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A Vector Finite Element Method With the
High-Order Mixed-Interpolation-Type Triangular
Elements for Optical Waveguiding Problems

Masanori Koshiba, Senior Member, IEEE, Shinji Maruyama, and Koichi Hirayama, Member, IEEE

Abstraci—A vector finite element method with the high-order
mixed-interpolation-type triangular elements is described for the
analysis of optical waveguiding problems. It is a combination of
linear edge elements for transverse components of the electric
or magnetic field and quadratic nodal elements for the axial
one. The use of mixed-interpolation-type elements provides a
direct solution for propagation constants and avoids spurious so-
lutions. This approach can yield more accurate results compared
with the conventional approach using the lowest order mixed-
interpolation-type elements, namely, constant edge elements and
linear nodal elements. The accuracy of this approach is investi-
gated by calculating the propagation characteristics of optical rib
waveguides. Results obtained for both E* and EY polarizations
are validated using benchmark results produced by established
methods,

I. INTRODUCTION

IFFERENT types of the vector finite element method

(VFEM) have been developed for the analysis of opti-
cal waveguiding problems. Of the various formulations, the
VFEM using full vector electric or magnetic field is quite
suitable for a wide range of practical complicated problems
[1]-[13]. This approach has been widely used for various
optical waveguiding structures and recently has been utilized
as the optical waveguide solver of CAD packages [14]. The
most serious problem associated with this approach is the
appearance of spurious solutions. The penalty function method
[1}-[14] has been used to cure this problem, but in this
technique an arbitrary positive constant, called the penalty
coefficient, is involved and the accuracy of solutions depends
on its magnitude. Furthermore, in the full vectorial formulation
the propagation constant is first given as an input datum,
and subsequently the operating wavelength is obtained as a
solution. There is another serious problem in the full vectorial
approach. As was made clear by Birman [15] and Birman
and Solomyak [16], such an approach is quite difficult for
dealing with corner singularities and interface singularities
so long as the conventional Lagrange interpolation polyno-
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mial functions are used to approximate vector fields. More
recently, the VFEM with the lowest order mixed-interpolation-
type triangular elements, namely, constant edge elements for
transverse components of the electric or magnetic field and
linear nodal (conventional Lagrange [1]-[14]) elements for
the axial one, has been developed [17]-[19]. The use of
mixed-interpolation-type elements provides a direct solution
for propagation constants [18] and avoids spurious solutions
[17]-[19], but the accuracy of the finite element analysis using
the lowest order elements is, in general, insufficient.

In this paper, in order to provide more accurate numerical
solutions and faster convergence in applications, a vector finite
element method with the high-order mixed-interpolation-type
triangular elements is formulated in detail. It is a combination
of linear edge elements for transverse components of the
electric or magnetic field and quadratic nodal (conventional
Lagrange) elements for the axial one. This approach can
yield more accurate results compared with the conventional
approach using the lowest order elements. The accuracy of
this approach is investigated by calculating the propagation
characteristics of optical rib waveguides. Results obtained for
both E* and EY polarizations are validated using benchmark
results produced by established methods.

II. BASIC EQUATIONS

We consider an optical waveguide with an arbitrary cross
section {2 in the xy plane. With a time dependence of the
form exp(jwt) being implied, from Maxwell’s equations the
following vectorial wave equation is derived:

V x ([pIV x ¢) — k3[glp = 0 (1)
with
p. 0 0
[p] =10 Py 0 (2)
0 0 p
(g 0 0
g=(0 ¢ O (3)
0 0 gq.

where w is the angular frequency, ky is the free-space
wavenumber, ¢ denotes either the electric field E or the
magnetic field H, and the components of [p] and [g] are given

0733-8724/94504.00 © 1994 IEEE
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Fig. 1. Mixed-interpolation-type triangular element. (a) Constant edge and
linear nodal elements. (b) Linear edge and quadratic nodal elements.
by

Pz =Py =Pz = 1

ds =1

Ay = ﬂ;

¢ =n;, fop=E )

pz = 1/n}

py =1/ ﬂ*g

Py = 1 fng

Gz =qy=¢-=1,  foro=H. (5)
Here n,,n,,n, are the refractive indices in the z,y, z direc-

tions, respectively.
The functional for (1) is given by

F= ffi(vw (Y x §) - KBldo* - Sldedy 6

where the asterisk denotes complex conjugate.

[II. MIXED-INTERPOLATION-TYPE TRIANGULAR ELEMENTS

The electromagnetic fields have to be tangentially continu-
ous across material interfaces.

Fig. 1(a) shows the lowest order mixed-interpolation-type
triangular element [17]-[19] which is composed of a constant
edge element with three tangential unknowns, ¢;; to ¢3, and a
linear nodal (conventional Lagrange) element with three axial
unknowns, ¢,1 to ¢.3. Since both ¢; and ¢, are tangential to
material interfaces, the tangential continuity can be straight
forwardly imposed in the mixed-interpolation-type element
analysis. In this lowest order element the tangential component
é¢ = ¢ - £ is constant along each side of triangles, where ¢ is
the unit tangential vector whose direction is coincident with
that of ¢;, as shown in Fig. 1(a). It is for this reason that the
edge element in Fig. 1(a) is called the constant edge element.

TABLE I
Suapre FuNcTIiON VECTORS
Elements {U} {v} {N}
Constant edge 1 Ii(ys — v) 1 li{z — z3) L,
and linear i -v) | 32 Lz — z) L,
nodal elements - ¢
Is{yz — ) I3(z — z2) Ly
lhbyLy | k| ¥ EufBfe=1) ]
EgbgL-; fgCng LQ{ELE b 1}
Linear edge lsby La | s La(2Ls — 1)
and quadratic = =
nodal elements e | =lhibils e | =l Ly 4L, Ly
—laba L3 —lacaly 4La13
| —l3bsLy | | —lacaly | 4L3L,y

Fig. 1(b} shows the high-order mixed-interpolation-type
triangular element which is composed of a linear edge element
with six tangential unknowns defined at the three vertices of

the triangle, ¢:; to ¢, and a quadratic nodal {cenventmnal

Lagrange) element with six axial unknowns, ¢.1 0 ¢z In

this high-order element which, to our knowledge, has not been -

utilized so far, the tangential component ¢; along each side
of triangles is approximated to linear order. Hano [20] used
a linear edge element with six tangential unknowns defined

at the six nodal points within each element. This requires -
the users to select a suitable location for the nodal points. -
Lee et al. [21] proposed using the second-order Lagrange -

interpolation polynomial. This approach requires two facial -

unknowns in addition to six edge variables to provide a -
quadratic approximation of the normal component of the field -

along any two of the three sides of the triangle. The linear -
edge element was previously introduced by Brezzi ef al. [22]
and Durén [23] for two-dimensional problems, and by Néd€lec
[24] for three-dimensional problems. Its explicit form of shape
functions, however, is not given there.

IV. FINITE ELEMENT DISCRETIZATION

Dividing the waveguide cross section 2 into a number of
mixed-interpolation-type triangular elements, as shown in Fig. -
1 , we expand the transverse components ¢, ¢, and the amal
component ¢, in each element as

qu {U}T{‘rﬁt}e :
p= by | = | {V}{de}e (7) -
('f’z . j{N}T{sz}e

where {¢;}. is the edge variables in the transverse plane -
for each element, {¢.}. is the nodal axial-field vector for -
each element, and T denotes a transpose. The shape fun-::tmn
vectors for edge elements {U'} and {V'} and the ordinary shapa
function vector for nodal elements { N} are given in Table I,
where the area coordinates Ly (k = 1,2,3), the area of the

element A,, the length of the side between two corner points
(zk,yr) and (z;,u1), |lk|, and coefficients ay, bk, ci are given

by
Ll 1 ] !51 C1 1
Lg = 24 (153) bg Co i (8)
Irs las b3 c3] |y |
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TABLE 11
DERIVATIVES OF SHAPE FUNCTIONS
Elements {U,} {V;} {N,} {Ny}
Constant edge 1 = { I ! by 1 R
and linear =1, Iy by Cz
nodal elements 24 24, 24, 24,
—13 Ia bs C3
I]bzﬂi EICzbl [ 51(41-.-1 - 1} ] I L] {4L1 e 1)
labscy lzcaby ba(4Ly — 1) ca(dLg — 1)
Linear edge 1 L 1 Iscybs 1 ba(4Ls — 1) 1 cs{4L; — 1)
and quadratic 1A% VE: 24 7
nodal elements e | =libic; e | —lierbs 2 4(51-!52 " b'2Ll} = 4(¢1Lz +e2Ly)
—lgboy —lzephs 4(bg£r3 + bng} 4(62.53 -+ ﬂaLz}
—Iabacl i *Egl‘.‘gb: ) i 4{b3L1 + blLB} J L 4{¢3L1 -+ CILS} |
L i 1 Substituting (7) into (6) and using the same procedure as
24. =|z1 z2 3 (9) [18], we obtain the following final eigenvalue problem which
Uyr Y2 Ys gives a solution directly for the propagation constant 5 and

Zk——F{ Vb2 +c2, forb, <Oorb, =0cn,>0

Vi, +¢c2, forby, >0o0rb,=0.c,<0

(10)
Ak = ZiYm — Tmll (11)
bk =Y — Ym (12)
Ck = Lm — L. (13)

Here xr, i, are the Cartesian coordinates of the corner points 1
to 3 of the triangle, and the subscripts k,/, m always progress
modulo 3, i.e., cyclically around the three vertices of the
triangle. The shape function vectors for the constant edge
elements in Table I are very simple compared with those
presented in [18].

Noting that the unit tangential vector on the side between
two corner points (zx,yx) and (z, yi), &, is given by

tr = (em/lk )iz — [:bmﬁk)iy

with 2,4, being the unit vectors in the x,y directions,
respectively, it is confirmed from Table I that for the constant
edge elements, the following relations are satisfied:

Ptk = (Pakiz + Pyriy) - L (15)

where @zk, ¢y (K = 1,2, 3) are the values of ¢.,¢, at any
~ point on the side of length |I|, respectively, and thus the
tangential component ¢; is constant along each side of the
- triangle. For the linear edge elements, on the other hand, the
- following relations are satisfied:

(14)

b1 = (D218 + Py1dy) - 1 (16a)
Pr2 = (Pa2is + Py2iy) - Lo (16b)
$i3 = (Pa3tz + Pyaiy) - L3 (16c)
P4 = (Pu2is + Pyoiy) - 1 (16d)
D15 = (Paate + Pyaty) - 1o (16e)
16 = (Paric + Py1iy) 1 (16)

~ where @ui, dyr (K = 1,2,3) are the values of ¢, @, at the
~ vertex k of the triangle, respectively.

the corresponding field distribution and involves only the edge
variables in the transverse plane {¢;}:

[Ktt]{¢t} _ﬁz([Mtt] i [Kﬁz][Krz]_l[KﬂD{ét} = {{]} (17)
with
Kl = 3 [] 6k$0HOY + @B (VHVY?
- Pz{Uy}{Uy}T = pz{vm}{vm}T

+pAU HVe}" + p:AVa H{U, } T du dy
[Ktz] . [Kzt]T

¥ fo Py {UHN}T + po{VH{N,} ] dz dy

(18b)

(18a)

Kol = Y [ ek vy

= py{Na}{Na}" = pa{ Ny H{N,}"] dz dy (18¢)
el = 3 [ B AVHOY + o (V)T dway 019

where {0} is a null vector, {U,} = {U}/0y,{V,} =
H{V}/0x,{N.} = 0{N}/0z,{N,} = 8{N}/0y, and their
explicit forms are given in Table II. The integrals necessary to
construct element matrices are summarized in the Appendix.

Using (9) to (13) and the Appendix, we can easily construct
the matrices [Ktt]; {Ktz]g [Kzt]: {Kzz]a and [Mﬂ]+

V. NUMERICAL RESULTS

First, in order to check the accuracy of the VFEM with
mixed-interpolation-type triangular elements, a half-filled di-
electric waveguide as shown in Fig. 2(a) was considered,
where W = 2h. Fig. 2(b) shows a typical element division
profile,

Fig. 3 shows the relative error of the computed 3 for
the fundamental LSE;q mode in a rectangular waveguide
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Fig. 2. Dielectric-loaded waveguide. (a) Waveguide structure. (b) Element
division.
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Fig. 3. Convergence of finite element solutions for the fundamental LSE; ¢
mode in a dielectric-loaded waveguide.

inhomogeneously loaded with dielectric of refractive index
1.5, where ¢ = H,koh = 3.0, N; and N, are the numbers of
nodes for tangential and axial components, respectively, and
N, + N, corresponds to the number of degrees of freedom.
The relative error is given by

relative error = (Bexact — BFEM)/Bexact (20)
where Boxace and Brpy are the exact and computed values,
respectively. It is confirmed from Fig. 3 that the VFEM with
the high-order mixed-interpolation-type elements (linear edge
and quadratic nodal elements) can give more accurate results
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Fig. 4. Optical rib waveguide. (a) Waveguide structure. (b) Element division.

than the VFEM with the lowest order ones (constant edge and
linear nodal elements).

Next, the VFEM with mixed-interpolation-type triangular
elements was used to analyze a series of rib waveguides
[8], [25]-[27] having, in the notation of Fig. 4(a), rib width
W = 3um and superstrate depth t + i = 1pum, where A
is the etch depth. The outer slab depth varies from 0 pm to
0.9 p m. The refractive indices of the film, substrate, and cover
are ny = 3.44,n, = 3.40, and n, = 1.0, respectively. The
operating wavelength is 1.15 pm. Fig. 4(b) shows a typical
element division profile, where symmetry conditions are used
and only one-half of the waveguide cross section is subdivided
into linear edge and quadratic nodal elements.

Fig. 5 shows the normalized propagation constant b for the
fundamental E* (E?,) and the fundamental EY (EY;) modes,
where b is defined as

_ (B/ko)? —n

= 2
ng — ng

b

21

and ¢ = H and ¢ = E for the calculation of the Ef; and Ef
modes, respectively. The results of the VFEM with constant
edge and linear nodal elements, the VFEM combined with the
penalty function method [8], the effective index method (EIM)
[25], the scalar finite difference method (SFDM) [26], and the
scalar finite element method (SFEM) [27] are also given in Fig.
5. When using a VFEM with the high-order or the lowest-order
mixed-interpolation-type elements, the number of elements is
288 or 352, respectively.

The results of the VFEM with the high-order mixed-
interpolation-type elements for the Ef; mode agree excellently
with those of the VFEM combined with the penalty function
method [8]. Note that the penalty function method cannot
provide a direct solution for the propagation constant and that
an extra stage of iteration may be needed if the solution rs
required at a particular wavelength. The results of the penalty
function method have not been reported for the EY; modes.
It is readily seen from Fig. 5 that the accuracy of the VFEM
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Fig. 5. Normalized propagation constants for the E¥, and EY, modes of
the rib waveguide.

with the lowest-order mixed-interpolation-type elements is
not sufficient. It is also found that for both the Ef; and EY,
modes, the results of the VFEM with the high-order mixed-
interpolation-type elements agree well with those of the SFDM
- [26] and the SFEM [27]. For detailed comparison the results
~are summarized in Table IIL
Numerical computations for the test problems show the
" nonappearance of spurious solutions when both the high-order
~and the lowest-order mixed-interpolation-type elements are
“used without any other supplementary technique.

VI. CONCLUSION

- A vector finite element method for the analysis of optical
- waveguiding problems was formulated using the high-order
~ mixed-interpolation-type triangular elements in detail. It is a
- combination of linear edge elements for transverse components
~of the electric or magnetic field and quadratic nodal elements
for the axial one. This approach can yield more accurate
~results compared with the conventional approach using the
- lowest-order mixed-interpolation-type elements, namely, con-
. Stant edge elements and linear nodal elements. The accuracy of
- this approach was investigated by calculating the propagation
- characteristics of optical rib waveguides,
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TABLE 111
CoMPARISON OF NORMALIZED PROPAGATION CONSTANTS
FOR THE Ef, anp EY; MODES OF THE RiB WAVEGUIDE
! Ef, mode Ej; mode

(p4m) VFEM* VFEM*™ SFDM SFEM  VFEM® SFDM SFEM
0 0.2674  0.2088  0.2959 (0.2008 0.2596 0.2617 0.2559
0.1 0.3010  0.3038 0.2087 0.3023 0.2621 0.2639 0.2581
0.2 0.3048  0.3075 0.3029 0.3060 0.2650 0.2672 0.2616
0.3 0.3104 0.3125  0.3088 0.3110 0.2703 02718 0.26064
0.4 0.3183  0.3200 0.31656 0.3177 0.2773 0.2780 0.2731
0.5 0.3268 0.3275 0.3263 0.3265 0.2856  0.2862 (0.2818
0.6 (.3382  0.3399 0.3382 (.3369 0.2965 0.2964 0.2923
0.7 0.3522 0.3512  0.3525 0.3497 0.3083 0.3089 0.3055
0.8 0.3687  0.3674 0.3696 0.3656 0.3250 0.3245 0.3220
0.9 0.3905  0.3886  0.3905 0.3869 0.3462 0.3448 0.3444

VFEM* : VFEM with the high-order mixed-interpolation-type elements
VFEM* : VFEM combined with the penalty function method

This approach can be applied easily to the optical waveg-
uides including lossy and/or active media.

VII. APPENDIX

The integrals necessary to construct element matrices are
calculated as follows.

Constant Edge and Linear Nodal Elements:
[y asay
€ 1,3

1
= =il |Yit2Yi+2 — YelYiso + Yi+2)
4A,

1
+ ﬁ(yf+y§+y§+9y3)] )
f (VHV} dz dy
e ]
1
= Ehfj |:ﬂ.’.'i+2$j+2 = mc($i+2 + $j+2)
+ —l-lﬁ(ﬁ + :1:% + m% + 9333)} (A2)
e ij = ) ij-
| e dij
= - | [[ vy dody
L e 43
- _1_,5.5, (A3)
44,7
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[yt asay| =i 69

3 ij

1

/ (VHN, Y dzdy) = Ehﬂj(ic — Tit2) (A5)

dij

T [ A./6, fori=j
[/ LRI amay “{AE/lZ, forigy O

d 13

1
] {(NHN: Y dady| = bibs (A7)
dij
T -I 1
/ {NJHN,} dzdy| = Eﬂicj (A8)
dig
with
T = (:r:l +I2+I3)/3 (Ag}
Yo = (n+y2+y3)/3 (A10)

where [];; (ij = 11,12, - -+, 33) indicates the (¢, 7) component

of the matrix [-], and the subscnptﬁ i, j always progress modulo
3

Linear Edge and Quadratic Nodal Elements:

[ I {U}{U}Tmy}

"

ij

A,
?uiﬂj for ij = 11,22, 33, 44, 55, 66,
= ¢ 16,61,24,42,35,53 (All)
A
| 1o Wit for others
[ [yt dy}
= ‘E-j:
A, i
E‘U{ﬂj for ij = 11,22, 33,44, 55, 66,
s 16,61,24,42,35,53 (A12)
Ae
1 Vivis for others

“

[ f (U HU Y dzdy| = Actyitty; (A13)
e i ”

:
f (Vo H{Ve} T dady| = Actaive; (Al14)

dij

.
[/ {Uy}{vx}T dz dy = AelyiVzj (A15)

d i3

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 12, NO. 3, MARCH 1994

f (Vo }{0,}" dody

dij

/f (U}{N.)T do dy

U/ (UHN,}T dmdy-

1

d 25

#e

A
b -Eug((;'i}} + ZCE-)

= Aevxiuy j (iﬁl 16)

© (208 + CLY

+C® 440y (A1

+¢® +4c) (a18)

U/ {U}{N}szdy} —-—u (G g

[ [] Wiy i dy]
[ | T dy}
{ [[ ey drdy}
[ /f (V}HN,)* da dy]
{ /f (VHNYT dfﬂdgf}

+20% +4C)) (A19) :

-—u Cm + 20{2]

+C® +4C))  (A20)
us(CD + ¢
+208 + 403y 21
G“) C(z_}
xJ
+0® +40)) A2
v, (265 + CL2

+¢® 1408y (A)

ua(CH + 208

(3) (@)
+0% +4C,7) (A2

Ae 2
[ [ wHmyTas dy} = SuC) + 0
e 34

{ ff (VHN,)T da dy}
[ [y, }Tdmdy}

+209 +4057) (A25)

vy (O 4205

+0® +40l))  (A26)

+208%) 1+4057) (A2D)
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TABLE IV
VALUES OF 1, Uirinlvzi! AND Cﬂ} TO C‘!E‘:}

[

Ly

u_ i v G G R R o) o of o

L= I = - T - T T

l1be
laby
I3y
A EN
—laby
—i3bs

ez wgep wby 4by 0 0 —b; 4¢ 0 0 —-g

laeg wpep weby 0 4by 0 —=by 0 de; O —Cz

lge; usca wby 0 0 dby —=by O 0 4¢3 —cy
—lher uge; wby 4by d4b, 0 0 dey 4y O 0
—lgts uses wvsby 0 dby dby O 0 dez dey 0
~l3cs ugcs wghy dby 0 4by 0 deg 0 de; O

Common denominator : 1/2A4,

Ae
[/ {V}{Ny}Tdm dy = Eﬂﬁ(zcé? 3 05;]

6j
+CP +40)  (A28)

f {NHN}Y de dy

£

-6 -1 —1
“1 6 -1 0
_delel =1 6 =4 0 @
180 0 0 -4 32 16 16| A%
4 0 0 16 32 16

.0 -4 0 16 16 32

J] )T dzdy

o
|

= e

|

> O
I

ij
_ Ao () A1) | A A2 L A3 )
= ?(O“J‘i ij o C:J;i C-:E_f ic C:i:i ij )

A,
+ (050 + el + ool
+C007 + 00l + o)
Ao (1) A(4) | (@) A(8) | ~(3) ()
+ ?(Cm C:x:j 2 Oxi ij +C:::'i ij
+ G C + 06 + YD)
+ 4GP (A30)

[ e deay

Ao W L o@ @ | 43 3)
= Z(C 0,5 + G0 + ¢l
A
1;( !(r':j EE?] C;'::'Céj} GI‘E'?} é;]

(2) ~(3) (3) ~(1} (3) ~(2)
+ Gy’ Gy’ + Gy Gy’ + G 'CyY)

]

Ae (DA | A2 A | ~3) )
T3 (G Gy + Gy Gy + GGy
@) A1) | ~(4) A2) | (4 A3

+ A, 0P (A31)
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where [];; (ij = 11,12, .-+, 66) indicates the (4, §) component
of the matrix [-], and the values of w;, v;, uyi, vz, and OE} to
Cﬁ] are listed in Table IV.
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