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A Vector-Perturbation Technique for Near-Capacity
Multiantenna Multiuser Communication—Part I:
Channel Inversion and Regularization
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Abstract—Recent theoretical results describing the sum capacity
when using multiple antennas to communicate with multiple users
in a known rich scattering environment have not yet been followed
with practical transmission schemes that achieve this capacity. We
introduce a simple encoding algorithm that achieves near-capacity
at sum rates of tens of bits/channel use. The algorithm is a variation
on channel inversion that regularizes the inverse and uses a ‘“‘sphere
encoder” to perturb the data to reduce the power of the transmitted
signal. This paper is comprised of two parts. In this first part, we
show that while the sum capacity grows linearly with the minimum
of the number of antennas and users, the sum rate of channel in-
version does not. This poor performance is due to the large spread
in the singular values of the channel matrix. We introduce regu-
larization to improve the condition of the inverse and maximize
the signal-to-interference-plus-noise ratio at the receivers. Regu-
larization enables linear growth and works especially well at low
signal-to-noise ratios (SNRs), but as we show in the second part,
an additional step is needed to achieve near-capacity performance
at all SNRs.

Index Terms—Broadcast channel, channel inversion, multiple-
antenna multiple-user wireless, multiple-input multiple-output
(MIMO), regularization, spatial equalization.

I. INTRODUCTION

URRENT information-theoretic interest in multiple-input
multiple-output (MIMO) communications has shifted,
in part, away from point-to-point links and into multiuser
(or “broadcast”) links. Recent work by Caire and Shamai [1]
and others [2]-[5] has shown that many of the advantages of
using multiple antennas in a single-user scenario also translate
to large gains in multiuser scenarios. We investigate simple
techniques to achieve this multiuser gain.
It is well known that the point-to-point capacity of an
M -transmit, N-receive antenna link grows linearly in a
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Rayleigh fading environment, with the minimum of M and
N when the receiver knows the channel [6]. It is also shown
in [6] that K users, each with one antenna, can transmit to a
single receiver with M antennas, and the sum capacity (total
of transmission rates from all K users) grows linearly with
the minimum of M and K. It has been more recently shown
that this “uplink” transmission has a symmetric “downlink,”
where the M antennas are used to transmit to the K users; the
sum capacity grows linearly with min(M, K), provided the
transmitter and receivers all know the channel [2]-[4].

This particular use of multiple antennas to communicate
with many users simultaneously is especially appealing in
wireless local area network (WLAN) environments, such as
IEEE 802.11, and other time-division duplex (TDD) systems
where channel conditions can readily be learned by all par-
ties. Some multiantenna multiuser concepts have also been
applied to digital subscriber line (DSL) services, where many
twisted pairs of telephone lines are bundled together in one
cable, leading to interference between users. We are interested
primarily in designing a coding technique for the downlink,
where an access point (or basestation, or telephone switch) with
M antennas (or a bundle of M wires) wants to communicate
simultaneously with K users.

To date, schemes to achieve the sum capacity in these multi-
antenna links are largely information-theoretic, and rely on lay-
ered applications of “dirty-paper coding” and interference can-
cellation. Dirty-paper coding is first described for the Gaussian
interference channel by Costa in [7], where he finds that the ca-
pacity of an interference channel where the interfering signal is
known at the transmitter (but not necessarily under its control) is
the same as the channel with no interference. Costa envisioned
the interference as dirt and his signal as ink; his information-the-
oretic solution is not to oppose the dirt, but to use a code that
aligns itself as much as possible with the dirt. Costa builds on
work of Gelfand and Pinsker [8] for the case where channel side
information is known noncausally at the transmitter.

Several researchers have investigated practical techniques
to achieve the sum capacity promised by dirty-paper coding.
Nested lattices are used in [9] for the interference channel,
as well as the general multiuser channel. Trellis precoding
for the broadcast channel is presented in [10] and [11] as a
practical technique for the multiuser channel. These techniques
are generally in preliminary states of development. Dirty-paper
techniques are natural candidates for achieving sum capacity in
multiantenna multiuser links, because the transmitted signal for
one user can be viewed as interference for another user, and this
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interference is known to the transmitter (the transmitter knows
everybody’s channel). However, it has not been shown that
dirty-paper coding is necessary for achieving the majority of the
capacity. Unlike Costa’s original premise that the transmitter
knows the interference but cannot control it, in our scenario,
the transmitter creates all of the signals, and thereby can also
control the interference seen by all the users.

In this two-part paper, we show that a suitably modified
form of channel inversion can achieve near-sum-capacity per-
formance. Channel inversion is one of the simplest modulation
techniques for the multiuser channel [12]. This technique
multiplies the vector signal to be transmitted by the inverse of
the channel matrix; the result is an “equalized” channel to each
user. In this first part, we show that the sum rate for channel
inversion (sometimes also referred to as “zero-forcing (ZF)
beamforming” [1]) in its plain form is poor. We develop a regu-
larized form of inversion that improves performance, especially
at low signal-to-noise ratios (SNRs). We find the regularization
parameter that maximizes the signal-to-interference-plus-noise
ratio (SINR) at each receiver.

While regularization improves performance significantly,
especially at low SNRs, another step is still needed to obtain
near-capacity performance. The second part of this paper
[13] describes a vector-perturbation technique that is used in
conjunction with regularization to obtain good performance at
all SNRs.

II. MODEL

A general model for the forward link of a multiuser system
includes an access point with M transmit antennas and K users,
each with one receive antenna. The received data at the kth useris

M
Y = e + wi (M
m=1

where Ay, is the zero-mean unit-variance complex-Gaussian
fading gain between transmit antenna 7 and user k, z; is the
signal sent from the ¢th antenna, and wy, is standard complex-
Gaussian receiver noise seen at the kth user. The corresponding
vector equation is

y=Hx+w 2)
where y = [y1,...,yx|T, withx = [21,...,2y]T and w =
[wi,...,wk]T, and the K x M matrix H has hy, ,,, as elements.

We assume that Eww* = ¢2] and impose the power constraint
Elx|* = 1.

It is often convenient to construct an unnormalized signal s,
such that

s
x=—— 3)
val
where v = ||s||?. With this normalization, x obeys ||x||?> = 1.
We can, alternatively, let
s

Nioa @

In this case, E||x||> = 1. Equation (3) has the advantage that
E~ does not need to exist (we see later that in simple channel
inversion, Ey = o0), but has the disadvantage that the receivers
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generally need to know +, a channel- and data-dependent quan-
tity, to decode their data properly. In the normalization (4), the
receiver needs to know only E+, which is neither channel- nor
data-dependent. Although it is more practical to use (4) (when it
exists), we choose, for convenience, in most of our simulations
to use the instantaneous power normalization (3). A discussion
of the expected performance difference of using (3) versus (4)
may be found in Section V of Part II. Generally, we find that the
performance difference to be very small. Our simulations, there-
fore, represent the performance of either normalization, and we
assume that the receivers need to know only E-y.

We concentrate on the scenario where all K users are serviced
at the same data rate. We assume that H is constant for some in-
terval long enough for the transmitter to learn and use it until
it changes to a new value. We are interested in the behavior of
the system (2), its capacity, and algorithms to achieve capacity.
Many of our theoretical results are obtained for large M and K
limits, because the limiting results are often tractable. Neverthe-
less, we often consider M as small as four in our examples.

An important figure of merit for (2) is the ergodic sum ca-
pacity [2]-[4]

Csum = E sup log|Iy + pH*DH | 5)

DeA
where A is the set of K x K diagonal matrices with non-
negative elements, such that tr D = 1, and we define p =

1/02. The Hermitian transpose of H is denoted H*. We assume
the logarithm is base two, and therefore Cjy,, is measured in
bits/channel use. Although the total transmitted power is one,
the quantity p is directly related to, but is not necessarily the
same as, the SNR at each receiver. By simply choosing D =
(1/K)Ig, we can easily infer that Cs,,, grows linearly with
min(M, K). The expectation in (5) assumes that coding is done
over multiple intervals with independent H. The maximization
in (5) has no simple closed-form solution, so we compute (5) nu-
merically using a gradient-type method as needed, but we omit
the details from our discussion.

When K < M, the optimization over D € A given in (5)
gives nonzero energy to all K users when p is large enough.
This occurs because omitting any user by setting any diagonal
entry of D to zero gains signal energy for the remaining users
(which has a logarithmic effect) but loses a transmission degree
of freedom (DOF) (which has a more dramatic linear effect). On
the other hand, when K > M, we know from (5) that although
transmitting to at least M out of the K users simultaneously uses
all of our available DOFs, we may gain by judiciously choosing
a subset of fewer than all K users. We do not pursue the choice
of subset here; in the interests of fairness to all users, we as-
sume that a random choice of M users is made. In this paper,
we therefore generally consider the case K = M to be most
important.

In (2), the users all have the same average (but not instanta-
neous) received signal power, so our model assumes that the
users are similar distances from the access point and are not
in deep shadow fades. We also comment that the forward-link
problem we are considering needs a fundamentally different so-
lution than the reverse-link problem. In the reverse link, the K
users are transmitting simultaneously to the access point that is
now acting as the receiver. The reverse-link problem has readily
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available solutions. It is known that it is optimal for the K users
to use independent code books, subject to their own power con-
straints; the receiver can use many forms of decoding such as
successive nulling/canceling or maximum-likelihood with re-
duced complexity (using the sphere decoder [14]). We therefore
omit considerations of the reverse link in this paper.

III. CHANNEL INVERSION: SOME OLD AND NEW RESULTS

A. An Old Result (K < M)

Channel inversion, when done at the transmitter, iS some-
times known as ZF precoding, and entails deciding that the
symbols {uq,...,ux} seen at receivers 1,..., K should be
chosen independently, according to the independent data de-
sired forusers 1, . . . , K. We assume that the entries of the vector
u=[ug,...,u K]T are chosen from the same constellation with
El|ug|? = 1 (ensuring equal rate to the users), and the transmitter
then sets

s=H*(HH*) 'u. (6)

Generally, the inverse in (6) can be done only when
B = M/K > 1. In this case, the asymptotic (as M and
K go to infinity in this fixed ratio) sum rate of channel inver-
sion is [15]

i

log (L+p(B-1)). )

Let 8o = [o(p) be the B that maximizes (7). Then By > 1
is the optimum antenna/user ratio, and at this ratio, we can get
to within roughly 80% of Cj,, (5) computed at the same ratio
[15]. However, at other ratios, the difference between C.; and
Csum can become much more pronounced. For example, we see
thatas 3 — 1, we have Cy;/M — 0. The implication is that for
K = M, the sum rate of raw channel inversion does not increase
linearly with K (or M), while Cg,,, clearly does. We analyze
this shortcoming more closely in the next section.

B. A New Result (K = M)

When K = M, channel inversion (6) becomes simply
s = H 'u 8)

This equation can obviously be problematic when H is poorly
conditioned, and this problem manifests itself in the normaliza-
tion constant (3)

v =|s|? = u(HH*) "u. )

Let the entries of u be zero-mean unit-variance independent
complex-Gaussian random variables. Then  has density [15]

K-1
y

A4 )k (10)

p(y) = K
A preview of the poor performance of channel inversion can be
gleaned by observing that this density has infinite mean Evy =
Q.

The received data at the kth user is

Ut
Y = —= + wy. (11)

V4l
The receivers all know v, and we assume that K is large enough
so that any user’s data does not significantly affect the value
of . Then, conditioned on ~, the channel becomes a scaled
Gaussian channel; the capacity of this channel is

N[ P QA
Cor=Elog |1+ = :/d lo <1+—)K7.
* g( v) J T v/ (L)
0
(12)
A change of variables yields
T 1
) <) (% +1)

Using the large K approximation 1/((y/K +1)X+!) ~ ¢=7 in
(13) (we omit the technical details showing that this substitution
is valid in the integral) gives

T K
Ceir = /d’ylog (1 + ﬂ) e 7 = e%El <—> loge (14)
) K p
0
where

15)

Tt
- /dte_
. t

is the exponential integral. Since there are K users, each with
receive (11), the sum rate for channel inversion is approximated
for large K = M by

K
Cu~ Ke%El (—) log e bits per channel use. (16)
p

We finally use the approximation Ey(x) ~ e~ /x for large z
[16, p. 229] to conclude that

Blgléo C.i = plog e bits per channel use. a7
The unfortunate conclusion is that the sum rate for K = M
users with channel inversion is constant as a function of K, as
K — o0. This is in contrast to (5), which grows linearly with K.

An explanation for this poor capacity comes from looking at
the eigenvalues of (H H*)~! (or singular values of H~1). As
shown in [17, Th. 5.5], the smallest eigenvalue of H H* has
distribution p(\) = Ke~%*, which is an exponential distri-
bution. The largest eigenvalue of (HH*)~! therefore has the
distribution

(18)

which is sometimes called the inverse-gamma distribution with
parameter one. This density is zero at ;1 = 0, but decays as 1/ />
as o — oo for any K. Hence, it is a long-tailed distribution with
infinite mean.
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Fig. 1. Numerical comparison of the mean behavior of the four largest

eigenvalues of (HH*)~! as a function of K. The figure was generated using
5000 trials, and the eigenvalues are normalized by K. The largest eigenvalue
has an erratic plot because its true mean is infinite (for all /'), and it is clearly
orders of magnitude larger than the remaining eigenvalues.
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Fig. 2. Comparison of sum capacity (5) (dashed line) as a function of &A™ for
p = 10 dB, with the channel-inversion sum rate (/X times the value in (12))
(dash-dotted line). Rather than growing linearly, C'.; approaches the large-/{
limit (17), which is shown as a dotted line.

It turns out that the remaining K — 1 eigenvalues of (H H*)~!
are significantly better behaved. See Fig. 1 for a numerical com-
parison of the largest four eigenvalues of (HH*)~! as a func-
tion of K. In fact, the smallest eigenvalue of (HH*)~! con-
centrates (probabilistically) around 1/(4K) as K — oo [17].
Therefore, any approach to improve channel inversion must seek
to reduce the effects of the largest eigenvalue.

Fig. 2 shows the sum rate for channel inversion evaluated
numerically, the large- K expression (17) and the sum capacity
(5). We can see that as the number of transmit antennas and
users grow simultaneously, the sum rate for channel inversion
approaches p log e, while the sum capacity grows linearly.
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We assume that K = M in the remainder of the paper.

IV. REGULARIZING THE INVERSE

One technique often used to “regularize” an inverse is to add
a multiple of the identity matrix before inverting. For example,
instead of forming s using (8), we use

s=H"(HH* + alg) tu. (19)

After going through the channel, the unnormalized signal s
becomes

Hs = HH*(HH* + o) "u. (20)
The signal received at user k is no longer simply a scaled version
of uy, but also includes some “crosstalk” interference from the
remaining users.

To evaluate the amount of desired signal and interference, we
use the decomposition HH* = QAQ* for nonnegative diag-
onal eigenvalue matrix A and unitary eigenvector matrix @ to
find

Hs= Q@ e
s=Q——Q"u.
A+ al
(We use the convention that commuting matrices can be treated
as scalars, and therefore, may appear in fractional form.) The
(unnormalized) signal and interference received by user k is the
kth entry of Hs. Using (21), we may find this entry

A1 Ak
Hsl, = . _AK
[Hs]» LR worm WKy o
4i q;(,1 U1
x| o : (22)
qi K I i | LUK

where gy, ¢ is the (k, £)th entry of the matrix Q). The (unnormal-
ized) desired signal term in (22) is

K
Z,\)\( |aw,el® | .
oMt

All of the remaining terms in (22) involving u,(¢{ # k) are
interference.
The kth user models its (normalized) received signal as

1 Koo

¥4 2 /
U = | —(= Qk ¢ U + w
<\/7> ;/\e-i-a' g k

where the Gaussian wj, combines the additive receiver noise wy,
and the interference. The receiver makes its decisions about the
transmitted signal by forming the likelihood function from (24).

The amount of interference is determined by a > 0; when
a = 0, we return to (8). It is clear that, no matter how poorly
conditioned H is, the inverse in (19) can be made to behave as
well as desired by choosing « large enough. We examine the
optimum value of « to choose. The amount of interference in-
creases with «;, so one possible metric for choosing « is to max-
imize the SINR in (24). We compute the SINR by computing
the expected power of the desired signal and dividing it by the
expected power of the interference plus noise.

(23)

(24)
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The noise power at each receiver is given by o2. From (2),
the signal (without noise) observed at the K receivers is Hx =
(1//Ev)Hs (we assume that the average power normalization
(4) is used). We need to examine the relative strengths of the
desired signal and interference at each receiver; we first examine
the behavior of v = ||s||>. We use the eigenvalue/eigenvector
decomposition of HH* to obtain

*(HH* +ol) *HH*(HH* 4+ o) !
=tr [ QAQ* + ol)1QAQ* (QAQ* +ozI) uu*]
=tr [Q( A—I—aI 1Q*QAQ*Q(A + al)'Q*uu *]
[ Atalp? o Q}
We assume that the data w1, ..., ux are independently chosen

with zero mean and unit variance. Taking the conditional expec-
tation of vy with respect to u and using Euu* = I, we get

We find it convenient to take expectations only with respect to
u and ) when evaluating the quantities needed to compute the
SINR. The expectations with respect to A are generally difficult.
We show later that, fortunately, the final result does not require
us to take the expectation with respect to A.

From (21), the total expected power in Hs is

2
A )Q*u

E~ =tr (25)

E||Hs||* =Eu*Q <A+ =7

&
(Mt a)?

We again avoid the expectation with respect to A. The desired
signal for the kth user is given by (23). To find the expected
power of the desired signal, we compute the expectation over
Q@ in Appendix A, using the fact that @) and A are statistically

independent [17]
% 2
(Z Iqul2)
¢
2 K A\ 2
‘
.27
K-l-l (Z)\H-Oé) +;<)\ﬁ+a> @7

This is the unnormalized power of the desired signal at the
receiver. Observe that this power is one when a = 0 (plain
channel inversion). The normalized power divides (27) by E~.

The total signal and interference power at any receiver is
1/Kth of the total (unnormalized) power appearing at all the

(26)

Desired =

receivers (26), whichis (1/K) Y0, A2/(Ag+a)?. Hence, sub-
tracting off the power of the desired signal (27) leaves the power
of the interference u,(¢ # k) at receiver k as

ii MO\ 1
K A+ K(K-i—l)

JE) B ()] w

This is the unnormalized power of the interference at each re-
ceiver. Observe that this power is zero when o = 0. The nor-
malized power divides (28) by E-~.

Putting (27) and (28) together, normalized by v as given by
(25), yields (29), shown at the bottom of the page. Because of
the symmetry in the distribution of H, (29) is not a function of
the user k. Rather than optimize (29) directly over a, we prefer
to optimize a simpler large- K approximation to (29).

The large-K approximation follows from removing the
second summation in the numerator of (29), which is dwarfed
by the first summation, and replacing K (K + 1) by K2. We
then obtain

SINR =

Undesired =

(Z[ 1 Aé+a>2

o2K? Zz ) (,\[+a)2+KZl 1 (m) (Ze 1 >\[+Oé)2.
(30)

Remarkably, the large- K approximation (30) is maximized for
a > 0at appy = Ko? = K/p, independently of A1, ..., \k.
For a proof, consult Appendix B. Simulations indicate that (30)
is close to the true SINR, for even small values of K. We see
that ap¢ i proportional to K and the noise variance. As we
decrease the noise variance at each receiver, thereby increasing
the SNR, aopy — 0.

The above analysis applies to any eigenvalue distribution of
the channel matrix H. Our analysis only uses the fact that the
eigenvector matrix () has the so-called isotropic distribution,
whose defining characteristic is that pre- or postmultiplying )
by any unitary matrix does not affect its distribution (see [18]
and references therein). Physically, this means that the channel
is not affected by arbitrary rotations, and that paths between
the antennas and the users are statistically equivalent. It is this
feature that allows us to examine the SINR of any user and claim
that this analysis applies equally to the remaining users. Our
analysis, therefore, applies to other channel distributions with
this rotational-invariance property, and not just a Gaussian H.

We mention that the reviewers of our manuscript made a
connection between our SINR analysis and a minimum mean-

SINR =

(Ef:l )\jla) +Zz 1 ()\nga)z

?K(K

)Zz 10y +a)2+KZe 1( £+a)

(29)
(T, 2)
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Results for M=K=4 and M=K=10, QPSK.
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Fig. 3. Comparison of the SEP for plain (8) and regularized (19) channel
inversion for X' = 4 and K’ = 10. The raw error rate as a function of /X worsens
for plain channel inversion, but improves (slightly) for regularized inversion.

square error (MMSE) analysis available in [19] (and references
therein). The MMSE cost function is

arg min (P, ) = Bllu - /Byl 31)
expressing the square difference between the data vector u and
a scaled version of what is received y (as a vector). It is assumed
that the transmitted signal is Pu and has a unit-energy constraint
E||Pul|?> = 1. As shown in [19], the optimizing P of (31) is
Punise = H*(HH* + ayivsel k) ™1, where anvivse = K/p.
Thus, despite the difference in our per-user cost function (29)
and the vector MMSE cost function (31), the optimizing a’s are

very similar. However, they are not equal, except in the large- K
limit.

V. PERFORMANCE, CAPACITY, AND DISCUSSION

Three figures show the trends in performance. Fig. 3 shows
the symbol-error probability (SEP) for plain and regularized
channel inversion as a function of p for K = 4 and K = 10.
The curves indicate that while the performance of plain channel
inversion worsens with K, the performance of regularized in-
version improves slightly with K.

A comparison of the sum capacity and sum rates for regular-
ized and plain channel inversion as a function of K is shown
in Fig. 4. The sum rate for regularized channel inversion is ob-
tained using a numerical estimate of the SINR with « = K/p

Chreg = K log(1 4+ SINR). (32)
Unlike channel inversion, the sum rate of regularized inversion
has linear growth with K, although its slope is different from
the sum capacity.

Fig. 5 shows that for a fixed K, as p — oo(0? — 0), the sum
rate of regularized inversion approaches plain inversion Creg —
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Fig. 4. Comparison of the sum capacity (5) (dashed line) as a function of K
(where M = K) for p = 10 dB, with the regularized channel-inversion sum
rate (32) (solid line) and the plain channel-inversion sum rate (dash-dotted line).
Unlike plain channel inversion, regularized inversion has linear growth with K.
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Fig. 5. Comparison of sum capacity (5) (dashed line) as a function of p for
K = M = 10, with the regularized channel-inversion sum rate (32) (solid
line) and the plain channel-inversion sum rate (dash-dotted line). At low power,
regularized inversion approaches Cy.m, While for high p, it approaches C.;.

C.i. Thus, we still do not have a modulation technique which is
close to capacity for all p and K.

These three figures show that although regularization is a big
improvement over plain inversion, a gap to capacity remains,
especially at high SNR. This gap is dramatically reduced in the
next paper [13], which shows how to combine regularization
with a carefully chosen integer vector perturbation of the data
to be transmitted to reduce the power of the transmitted signal
dramatically.
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APPENDIX

A. Expectation Over Q of (27)

‘We begin with calculations involving the elements of any row
of Q. Let ¢ = qi¢ and ¢ = g ¢ for any £/ # £. We use the
following probability densities from [18]:

p(q) = KW_ ! (1—1g)" 7%, o<lg?<1
p(g,q) = W (1—=1al* =147,

0<lg*+1¢'f <1

These distributions are with respect to the complex plane.
Let » = |q> and 7/ = |q¢'|?. Then the transformation
q = /r(cosf + isin ) yields

pir)=(K -1 -r)F2 0<r<1 (33
plr,r') = (K = 1)(K = 2)(1 —r — ")k
0<r+r <1 (34)
Then, (33) implies
/ 2
4 _ -2 _
E|q|* = Er? /drr (1—-rE-2= KK 1)

’ (35)

where we omit the integration by parts calculations. Equation
(34) implies that

=Err/

1 1-
Z(K—l)(K—Z)/dTr/dr'r (1—r—r)K=3
0 0

1
- K(K+1)'

Elq/*|q'|?

(36)

Using (35) and (36), we may compute the expectation in (27)

K 2

A |qk.e|®
p /\[+Ol ’
K Y
Z (M +

2
) et
«Q
/=1

A
+ Z v+ @) +

£,m=1
(#m

)qu,z|2lqk,m|2

K 2
_ 2 T e N 1
KK +1) =\ Neta K(K +1)
K

>

£,m=1
t£m

)\[)\m
Ao+ a)( A + )

2

1 A LAV
¢ ¢
K(K—|—1) ;)\g-i-a +;</\g+0é>

B. Proof That SINR is Maximized When o = Ko

We find the stationary points by setting the derivative equal
to zero

" (Z)
Yoy K (25) - (Sxe)

where the sum is over A1, ..., Ag. After some algebraic manip-
ulations, the expression above becomes

AT, A A2
0=> %ta {” K). Ot a)? 2. ()\+a)3}
A ) A A\
2 orar VK et (M—a)
, A A2
0=0 KZ/\-i-oz A—i—a Z/\+ozZ (A a)3

oK (Z ﬁ)z‘z ey 2 <Aia>2'

1. For

We note that this equality is true for any o when K =
K > 1, further manipulations convert this equation into

2_ @)

0— Z MAe(Ax — Xo)2(Ko

= (M taPeta)
Hence, provided that A1, . .., Ax are not all equal, the derivative
is zero if and only if & = Ko?2. That this stationary point is a
maximum follows from checking the second derivative, which,
in the interest of saving paper, we do not do here.
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