performance

of a traditional ARMA model. They demonstrate the

effectiveness of this technique using wind-production data

from the east coast of Jiangsu Province, China. There are

also some artificial intelligence-based models in the liter-

ature—Li and Shi [23] apply artificial neural networks

(ANN) and Hong et al. [24] forecast wind power and wind

speed up to one-hour ahead with a multi-layer feed-forward

neural network (MFNN). Maleki et al. [25] take an ANN-

based approach to forecasting solar radiation, wind speed,

and temperature in optimizing the operations of a hybrid

solar- and wind-powered water-desalination system. Giebel

et al. [26] provide a detailed review of the techniques that

are available for wind-speed forecasting.

In this paper, we use time-series methods to model and

generate hourly temperature, wind-speed, and solar-radia-

tion forecasts at 61 locations in the United States. The

three weather variables at the 61 locations are response

variables in a vector autoregression (VAR) model. In

addition to estimating the model, we also conduct out-of-

sample validation to test the quality of the forecasts that

are produced. We compare our forecasting errors to those

that are reported for other techniques in the literature,

including persistence forecasts, showing that our method

performs as well or better.

In light of the existing literature on weather forecasting,

our work makes three contributions. First, we employ a

VAR model, which allows correlations between the three

different weather variables to be captured. This is impor-

tant, because there are likely important correlations

between temperature, wind speed, and solar radiation.

Second, the autoregressive structure of the VAR model

allows temporal autocorrelations, which are important, to

be captured. Finally, the structure of the VAR model also

allows time-lagged correlations between different locations

to be captured. For instance, weather conditions in one

location at time t may be correlated with weather condi-

tions at another location at time t0 6¼ t. These three features

or our proposed VAR model leads to its outperforming a

number of other forecasting techniques that are reported in

the literature.

The remainder of this paper is organized as follows. In

Sect. 2 we provide descriptive statistics for the three

weather variables. In Sect. 3 the model and estimation

methods are introduced. For a large model of this form, we
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try to find a proper number of residual terms to include to

ensure good forecasting performance while maintaining

reasonable model size and degrees of freedom. Thirty lags

for each time series are utilized and each equation is esti-

mated separately with either ordinary or weighted least

squares. In Sect. 4 we examine the forecasting perfor-

mance up to six-hours ahead and provide comparative

statistics with other models. Conclusions and suggestions

for future research are provided in Sect. 5.

2 Weather data

We use data from the National Solar Radiation Database

(NSRDB), which is produced by the National Renewable

Energy Laboratory, National Climatic Data Center, and

other partners. The NSRDB contains ground-based solar

and meteorological data for 1454 sites around the United

States. Nearly all of the solar data are modeled while

meteorological elements, including wind speed and dry

bulb temperature, are observed values. The hourly solar

data are modeled global horizontal irradiance (GHI), which

is the sum of modeled direct and diffuse solar radiation

received on a horizontal surface, during the 60-minute

period ending at the timestamp. Much of the data come

from a model developed by State University of New York

at Albany that uses Geostationary Operational Environ-

mental Satellite imagery to estimate solar radiation. The

dry-bulb temperature and wind speed are instantaneous

values observed at or near each hour following meteoro-

logical measurement practice. Wind speeds are measured

at 2-m heights. Wilcox [27] provides further details

regarding the NSRDB.

We model hourly wind speed, global solar radiation, and

dry bulb temperature at the 61 locations that are shown in

Fig. 1 in one single VAR model. The 61 locations are

chosen to provide roughly even coverage of the continental

United States. Moreover, locations that are close to popu-

lation centers and areas with good solar and wind resource

availability are also included in the dataset. Data covering

the years 1990–2008 are used, because these data are

complete and do not require any modification. Among the

18 years of hourly data, 16 years are used for model esti-

mation and two years are used for out-of-sample model

validation.

To get an overall feel for the data, Tables 1, 2, and 3

summarize some simple descriptive statistics of the wind

speed, solar radiation, and temperature data, respectively,

at six locations. Temperature data are reported in degrees

Kelvin in Table 3 and throughout this paper. This is

because we use relative root mean square error, which is

not defined for average observations equal to zero, as a

metric for model validation in Sect. 4.

Figures 2, 3, and 4 show wind speed, temperature, and

solar radiation, respectively, in Las Vegas, NM (not to be

Fig. 1 Sixty-one locations in the United States that are modeled

Table 1 Descriptive statistics of wind speed data (m/s)

Location Max Median Mean Std. Dev.

Bismarck, ND 22.70 3.60 4.26 2.77

Las Vegas, NM 28.80 4.30 4.74 2.96

Dallas, TX 19.60 4.10 4.59 2.50

Denver, CO 26.80 3.60 3.85 2.25

Chicago, IL 30.08 4.10 4.38 2.31

New York, NY 23.20 4.60 5.05 2.50
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confused with the popular gambling destination) from 2006

to 2008. These figures clearly show seasonal patterns for

the three weather variables.

3 Methodology

A time series approach is proposed in this work to

capture the characteristics of the three weather variables.

Our approach consists of three parts that are integrated with

one another into our overall model: (1) a linear trend, (2) a

seasonal component, which is represented by Fourier series

and Chebyshev polynomials, and (3) a VAR to model the

stochastic component of the time series. We detail these

three components below.

3.1 Trend

To check for the presence of a linear trend, we run a

simple linear regression of the weather data against hourly

time. Both the intercept and time parameters are significant

at the 1% level (although the estimated time parameter is

small in magnitude). Hence, a linear trend, though slight,

should be included in our model. We represent this trend

component by including a term of the form:

trendt ¼ b0 þ b1t

in our model.

Table 2 Descriptive statistics of global solar radiation data (Wh=m2)

Location Max Median Mean Std. Dev.

Bismarck, ND 975.00 6.00 158.92 242.14

Las Vegas, NM 1073.00 10.00 212.45 296.51

Dallas, TX 1047.00 7.00 194.97 279.82

Denver, CO 1036.00 8.00 181.05 262.89

Chicago, IL 998.00 5.00 155.47 237.70

New York, NY 996.00 6.00 160.79 242.82

Table 3 Descriptive statistics of dry bulb temperature data (K)

Location Min Max Median Mean Std. Dev.

Bismarck, ND 233.15 317.05 279.85 279.46 13.41

Las Vegas, NM 250.35 309.75 283.45 283.11 9.71

Dallas, TX 259.85 316.45 293.75 292.33 9.56

Denver, CO 247.55 311.15 283.15 283.03 10.70

Chicago, IL 243.75 312.55 283.75 283.44 11.28

New York, NY 253.75 312.55 286.45 286.38 9.77
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Fig. 2 Time series of wind speed in Las Vegas, NM from 2006 to
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Fig. 3 Time series of global solar radiation in Las Vegas, NM from
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3.2 Seasonality

As discussed in Sect. 2 and illustrated in Figs. 2, 3 and

4, there are strong seasonal variations in all three of the

weather variables. Because of the hourly time step in our

data, it is important to model both diurnal and seasonal

seasonality. Because the three weather variables exhibit

different diurnal patterns, we use different approaches to

represent their diurnal seasonality.

For wind and temperature, diurnal seasonality is repre-

sented by a Fourier series of the form:

daySeast ¼
X

P

p¼1

dc;p cos 2pp
dðtÞ

24

� �

þ ds;p sin 2pp
dðtÞ

24

� �� �

where P is the order of the Fourier series, dc;p and ds;p are

coefficients on the cosine and sine terms, respectively, and:

dðtÞ ¼ ðt mod 24Þ ð1Þ

converts t to hours of the day. Season-of-the-year

seasonality is similarly captured by a Fourier series of

the form:

annSeast ¼
X

P̂

p¼1

d̂c;p cos 2pp
d̂ðtÞ

365

 !"

þ d̂s;p sin 2pp
d̂ðtÞ

365

 !#
ð2Þ

where P̂ is the order of the Fourier series and d̂c;p and d̂s;p
are coefficients on the cosine and sine terms, respectively,

and:

d̂ðtÞ ¼
t

24

l m

ð3Þ

where �d e is the ceiling operator, which converts t into days

of the year.

Fourier series can produce a smooth seasonal pattern

with a significant reduction in the number of parameters to

be estimated as compared to dummy variables [6]. To find

the proper order of the Fourier series, we estimate models

with between first- and fifth-order terms. Examining

modeled and observed seasonality with different-ordered

Fourier series shows that a third-order series is sufficient to

capture the seasonality dynamics. We also compare the

forecasting performance of the model with third- and fifth-

order Fourier series, finding them to be similar. This

finding further suggests that third-order terms are suffi-

cient. Thus, we include third-order Fourier series for daily

and season-of-the-year seasonality of wind and

temperature.

The season-of-the-year seasonality of solar radiation is

given by the same Fourier series that is shown in (2). Daily

seasonality is modeled using second-order Chebyshev

polynomials, as opposed to Fourier series. To define the

Chebyshev polynomials [28] we first convert our inde-

pendent variable, x, where we assume x 2 ½a; b�, to the

normalized variable:

z ¼
2ðx� aÞ

b� a
� 1

By definition we have z 2 ½�1; 1�. We then define the

Chebyshev polynomials recursively as:

TjðzÞ ¼ 2zTj�1ðzÞ � Tj�2ðzÞ

where:

T0ðzÞ ¼ 1

and:

T1ðzÞ ¼ z

Thus, the second-order Chebyshev polynomial that is used

to model diurnal solar radiation seasonality is given by:

daySeast ¼ a0 þ a1
2ðxt � atÞ

bt � at
� 1

� �

þ a2 2
2ðxt � atÞ

bt � at
� 1

� �2

�1

( )

ð4Þ

We use Chebyshev polynomials, as opposed to Fourier

series, to model the diurnal seasonality for a number of

reasons. First, we only need to model solar radiation during

daytime hours, because there is (by definition) zero solar

radiation at night. Moreover, solar radiation follows a

predictable diurnal pattern, insomuch as it peaks in the

middle of the day. A second-order Chebyshev polynomial

is better able to produce this shape of a diurnal pattern than

a Fourier series is. This is confirmed by our model

estimates, because second-order Chebyshev polynomials

provide much better goodness-of-fit than Fourier series

do.

Based on these properties of the diurnal pattern, we

define:

xt ¼
dðtÞ � rd̂ðtÞ

sd̂ðtÞ � rd̂ðtÞ

where d(t) and d̂ðtÞ are as defined in (1) and (3), rd̂ðtÞ and

sd̂ðtÞ are the sunrise and sunset times, respectively, on the

day d̂ðtÞ, and at and bt are the minimum and maximum

values, respectively, that xt takes on day d̂ðtÞ. Sunrise and

sunset times are computed, based on the day of the year

and geographic coordinates of each location modeled,

using MATLAB functions that are developed by the U.S.

Geological Survey [29].
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3.3 VAR model

VAR is a statistical model that captures the linear

interdependencies among multiple time series. Hence, it is

beneficial in modeling temporal and spatial correlations

among wind speed, solar radiation, and temperature in

different locations. Each variable at each location has an

equation explaining its evolution based on time-lagged

values of all of the weather variables at all locations.

As a result, a VAR model is able to capture three

important types of autocorrelations in the data. The first is

temporal autocorrelation in an individual weather variable

(e.g., the time-t temperature at location nmay be correlated

with the time-t0 temperature at the same location, where

t0 6¼ t). The second is cross-correlation between individual

weather variables (e.g., the time-t temperature at loca-

tion n may be correlated with contemporaneous solar

radiation at the same location). The third is temporal

autocorrelation and cross-correlations between locations.

For instance, the time-t temperature at one location may be

correlated with contemporaneous or temporally-offset

temperature at another location. Along the same lines, the

VAR model can also capture correlations between vari-

ables, locations, and time (e.g., temperature at one location

may be correlated with time-lagged solar radiation at

another location). Thus, the VAR is highly flexible in terms

of relationships among the weather data that can be

captured.

VAR models assume that all of the response variables

are stationary. Thus, it is important to test our time-series

data for stationarity before fitting the proposed VAR

model. Augmented Dickey–Fuller (ADF) tests against

trend-stationary alternatives are applied to 16 years of

weather data for several of the locations modeled. The

ADF tests are conducted after removing the seasonal

components that are discussed in Sect. 3.2. Our results

show that the data are trend-stationary with p-values

smaller than 0.01 for all locations. Moreover, our model

includes a linear trend term which is statistically signifi-

cant, as discussed in Sect. 3.1. Inclusion of this term

removes any long-term trend from the response variables

(especially temperature). The results of the ADF tests and

the inclusion of the linear trend suggest that stationarity is

not an issue with our data. The ADF tests further favor the

trend-stationary alternative. This suggests that determinis-

tic trends, which are what we model through the linear and

seasonality terms that are discussed in Sects. 3.1 and 3.2,

are more appropriate than stochastic trends.

Modeling the three weather variables at 61 locations in a

single VAR gives 183 response variables in total. Given

the large model size, it is important to determine a suit-

able number of autoregressive lags and which time-lagged

values to include in the model. To do this, we regard one

week’s lag as the maximum number to be considered. We

estimate multiple VAR models with up to 168 lags using

two response variables only. After estimating several pairs,

we find that regardless of the distance between locations,

autoregressive lags of 1 and multiples of 24 are significant

for most location pairs. This lag structure give us the

spatial relationship among locations.

Akaike and Bayesian information criteria (AIC and

BIC) are further used to determine the lag structure. AIC

and BIC provide estimates of the information lost when a

given model is used to represent the process that generates

a given dataset. Smaller AIC and BIC values indicate a

better relative model fit to the data. Due to the extreme size

(and computational burden) of a 61-location VAR model,

AICs and BICs are calculated for single-location VAR

models. A single-location VAR model only has three

response variables, as opposed to 183 for a 61-location

VAR model. The single-location models are estimated

using two years of hourly weather data. The lag structures

that are estimated, which are listed in Table 4, are

VARð24Þ, VARð48Þ, VARð72Þ, VARð96Þ, VARð120Þ,

VARð168Þ, VARð1�24; 48; 72; 96; 120; 144; 168Þ.
Table 4 summarizes AIC and BIC values of these VAR

models using weather data from Los Angeles, CA.

The VARð1�24; 48; 72; 96; 120; 144; 168Þ has the

lowest BIC, which penalizes the number of parameters

more strongly than AIC. This result, favoring the

VARð1�24; 48; 72; 96; 120; 144; 168Þ structure, is

consistent across the locations that are modeled. Thus, to

fully capture the relationship between observations in

adjacent periods, we use a VAR model with lags one

through 24 and multiples of 24 up to 168 of the form:

Yt ¼ trendt þ daySeast þ annSeast þ
X

l2L

AlYt�l þ Ut

Table 4 AIC and BIC for VAR models for Los Angeles, CA with different lag structures

Criteria Lag structure

1�24 1�48 1�72 1�96 1�120 1�168 1�24; 48; 72; 96; 120; 144; 168

AIC 291856 290222 289888 289784 289708 289865 290991

BIC 293706 293751 295095 296669 298272 301786 293260
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where Yt ¼ ðy1;t; y2;t; . . .; y183;tÞ
T; is a 183� 1 vector of

hour-t response variables; L ¼ f1; 2; . . .; 24; 48; 72; 96;
120; 144; 168g is the set of lags modeled; Al are 183� 183

coefficient matrices for the lagged response variables; Ut ¼

ðu1;t; u2;t; . . .; u183;tÞ
T; is a 183� 1 vector of residuals.

Because our data set covers 16 years of hourly observa-

tions, we have t ¼ 1; 2; . . .; 140256.

3.4 Parameter estimation

A VAR model of the size that is proposed is difficult to

estimate as a whole system due to computational and

memory limitations of computers (the entire system con-

sists of more than 25 million equations). Because the

model is actually a seemingly unrelated regression system,

we solve this problem by estimating each equation sepa-

rately. The data that are used for estimation are hourly

observations from 1991 to 2006. The variance/covariance

matrix of the residuals is calculated after the estimation.

For wind and temperature, ordinary least squares is used

for parameter estimation. Weighted least squares is applied

for solar radiation. The weights assigned to night observa-

tions are zero whereas weights of one are given to daytime

observations. We do this because the VAR model is only

used to forecast solar radiation during the day—solar radi-

ation is fixed equal to zero during the night because, by

definition, there is no sunlight at night. By applying these

weights, the estimated coefficients are better for forecasting

solar radiation during the day because nighttime observa-

tions are ignored. As discussed in Sect. 3.2, we calculate

sunrise and sunset times for each location based on geo-

graphic coordinates and the day of the year.

Figure 5 shows the residuals of the three weather vari-

ables in Chicago, IL and Las Vegas, NM. It is clear that the

residuals display heteroskedasticity. However, Durbin’s

alternative test reveals no serial correlation in the residuals.

4 Forecasting and validation

To validate our model, we generate out-of-sample

forecasts and compare the performance of our VAR model

to a number of benchmark competitors. In doing so, we

consider forecasts that are up to six hours ahead and use

two years of out-of-sample data covering the years 2007

and 2008. As noted in Sect. 3.2, we fix solar radiation

forecasts equal to zero between sunset and sunrise on each

day. We further truncate any negative forecasts equal to

zero, because it is physically impossible for these values to

be negative. Evaluation of solar forecasts is restricted to

daylight hours, because nighttime solar radiation is not

challenging to forecast.

We use two types of benchmark competitors in this

validation. One compares the performance of our VAR

model to other forecasting techniques appearing in the

literature. This is a ‘more desirable’ benchmark competitor,

because it allows our model to be directly contrasted with

others. However, there are two issues with focusing

exclusively on direct comparisons to other models. First,

other models may be applied in different regions, where

forecasting some weather variables may be easier or more

difficult. For example, temperatures may be more

stable and easier to forecast in one region compared to

another. This could make one model appear better than

another, due solely to the underlying weather conditions

where the models are applied. Second, there may be dif-

ferences in the weather variables being forecasted. For

instance, our model relies on the NSRDB for wind speeds,

which are measured at a 2 m height. Other works may use

wind speeds at greater heights. Differences in wind speeds

and patterns at different heights may also confound dif-

ferences when comparing our model performance to other

methods that are reported in the literature.

For these two reasons, we also compare the performance

of our VAR model to persistence-type forecasting methods

(cf. Sect. 4.1 for further discussion). Comparisons of our

VAR model to persistence-type forecasts can partially

control for the effects of regional and weather-variable

differences in assessing the forecasting capability. More-

over, persistence-type methods are commonly used in

assessing forecasting performance [30].

Numerous metrics are used in the literature to evaluate

forecast accuracy. These include mean absolute error

(MAE), root mean square error (RMSE), and relative root

mean square error (RMSE%). We use all three of these

metrics in our validation. To define these metrics, we let Fi

and Oi denote forecast and observed values, respectively,

of a given variable in hour i and N the number of out-of-

sample forecasts used. MAE is then defined as:

1

N

X

N

i¼1

jFi � Oij

RMSE is defined as:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

ðFi � OiÞ
2

v

u

u

t

and RMSE% is defined as:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

P

N

i¼1

ðFi � OiÞ
2

s

1
N

P

N

i¼1

Oi
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In addition to these metrics, it is also common to

benchmark one forecasting model to another reference

model. Such a benchmark provides what is known as a skill

score. The benefit of a skill score is that it can mitigate

some of the issues that are associated with directly

comparing the forecasting performance of our model to

performance metrics that are reported in the literature (i.e.,

issues associated with the models being applied to different

regions or to different weather variables). A skill score is

typically defined in terms of a metric used to evaluate

forecast accuracy (e.g., MAE, RMSE, and RMSE%). The

metric used is referred to as the score. Let r represent the

score of the model being benchmarked and rr the score of

the reference model (to which the model being

benchmarked is compared). Also define rp as the score

of a perfect model (i.e., one with no forecast error). The

skill score is defined as:

r� rr

rp � rr

The skill score indicates the fractional improvement in the

score from using the benchmarked model relative to the

reference model. A perfect forecast would have a skill

score of 1. We use MAE and RMSE as scores and per-

sistence forecast models (cf. Sect. 4.1 for further discus-

sion) as the reference forecast in our analysis. We fix
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rp ¼ 0 with both the MAE and RMSE scores, reflecting

zero forecast error in the perfect model.

4.1 Persistence forecasts

We compare two kinds of persistence-type forecasting

methods to our VAR model. The persistence-type methods

are also used as reference models in computing skill scores.

The first persistence-type method is the simple persistence

model, which we denote the SP model. The SP model relies

upon the weather condition at the current time to forecast

future conditions. Letting Oi denote the hour-i observation,

the SP forecast of the hour-ðiþ DiÞ weather variable gen-

erated at hour i is defined as Oi. That is, the SP model

assumes that the weather variable has the same value at

hour (iþ Di) as it does at hour i. This persistence forecast

is applied to all three weather variables for comparison

with the VAR model.

We also use the clearness persistence forecast, which is

proposed by Marquez and Coimbra [30], which we denote

the CP model, to provide an additional benchmark for solar

irradiance forecasts that are generated by our VAR. The

CP model relies on extraterrestrial solar radiation and takes

the solar zenith angle as an input. Let hi represent the solar

zenith angle at hour i. We then define hour-i extraterrestrial

solar radiation as:

Si ¼ C cosðhiÞ

where C ¼ 1367W=m2 is the solar constant. The CP

forecast of the hour-ðiþ DiÞ solar irradiance is then given

by:

Oi �
SiþDi

Si

We use the hourly mean solar zenith angle that is recorded

in the NSRDB to generate our CP forecasts.

4.2 Results

Tables 5, 6, and 7 summarize the forecasting perfor-

mance of our VAR model in producing wind, solar, and

temperature forecasts, respectively, These comparisons are

made on the basis of the different metrics that are dis-

cussed above (i.e., MAE, RMSE, and RMSE%). The

table reports the average (among the 61 locations mod-

eled), minimum, and maximum MAE for the three weather

variables. Average RMSE and RMSE% are reported as

well.

The values that are reported in Tables 5, 6, and 7 are

compared with results that are reported in the literature for

other forecasting techniques in Sect. 4.3. As noted before,

there are important caveats in directly comparing

forecasting performance of our model to others in the

literature.

Tables 8 and 9 summarize the average MAE and

RMSE, respectively, of the VAR model in producing

temperature, solar-radiation, and wind-speed forecasts.

Table 5 Average, minimum, and maximum (among 61 locations

modeled) MAE, RMSE, and RMSE% of wind forecasts produced by

VAR model

Forecast horizon MAE (m/s) RMSE (m/s) RMSE% (%)

Mean Min Max Mean Mean

1-hour ahead 1.03 0.18 1.39 1.38 37.29

2-hours ahead 1.18 0.36 1.69 1.58 42.67

3-hours ahead 1.28 0.54 1.91 1.70 46.02

4-hours ahead 1.35 0.67 2.06 1.79 48.37

5-hours ahead 1.40 0.74 2.17 1.85 50.11

6-hours ahead 1.44 0.79 2.27 1.90 51.46

Table 6 Average, minimum, and maximum (among 61 locations

modeled) MAE, RMSE, and RMSE% of solar forecasts produced by

VAR model

Forecast

horizon
MAE ðWh=m2Þ RMSE ðWh=m2Þ RMSE%

(%)

Mean Min Max Mean Mean

1-hour

ahead

65.08 40.69 89.94 100.27 29.19

2-hours

ahead

79.84 49.12 107.12 117.58 34.23

3-hours

ahead

88.34 53.52 115.56 127.86 37.22

4-hours

ahead

93.37 55.99 120.94 134.33 39.10

5-hours

ahead

96.30 57.17 123.50 138.40 40.29

6-hours

ahead

97.99 57.75 124.86 140.81 40.99

Table 7 Average, minimum, and maximum (among 61 locations

modeled) MAE, RMSE, and RMSE% of temperature forecasts pro-

duced by VAR model

Forecast horizon MAE (K) RMSE (K) RMSE% (%)

Mean Min Max Mean Mean

1-hour ahead 0.68 0.31 1.06 0.95 0.33

2-hours ahead 0.98 0.63 1.41 1.34 0.47

3-hours ahead 1.22 0.87 1.77 1.65 0.58

4-hours ahead 1.42 0.98 2.10 1.89 0.66

5-hours ahead 1.57 1.05 2.41 2.09 0.73

6-hours ahead 1.70 1.10 2.67 2.25 0.79
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They also summarize the average MAE and RMSE of the

SP model. The tables show that the VAR outperforms the

SP model, by between 6% and 80%, especially when the

forecasting horizon increases. This is also illustrated in

Fig. 6, which shows the average RMSE of the different

models as a function of the forecasting horizon.

Tables 10 and 11 report skill scores on the basis of

MAE and RMSE, respectively, using the SP model as the

reference model. The skill scores obtained for our VAR

model are compared to skill scores that are reported in the

literature in Sect. 4.4.

4.3 Comparative studies

Our VAR model provides good forecasting performance

compared to other methods reported in the literature,

showing that our model can be used for providing very

short-term forecasts of temperature, wind speed, and solar

radiation. The average (across the 61 locations modeled)

performance of our model is comparable to other works.

Moreover, our model performs significantly better at some

locations, as indicated by the minimum values of the MAE

that are reported in Tables 5, 6, and 7. Tables 5, 6, and 7

also suggest that our VAR model provides relatively robust

weather forecasts up to six-hours ahead.

Table 8 Average (among 61 locations modeled) MAE of VAR and

SP models

Forecast horizon Temperature

(K)

Solar radiation

ðWh=m2Þ

Wind speed

(m/s)

VAR SP VAR SP VAR SP

1-hour ahead 0.68 0.99 65.08 118.39 1.03 1.10

2-hours ahead 0.98 1.77 79.84 204.93 1.18 1.36

3-hours ahead 1.22 2.50 88.34 287.09 1.28 1.56

4-hours ahead 1.42 3.18 93.37 364.19 1.35 1.73

5-hours ahead 1.57 3.80 96.30 434.93 1.40 1.88

6-hours ahead 1.70 4.36 97.99 498.09 1.44 2.01

Table 9 Average (among 61 locations modeled) RMSE of VAR and

persistence-type models

Forecast

horizon

Temperature

(K)
Solar radiation ðWh=m2Þ Wind speed

(m/s)

VAR SP VAR SP CP VAR SP

1-hour

ahead

0.95 1.40 100.27 152.15 109.07 1.38 1.55

2-hours

ahead

1.34 2.41 117.58 245.21 144.23 1.58 1.87

3-hours

ahead

1.65 3.34 127.86 331.84 186.62 1.70 2.13

4-hours

ahead

1.89 4.18 134.33 408.26 234.80 1.79 2.34

5-hours

ahead

2.09 4.93 138.40 472.87 284.11 1.85 2.52

6-hours

ahead

2.25 5.59 140.81 525.10 329.87 1.90 2.67
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Fig. 6 Average (among 61 locations modeled) RMSE of solar

radiation forecasts produced by VAR, CP, and SP models

Table 10 MAE-based skill scores of VAR model using SP model as

reference model

Forecast horizon Temperature Solar radiation Wind speed

1-hour ahead 0.31 0.43 0.06

2-hours ahead 0.45 0.61 0.13

3-hours ahead 0.51 0.69 0.18

4-hours ahead 0.55 0.74 0.22

5-hours ahead 0.59 0.78 0.26

6-hours ahead 0.61 0.80 0.28

Table 11 RMSE-based skill scores of VAR model using SP model as

reference model

Forecast horizon Temperature Solar radiation Wind speed

1-hour ahead 0.32 0.34 0.11

2-hours ahead 0.44 0.52 0.16

3-hours ahead 0.51 0.61 0.20

4-hours ahead 0.55 0.67 0.24

5-hours ahead 0.58 0.71 0.27

6-hours ahead 0.60 0.73 0.29
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Perez et al. [15] forecast wind speed using a blended

ensemble, which consists of the Weather Research and

Forecasting Single Column Model and time series forecasts

that are calibrated with Bayesian model averaging. The

MAEs of their hour-ahead wind speed forecasts are

between 0:9m=s and 0:95m=s during the day and are

between 1:01m=s and 1:07m=s overnight. Erdem and Shi

[17] compare four approaches that are based on an ARMA

method for hour-ahead wind forecasting. Their method has

MAEs ranging from 0:8m=s to 2:3m=s. Li and Shi [23]

present a comparison study on the application of different

ANN in hour-ahead wind-speed forecasting and measure

forecasting performance in terms of MAE and RMSE. The

best MAE and RMSE among the locations that they model

are 0:950m=s and 1:254m=s, respectively. Chen et al. [20]

produce wind-speed forecasts using a Gaussian process that

is applied to the outputs of an NWP model. Their hour-

ahead and five-hours-ahead forecasts have RMSEs of

1:8m=s and 2:2m=s, respectively. Hong et al. [24] produce

hour-ahead wind-speed forecasts using their cascaded

MFNN method with MAEs of 1.12 m/s in the summer,

1:22m=s in the winter, 1:13m=s in the spring, and

1:03m=s in the autumn.

More short-term solar radiation forecasting is done

using cloud motion derived from satellite images

[11, 12, 19]. Perez et al. [12] report an increase in the

RMSE% from 25% to 42% as the forecasting horizon goes

from hour-ahead to six-hours-ahead. Traiteur et al. [19]

compare their forecasts against single point ground-truth

stations and report RMSEs that vary from 68Wh=m2 to

120Wh=m2 for hour-ahead forecasts and 140Wh=m2 to

200Wh=m2 to six-hour-ahead forecasts. Erdem and Shi

[17] generate one-, two-, and three-hours-ahead solar

forecasts and report RMSE%s of 23%, 32%, and 38%,

respectively. Remund et al. [16] compare short-term global

radiation forecasts of three different models and find that

ECMWF (Global Model of the European Centre for

Medium-Range Weather Forecasts) is the best, with an

RMSE% that stays at about 38% for one- to five-hours-

ahead forecasting. The RMSEs of one- to three-hours-

ahead forecasts of global radiation that are produced by

Alonso-Montesinos and Batlles [14] are all greater than

100W=m2, except for those under clear-sky conditions.

Taylor and Buizza [5] compare point forecasts of daily

air temperature generated by six different models to actual

observations. The best MAE of an hour-ahead forecast that

they report is 0:9K, as opposed to an average of 0:68K that

is generated by our model. Smith et al. [31] develop an

ANN model to predict air temperature at hourly intervals

from one to twelve hours ahead. Their network is trained

using data from sites that are selected to encompass a broad

range of conditions. The MAEs of one- to six-hour-ahead

predictions, averaged from two evaluation datasets, are

0:53K, 0:87K, 1:15K, 1:37K, 1:59K, and 1:77K, which

are similar to the forecasting performance of our VAR

model.

4.4 Skill scores comparison

As discussed before, direct comparison of MAE or

RMSE among different datasets provides a limited picture

of forecasting performance. This is because forecasting

performance is governed, in part, by the local climate

conditions of the region in question. If one is comparing

forecasts from different regions, differences in MAE,

RMSE, and other scores may be confounded by the effects

of climate. Moreover, differences in the underlying

weather variables being forecasted can confound forecast-

ing performance. We use skill scores to allow for a more

clear comparison of our VAR model to other forecasting

methods that are reported in literature.

Perez et al. [12] forecast short-term hourly average GHI

one to six hours ahead. Their method uses cloud motion

derived from consecutive geostationary satellite images.

They compare the forecasts that are generated by their

model to one year of ground measurements. They also

report RMSEs for forecasts that are generated by their

model at seven locations in the United States and the

RMSEs of forecasts that are generated by a CP model.

Using these reported RMSEs, we compute skill scores for

their solar forecasts and compare them to the skill scores of

solar forecasts that are generated by our VAR model across

the 61 locations that we model (using a CP model as the

reference model in both cases). Figure 7 compares the
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Fig. 7 RMSE-based skill score of VAR model and model proposed

by Perez et al. [12] for solar radiation forecasting using CP model as

reference model
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RMSE-based skill score of our model to that proposed by

Perez et al. [12] for different forecast horizons. It is clear

that the two models perform similarly up to two hours

ahead. However, our model outperforms that of Perez et al.

[12] for longer forecasting horizons.

Marquez et al. [32] predict GHI at temporal horizons of

30, 60, 90, and 120minutes. They use a hybrid method that

combines information from processed satellite images with

ANN. They apply their forecasting method to data from

two distinct locations in the San Joaquin Valley. The raw

data are captured at 30-second intervals and are then

averaged to 30-minute intervals. Inman et al. [33] sum-

marize the forecast skill of these two ANN-based models

compared to a clear-sky-deviation persistence model.

These comparisons are summarized in Table 12. The input

variables for Models 1 and 2 are data from satellite images

and lagged GHI data, respectively. Although Marquez et al.

[32] and Inman et al. [33] examine forecasts at 30-minute

intervals, it is nevertheless helpful to compare the perfor-

mance of their model to our VAR using the same number

of forecasting steps. For our VAR model, the skill scores of

solar forecasts between one and four time steps ahead are

0.08, 0.18, 0.31, and 0.43. The one-time-step-ahead solar

forecasts generated by our VAR model have a lower skill

score than those produced by the model of Marquez et al.

[32]. However, our remaining solar forecasts have higher

skill scores than the corresponding forecasts that are pro-

duced by their model.

Abdel-Aal et al. [34] forecast mean hourly wind-speeds

at Dhahran, Saudi Arabia using group method of data

handling abductive networks. The overall MAE for one-

hour-ahead forecasts produced by their model is 0:85m=s.

Their method achieves an 8:2% MAE reduction compared

to hourly persistence forecasts, giving an MAE-based skill

score of 0.08. For six-hour-ahead forecasts, the MAE of

their method is 1:20m=s. This corresponds to an MAE-

based skill score of 0.15 using a day-to-day persistence

model as the reference model. Abdel-Aal et al. [34] con-

clude that the relative improvements of their model com-

pared to persistence forecasts exceed those reported for a

number of machine learning approaches that are discussed

in the literature. Table 13 reports the MAE-based skill

scores of wind speed forecasts produced by the method that

is proposed by Abdel-Aal et al. [34] and our VAR method,

using a persistence model as the reference model. The

tables show that our VAR model performs similarly for

one-hour-ahead forecasts but performs better for six-hour-

ahead forecasts.

Sfetsos [35] compares a number of approaches to fore-

cast mean hourly wind speed. These approaches include

traditional linear ARMA models, the feed forward and

recurrent neural networks, and more exotic approaches,

such as adaptive neuro-fuzzy inference systems and neural

logic networks. Sfetsos [35] identifies a neural logic net-

work that incorporates logic rules as having the least error

(among those surveyed), with an RMSE-based skill score

of about 0.05. Our VAR model has an RMSE-based skill

score for one-hour-ahead wind forecasts of 0.11 (cf.

Table 11), which is better than the performance of the

neural logic network model. Wang et al. [36] predict wind

speed using an ANN-based method and then adjust the

results according to long-term patterns. Their wind-speed

data are sampled every twenty minutes. Compared to an SP

model, the RMSE-based skill scores of their four- and six-

hour-ahead forecasts are 0.16 and 0.13, respectively, which

are lower than our VAR model. Fonte et al. [37] present an

ANN-based method to predict average hourly wind speed.

The RMSE-based skill score of one-hour-ahead forecasts

for their model is 0.1 using an SP model as the reference

model. The comparable skill score for our VAR model is

0.2.

5 Conclusion

In this paper, we propose a time series VAR model to

forecast temperature, solar radiation, and wind speed at

61 locations around the United States. The proposed VAR

model structure captures multiple types of temporal and

cross-sectional autocorrelations in and between weather

variables and locations. This is a novelty compared to other

forecasting techniques that are in the literature. The fore-

casting performance is good for all three weather variables.

Given the influence of the three weather variables on

Table 12 RMSE-based skill scores of solar radiation forecasts pro-

duced by ANN-based models of Marquez et al. [32] using CP model

as reference model reported by Inman et al. [33]

Forecast horizon Skill score

Model 1 Model 2

30-minutes ahead 0.12 0.16

60-minutes ahead 0.14 0.18

90-minutes ahead 0.23 0.23

120-minutes ahead 0.24 0.30

Table 13 MAE-based skill scores of wind speed forecasts produced

by model of Abdel-Aal et al. [34] and VAR model using SP model as

reference model

Forecast horizon Abdel-Aal et al. [34] model VAR model

1-hour ahead 0.08 0.06

6-hours ahead 0.15 0.28
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electricity systems, the model is able to provide proper

inputs for electricity-supply and -demand modeling.

The consideration of spatial relationship allows the

model to provide cromulent forecasts. The VAR model

proposed is also flexible in size. The forecasting perfor-

mance is similar when it is used to forecast the three

weather variables for fewer locations (results for these

more limited models are excluded for sake of brevity). We

also show that the VAR model performs similarly to or

better than other methods proposed in the literature,

including persistence forecasts.

Another important contribution of this paper is that it

shows that a time series approach can be used to provide

robust short-term solar radiation forecasts with good fore-

casting performance.

This work does suggest several areas of future research.

Although the VAR model proposed provides good fore-

casts, it may be redundant given its large size. Each

equation has about five thousands parameters to be esti-

mated. Not every one of these parameters contributes to the

overall forecast. Thus, it may be possible to further cus-

tomize the model and its autoregressive structure to better

exploit the correlations in the data. There may also be

additional exogenous variables that could be added to the

model to embiggen its performance. That being said, the

currently proposed model performs as well as or outper-

forms other models that are proposed in the literature. The

residuals also display heteroskedasticity, which weighted

or generalized least-squares techniques may reduce.
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[4] Benth FE, Šaltyt _e-Benth J (2005) Stochastic modelling of

temperature variations with a view towards weather derivatives.

Appl Math Finance 12(1):53–85

[5] Taylor JW, Buizza R (2004) A comparison of temperature

density forecasts from GARCH and atmospheric models.

J Forecast 23(5):337–355

[6] Campbell SD, Diebold FX (2005) Weather forecasting for

weather derivatives. J Am Stat Assoc 100(469):6–16
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