
MATHEMATICS OF COMPUTATION
VOLUME 36, NUMBER 153
JANUARY 1981

A Vector Implementation of the Fast Fourier

Transform Algorithm*

By Bengt Fornberg

Abstract. A recent article in this journal by D. G. Korn and J. J. Lambiotte, Jr. discusses

implementations of the FFT algorithm on the CDC STAR-100 vector computer. The

'Pease'-algorithm is recommended in cases when only a few transforms can be performed

simultaneously. We show how the use of a different algorithm and of trigonometric tables

will lead to more than three times faster execution times. The times for large transforms

increase only about 39% if the tables are eliminated in order to save storage.

The recent article in this journal: "Computing the Fast Fourier Transform on a

vector computer" [1] discussed how to code FFTs efficiently for the CDC STAR-

100 computer. It was observed that different codes should be used dependent on

the number of transforms that can be performed simultaneously. Two algorithms,

referred to as the 'Pease' and the 'Stockham' algorithms, were recommended,

dependent upon whether this number was less than or greater than about ten. The

purpose of this note is to demonstrate an alternative to the 'Pease'-algorithm which

significantly improves the computational efficiency.

To obtain efficient codes on a vector machine like the CDC STAR-100, the

relative hardware speeds between different machine instructions must be taken into

account. Operating on long vectors, an addition takes half a machine cycle; a

multiply and a vector compress (which forms a shorter vector by removing selected

elements from a longer vector) each take one cycle per operation. However, a

merge (which forms one long vector by alternatively selecting consecutive elements

from two shorter vectors) requires three cycles for each operation. A machine cycle

takes 40 nanoseconds.

A variety of methods is available for coding the FFT algorithm. References

[2]-[6] describe some different ways. The algorithm by Glassman [5] appears

unique in that no data rearrangement by costly 'merges' is required at any step (nor

any initial or final data permutation). For a scalar code, this advantage is often

outweighed by the fact that an extra storage vector is required for temporary data.

However, on the CDC STAR-100, the elimination of the expensive 'merge'-opera-

tions with no increase in operation count gives superior efficiency.

The Glassman algorithm is described in [5] in terms of a matrix factorization. We

have implemented it in a very straightforward way in CDC STAR FORTRAN.

Received August 30, 1979; revised April 21, 1980.

A MS (MOS) subject classifications (1970). Primary 68A10; Secondary 42A68.

•This work was supported by Control Data Corporation and by D.O.E. (Office of Basic Energy

Sciences).

© 1981 American Mathematical Society

0025-571 8/81 /0000-0014/$01.75

189

190 BENGT FORNBERG

The first two matrix-vector multiplications (involving only matrix elements 1,-1, i,

and, -/) are performed separately using only additions and subtractions.

A transform over one set of N = 2M complex data points (with the real and

imaginary parts stored in two consecutive vectors) is easily seen to require

First factor:

4 add/subtract length N/2.

Second factor:

8 add/subtract length N/4.

Each following factor:

2 compress length N

2 multiply length N

6 add/subtract length N/2.

The total cost for each factor (after the first two) is therefore ten vector startups

and 5\N machine cycles.

We assume that all trigonometric constants have been tabulated in advance. This

gives the highest possible speed. Actual execution times are shown in Table 1 and

compared in Tables 2 and 3 with those for the 'Pease' and 'Stockham' algorithms as

implemented by Korn and Lambiotte, Jr.

Table 1

Time in milliseconds on the CDC STAR-100

Number of

simultaneous

transforms

1

2

5

10

20

50

100

16

.17

.18

.22

.29

32

.23

.28

.39

.61

64

.35

.43

.75

1.24

128

.52

.77

1.49

2.71

Transform size

256 512 1024

1.68

2.95

6.83

13.32

.91

1.46

3.11

5.97

3.34

6.29

14.98

29.64

.44 .96 2.22 5.03 11.46 25.94 58.34

.82 2.14 5.10 12.14 28.16 64.82 -

1.56 4.01 10.00 23.92 56.29 -

2048

7.03

13.50

32.90

65.33

4096

14.94

29.21

8192 16384

32.04 68.97

63.33 -

72.20 -

Table 2

Execution time for the 'Pease' algorithm divided

by the time for the present algorithm

Number of

simultaneous Transform size

transforms 64 128 256 512 1024

1 3.1 3.1 3.0 3.0 2.8

5 3.9 3.6 3.5 3.3 3.3

10 3.9 3.5 3.2 3.3 3.2

20 3.8 3.5 3.3 3.3 3.3

2048

2.6

3.2

3.2

THE FAST FOURIER TRANSFORM ALGORITHM 191

Table 3

Execution time for the 'Stockham' algorithm divided

by the time for the present algorithm

Number of

simultaneous Transform size

transforms 64 128 256 512 1024 2048

1 8.9 11.0 12.5 12.8 13.6 12.9

5 4.4 4.2 4.1 3.7 3.4 3.1

10 2.8 2.6 2.3 2.1 1.9 1.8

50 1.1 1.0 .9 .8

100 .8 .7 .7 -

The table size for one transform is 2Ar(log2 N — 2) words (plus another 1/32 of

this for control vectors). If tables of this size are not acceptable, computational

speed can be traded against reductions in the table size. With a penalty only in the

number of vector startups, but with none in the operation count, the size can be

reduced by a factor of four. An additional factor of two can be gained at the cost

of one 'vector reverse' operation of length 7V/4 costing iV machine cycles for each

matrix factor. If N is large, this represents an 18% increase in execution time. It is

also possible to eliminate tables entirely and recalculate the trigonometric data for

each transform. Repeated use of the relations

x I + cos x x l\
2=V-2- and Sin2=V_

fl — COS X
COS

adds another g N machine cycles for a total increase in cost of about 39%.

Department of Applied Mathematics

California Institute of Technology

Pasadena, California 91125

1. D. G. Korn & J. J. Lambiotte, Jr., "Computing the Fast Fourier Transform on a vector

computer," Math. Comp., v. 33, 1979, pp. 977-992.

2. J. W. Cooley & J. W. Tukey, "An algorithm for the machine calculation of complex Fourier

series," Math. Comp., v. 19, 1965, pp. 297-301.
3. W. T. Cochran et al., "What is the Fast Fourier Transform?," IEEE Trans. Audio Electroacoust.,

v. Au-15, 1967, pp. 45-55.
4. M. C. Pease, "An adaption of the Fast Fourier Transform for parallel processing," J. Assoc.

Comput. Mach., v. 15, 1968, pp. 253-264.
5. J. A. Glassman, "A generalization of the Fast Fourier Transform," IEEE Trans. Comput., v. C-19,

1970, pp. 106-116.
6. S. Winograd, "On computing the discrete Fourier transform," Proc. Nat. Acad. Sei. U.S.A., v. 74,

1976, pp. 1005-1006.

