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Abstract—Recent theoretical results describing the sum-ca-
pacity when using multiple antennas to communicate with
multiple users in a known rich scattering environment have not
yet been followed with practical transmission schemes that achieve
this capacity. We introduce a simple encoding algorithm that
achieves near-capacity at sum-rates of tens of bits/channel use.
The algorithm is a variation on channel inversion that regularizes
the inverse and uses a “sphere encoder” to perturb the data to
reduce the energy of the transmitted signal. The paper is com-
prised of two parts. In this second part, we show that, after the
regularization of the channel inverse introduced in the first part,
a certain perturbation of the data using a “sphere encoder” can
be chosen to further reduce the energy of the transmitted signal.
The performance difference with and without this perturbation is
shown to be dramatic. With the perturbation, we achieve excellent
performance at all signal-to-noise ratios. The results of both
uncoded and turbo-coded simulations are presented.

Index Terms—Broadcast channel, dirty-paper coding, multiple-
antenna multiple-user wireless, multiple-input multiple-output
(MIMO), spatial equalization, sphere encoder, Tomlinson–
Harashima precoding.

I. INTRODUCTION

WHEN an access point with multiple antennas is used to
communicate with many users, each with one antenna,

the communication problem is complicated by the fact that
each user must decode his/her signal independently from the
remaining users. With antennas at the access point and
users, simple inversion of the square matrix channel at the trans-
mitter allows independent signals to be directed to the various
users. However, in the first part of this paper [1], we show that
plain channel inversion performs poorly at all signal-to-noise
ratios (SNRs) and for any number of users. Regularization of
the channel, where a scaled identity matrix is added before the
inverse is taken, improves performance substantially, but still
leaves a gap to capacity.
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In this second part of the paper, instead of further modifying
the inverse, we modify the data that is transmitted by judiciously
adding an integer vector offset. An important data-modifying
technique originally developed for the intersymbol interference
(ISI) channel is Tomlinson–Harashima (TH) precoding [2], [3].
This technique applies a scalar integer offset at the transmitter
that allows cancellation of the interference after application of
a modulo function at the receiver. Other researchers have re-
cently examined the information-theoretic aspects [4] of TH
precoding, applied it to space–time coding [5], and used it to
overcome interchip interference in code-division multiple ac-
cess (CDMA) [6], [7].

We show that a technique related to both TH precoding and
channel inversion can achieve near-sum-capacity even at high
SNR, with each user receiving th of the sum-capacity. Our
technique does not require explicit dirty-paper techniques. In
fact, while the technique requires the transmitter to know the
channel, each receiver needs to know only a single prearranged
scalar related to the SNR of the channel.

Our method requires the joint selection of a vector perturba-
tion of the signal to be transmitted to all the receivers. We show
that sequential application of standard scalar TH precoding to
choose this offset does not perform nearly as well as our joint se-
lection. The perturbation algorithm has the simple interpretation
of placing the largest signal components along the smallest sin-
gular values of the inverse channel, and the smallest signal com-
ponents along the largest singular values of the inverse channel.
In general, techniques such as the Fincke–Pohst algorithm [8],
[9] (which in our context, we label “sphere encoding”), can aid
in selecting the desired vector perturbation. In all cases, how-
ever, the processing at the receiver is simple.

II. MODEL SUMMARY

We briefly review the model introduced in [1]. A general
model for the forward link of a multiuser system includes an
access point with transmit antennas and users, each with
one receive antenna. The received data at the users can be
written using a vector equation

(1)

where contains the data received at each
user. The transmitted signal is , which contains an element for
each of the transmit antennas, the receiver noise vector has
an element for each user, and the matrix has as
elements, indicating the channel gain between transmit antenna
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and user . The power constraint is imposed,
with . We construct an unnormalized signal
such that

or (2)

where . The ergodic sum-capacity for the model (1) is

(3)

where is the identity matrix, is the set of
diagonal matrices with nonnegative elements that sum to one

, and we define . The Hermitian transpose
of is indicated by . In this paper, we consider only the case

; other cases are considered in Part I of this paper [1]
and elsewhere [10].

III. PERTURBING THE DATA

In [1], we argue that many of the problems with inverting the
channel when are due to the normalization constant

, which is often very large because of the large singular values
in the inverse of the channel matrix . One way to help is
to regularize its inverse, as described in [1]. Another way is to
make sure the transmitted data does not lie along the singular
vectors associated with the large singular values of . In this
section, we present a way to “perturb” the data in a data-de-
pendent way (unknown to the receivers) so that the data vector
is approximately orthogonal to the right singular vectors asso-
ciated with the large singular values. Our goal, therefore, is to
form a from the data vector such that

(4)

has norm (much) smaller than , but the entries of can
still be decoded individually at the receivers.

We cannot, in general, perturb by an arbitrary complex
vector, because this perturbation is not known to the receivers
and would, therefore, cause decoding errors. We can, however,
use an idea derived from TH precoding [2], [3], where we allow
each element of to be perturbed by an integer. In the simplest
case, we set

(5)

where is a positive real number and is a -dimensional
complex vector , where and are integers. The scalar

is computed as before, and the transmitted signal is

(6)

The scalar is chosen large enough so that the receivers may
apply the modulo function

(7)

where the function is the largest integer less than or equal to
its argument. The function (7) removes the effect of the integer
multiple of . (The function is applied separately to the
real and imaginary components of a complex .) We have more
to say about the choice of shortly. After passing through the

channel , the transmitted signal in (6) appears at receiver
as

If we ignore for the moment the effect of , and assume that
, then

and we recover the transmitted symbol. The receivers know ,
and therefore, may compensate for by dividing by .
As we note in Section II, the transmitter may instead divide by

; Fig. 6 shows that the performance difference is not sig-
nificant. Our other figures assume that the transmitter divides by

. An error is made at the receiver if the additive channel noise
pushes the received signal across the standard symbol decoding
boundaries or across the nonlinear boundaries of at .

A. Choice of and

An obvious choice of at the transmitter minimizes

(8)

This is a -dimensional integer-lattice least-squares problem,
for which there is a large selection of exact and approximate
algorithms. See, for example, algorithms by Fincke and Pohst
[8] or Kannan [11]. A review of algorithms can be found in
[9], and recent developments may be found in [12]–[14]. The
Fincke–Pohst algorithm is used for space–time demodulation in
[15], where it is called a sphere decoder. Because we are using
this algorithm for encoding data to be transmitted, we refer to it
as the sphere encoder. We leave the details of this algorithm to
the references, but mention that the algorithm avoids an exhaus-
tive search over all possible integers in the lattice by limiting the
search space to a sphere of some given radius centered around a
starting point. In our case, the center is the vector . Generally,
the sphere encoder works on real lattices, so we assume that a
complex version is used [16], or that (8) has been converted to
a -dimensional real lattice problem.

The scalar is a design parameter that may be chosen to
provide a symmetric decoding region around (the real or imag-
inary part of) every signal constellation point. We choose

(9)

where is the absolute value of the constellation symbol(s)
with largest magnitude, and is the spacing between constella-
tion points. If we want to reduce the effects of the perturbation
vector , we may increase , thereby increasing the decoding re-
gion at the upper and lower extremes of the constellation. While
this improves error performance in these decoding regions, the
that results is typically also larger, possibly reducing total error
performance. If is made too large, the minimization in (8)
yields independently of , and the perturbation technique
reduces to simple channel inversion. If is made smaller than

, then error-free decoding becomes impossible, even in
the absence of channel noise. We find that choosing as in (9)
often works well.
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B. Analysis of Vector-Perturbation Technique

As shown in [1], plain channel inversion performs poorly, be-
cause has a badly behaved large eigenvalue. In this
section, we provide a brief theoretical discussion of why using
the perturbation vector improves the performance signifi-
cantly, especially for large . We confine our discussion to large

, where the analysis is most tractable. Since the analysis of
integer algorithms is generally difficult, we are forced to relax
the constraints of rigor in this section. The reader who would
prefer more details about the implementation of the algorithm
may skip this discussion and proceed directly to Section III-C.

The vector is chosen to minimize the norm of in
(4) [using the cost function (8)]. Using the eigendecomposition

, we can express the cost function as

(10)

where , and is the th column of .
We assume that . The vector-perturba-
tion algorithm minimizes (10) over , where , and
we search over the integer vector . We would like to examine
the behavior of as a function of . In [1], it is shown that

for plain (without the perturbation) channel inversion.
We argue that with the perturbation, is approximately con-
stant with , and therefore, the sum-rate for our method grows
linearly with .

Recall that is chosen large enough so that no element of
can be made zero. In fact, with our choice of , the norm of
is minimized by choosing . Thus, although a nonzero
increases the norm of , the norm of is decreased
in the process. There is no norm constraint on , and hence, the
choice of possible points form an infinite lattice.

Define

(11)

where

(12)

and the expectation is over and . We take as an empir-
ical axiom that is positive and approximately independent
of as . Equation (11) is the expected geometric
mean of . The fact that is a consequence of
the constraints on , for if is unconstrained, then
(the minimizer of (10) is parallel to , and, therefore, obeys

). We contend that forcing
to have integer components when minimizing (10) does not

generally permit to be chosen exactly parallel to (an axis
in a random coordinate system), and thus, the that minimizes
(8) generates a that can only be coarsely oriented in the co-
ordinate system defined by . The orientations with
respect to do not change significantly with , and
hence, the expected geometric mean of is approxi-
mately independent of . A similar statement can be made for

Fig. 1. Numerical example of average � and � � for K = 10. A
constellation of 16-QAM symbols was simulated and the cost function (8) was
minimized over `̀̀. We have E~u = 23:7;E 
 = 2:34, and � = 0:25. Thus,
E 
 nearly achieves its lower bound E 
 � 1:55 given in (17). We also see that
E� � approximately obeys (18).

the expected arithmetic mean of . Since the columns
of form an orthonormal basis

(13)

Combining (13) and (12), we see that can also be rewritten

(14)

and is approximately independent of .
We apply the arithmetic-geometric-mean inequality

(15)

It can be shown that as [17]
(observe that no expectation is needed here). Equation (11) im-
plies that . Therefore, (15) becomes

(16)

By combining (16) with (14), we also conclude that

(17)

Equality in (16) and (17) is achieved if

(18)

Thus, a way to minimize is to have the optimum orient
itself toward each eigenvalue in inverse proportion to the eigen-
value (on average). The values of and are determined by
simulation. Observe that the lower bound (16), if achievable,
suggests that is approximately independent of as .

It turns out that the vector-perturbation algorithm minimizing
(8) nearly achieves the lower bound (17). Fig. 1 shows a nu-
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merical example of minimizing (8) for . Plotted is the
average and for , where was chosen
randomly from a 16-quadrature amplitude modulation (QAM)
constellation, and . We computed ,

, and , thus nearly achieving the lower
bound in (17). Finally, we see that

, thus obeying (18) closely.
We conclude that optimizing (8) tends to generate a that,

on average, is oriented toward each eigenvalue of
in inverse proportion to the eigenvalue as in (18). The value
of that results nearly achieves the lower bound (17), and is
approximately independent of .

C. A Successive Algorithm for Generating an Integer Offset
Vector

For comparison with the vector-perturbation technique, we
briefly present a method for generating an integer offset vector
by repeated application of scalar TH precoding. The method
uses an ordered decomposition of the channel matrix such
that the last user sees no interference, but the th user sees inter-
ference from users . The transmitter compensates
for this interference by using its knowledge of
to generate from , starting with . Methods
based on the QR decomposition have been explored for use
with dirty-paper codes in [18]. QR-based algorithms have been
used for crosstalk cancellation in digital subscriber lines [19]
and for CDMA transmission to distributed receivers [6]. The
achievable capacity of a greedy-ordering form of the QR de-
composition is analyzed in [20], where it is shown to be close
to the sum-capacity when used with perfect dirty-paper interfer-
ence-cancellation codes. Since we do not have such codes avail-
able to us, we consider a vertical Bell Labs layered space–time
(VBLAST)-based ordering for the QR decomposition.

The VBLAST algorithm, originally designed to simplify
receiver processing in a point-to-point link [21], provides an
ordering of the users’ signals that is determined by their channel
quality. In [22], the algorithm is adapted to transmitter pre-
coding, and we briefly summarize it here. Let ,
where is a permutation matrix, is an upper triangular ma-
trix with ones on the diagonal, and has orthogonal columns.
Let be Costa’s “ ” parameter [23], renamed
here to avoid confusion with the used for regularization in
[1]. We first generate the signal , and then form the transmitted
signal . A successive technique is used to generate

...

(19)

where is the th entry of the matrix . We may write
this equation in terms of the vector of integers that the modulo
function effectively adds to the signal

(20)

Fig. 2. Uncoded probability of symbol error for channel inversion [1]
(x’s, solid line), regularized inversion [1] (diamonds, dash-dotted line), the
VBLAST algorithm (19) (o’s, dotted line), the vector-perturbation algorithm
(8) (triangles), and the regularized perturbation technique (22) (dashed line,
using � = 1=�—see Section IV).

The signal is formed, normalized, and then sent
through the channel. The users receive

The parameter has a similar effect to in [1], since it boosts
the signal-to-interference-plus-noise ratio (SINR) at each user.
The matrix permutes the order of the users according to the
VBLAST criterion. Decoding occurs at user based on [18],
[24]

where . Each receiver models the received data as

where combines the additive receiver noise and the inter-
ference. We do not analyze the algorithm, but simply mention
that at high (where )

(21)

The algorithm described here differs slightly from [22] in our
use of the parameter . However, the use of is well known
in the dirty-paper coding literature [18], [24], where its use im-
proves performance at low power levels.

Fig. 2 provides an uncoded symbol probability of error plot
for plain channel inversion, regularized inversion, vector per-
turbation, the successive algorithm, and a regularized version
of the sphere encoder that is presented in Section IV. The prob-
ability of error is shown for 16-QAM signaling with
transmit antennas and users, as a function of . Although the
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vector-perturbation technique does not do as well as the succes-
sive algorithm or regularized inversion for low , it achieves a
significant gain in performance for high . The regularized per-
turbation technique described next in Section IV performs well
for all .

Fig. 2 shows that the beneficial effect of regularization is
generally a gain in , with little effect on the high- slope
(or “diversity”) of the error curve. The linear inversion-based
methods have the lowest diversity. The VBLAST-based succes-
sive method seems to have a steep slope at first, but ultimately
has high- diversity that is similar to the linear inversion-based
methods. Only the vector-perturbation method retains a high
diversity at high .

IV. REGULARIZED PERTURBATION

We can marry the regularized inversion method of [1] with the
vector-perturbation technique of Section III to reduce more
than either method could alone over a wide range of . The
choice of the integer vector that minimizes is made with
the modified cost function

(22)

Unfortunately, the analysis of the combined method appears to
be difficult. In [1], is chosen to maximize an approximation to
the SINR. We do not know how to compute the average SINR
after the minimization (22), and is generally no longer
when regularization is combined with perturbation. Because
is significantly smaller in (22) than with regularization alone,

is too large, and gives too much crosstalk from the
other users. The optimum is generally significantly smaller.
For example, probability-of-error simulations show that

for , and for . We do not
have a good explanation for these choices of , and leave this
as an open problem.

Despite the difficulty of analyzing , we note that much
of the qualitative behavior of the minimizing solution described
in Section III-B for still applies. For example, we find that

, as in Fig. 1, except that
tend to be smaller with .

A. Simulation of a Complete System

To check our distance from capacity, we simulated a complete
system for antennas/users and
antennas/users. The transmitted signal is

(23)

The receivers know , but not . The users receive (as a
vector)

(24)

User models its received signal as

(25)

where contains not only the receiver noise , but also the
crosstalk from other users introduced by . Each user then

Fig. 3. Sum-capacity for M = K = 4 (lower curve) and M = K = 10
(upper curve) as a function of the receiver additive-noise variance. The marker
lines show that to achieve C = 8 (K = 4) or C = 20 (K = 10), the
(reciprocal) noise variance must be � = 1=� = 7 dB. For C = 12 (K = 4)
or C = 30 (K = 10), the noise variance must be � = 11:2 dB.

passes this signal through a modulo function that removes the
effects of the unknown , and uses a turbo decoder to decode
its intended data . Since we are making comparisons with
the ergodic sum-capacity (3), we allow the channel matrix
to be chosen randomly with every use. This randomly chosen
effect is obtained on a smoothly varying channel by using an
interleaver over a long block of many consecutive channel uses.

To compare our results with the sum-capacity, we first present
our operating points. We examine both and

, using 16-QAM constellations with either rate
(2 b/user) and rate (3 b/user) codes. The sum rate is
therefore

b/channel use. (26)

The possible sum-rates for are, therefore,
b/channel use and for and , re-
spectively. The sum-rates for are and

. To find the receiver operating points that corre-
spond to these sum rates, we turn to Fig. 3, which shows the
sum capacity for and systems as a function of

. These sum-capacity curves are computed by evalu-
ating (3) numerically (we omit the details). The operating point
for is approximately dB for either or

, and the operating point for is approximately
dB for either .

We briefly discuss a measure of bit energy that we also in-
clude in our performance curves. The total transmitted signal
power is normalized to unity, and the channel fading coefficients
have unit variance. Therefore, for a transmitted signal that is in-
dependent of the channel, the signal received at each user also
has unit power. The additive noise at each user has variance .
We may, therefore, define
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where is the number of bits per constellation symbol (
for a 16-QAM constellation), and is the channel code rate (
is then the number of information bits per user). This measure
of bit energy is independent of . Our transmitted signal is
channel-dependent, thus potentially changing the power of the
received signal.

The 16-QAM constellation is mapped to bits using a stan-
dard Gray mapping. Successful bit-level turbo decoding at the
receiver requires accurate knowledge of the likelihood function
of the transmitted bits. The signal received by user is given by
(25), where the additive is approximately Gaussian. Then

is passed through the function (see Section III), the
output of which is fed to the turbo decoder. The modulo function

operates on , and the resulting likelihood function is
no longer Gaussian [25]. We compute the new likelihood func-
tion; for simplicity, we confine our analysis to the real parts of

, and . The imaginary parts are handled in an identical
manner.

Let , where the “r” subscript denotes “real
part.” By definition, for
any and for any integer . Therefore

(27)

In practice, we may approximate the infinite sum in (27) by a
sum of a few terms on both sides of . The bit-wise turbo
decoder requires a likelihood ratio between having transmitted
a binary “1” or “0,” and we can use (27) to form this ratio. The
difference between the density (27) and a standard Gaussian
density can be dramatic, especially at low SNR.

Figs. 4 and 5 show the results of our trials. The turbo coders
are formed from a universal mobile telecommunications sys-
tems (UMTS) standard parallel concatenated code with system-
atic component, feedforward polynomial , feedback
polynomial , and block length of 4000 b. We as-
sumed that the channel is interleaved, and is, therefore, in-
dependent but known from channel use to channel use, so as to
make the comparison with the ergodic capacities in Fig. 3 mean-
ingful. We see that the combination of regularization and vector
perturbation performs to within approximately 4 dB from ca-
pacity, and is significantly better than regularization alone. The

-user system performs better than . This is per-
haps surprising, since the total system sum-rate for is
2.5 times the sum-rate for . Perhaps this is because the
larger system showed less variability in the transmission scale
factor .

V. DISCUSSION

We are transmitting at very high sum-rates (tens of bits/
channel use), and we are reasonably close to capacity. There
are ways to get closer that we have yet to explore: 1) match the
turbo code carefully to the channel or increase its block length;
2) transmit at higher rates to the users whose channels happen

Fig. 4. Bit probability of error for rate r = 3=4 turbo-encoded data using
16-QAM symbols, for M = K = 4 and M = K = 10. We are transmitting
three information bits per user for a sum-rate of 3K b/channel use. The
performance of our vector-perturbation method for K = 10 is the line closest
to capacity (approximately 4 dB away). The equivalent line for K = 4 is a
little further away. The combination of regularization and vector perturbation
performs much better than regularized inversion alone.

Fig. 5. Bit probability of error for rate r = 1=2 turbo-encoded data using
16-QAM symbols, for M = K = 4 and M = K = 10. The performance
of combining regularization and perturbation is much better than regularization
alone; the best performance is obtained for M = K = 10.

to be best, since the sum-capacity is not necessarily attained by
transmitting at equal rates to all of the users; 3) compute and
overcome the penalty for using the modulo operation at the
receiver.

We have almost no analysis of the combination of regulariza-
tion and perturbation, nor do we have any information-theoretic
limit for the basic perturbation method. Although not rigorous,
our analysis of in Section III-B predicts the approximate be-
havior of the integer minimization (8), and suggests that the
basic perturbation algorithm should work for any , limited
only by the complexity of the minimization (8). The sphere en-
coder allows us to handle up to with relative ease.
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Fig. 6. Bit probability of error for rate r = 3=4 turbo-encoded data using
16-QAM symbols, for M = K = 10. The curve on the right (instantaneous
power constraint) uses normalization at the transmitter by

p

; the curve on the

left (average power constraint) uses normalization by
p
E 
. The difference in

performance is small.

The transmitter power-normalization constant seems to go to
a limiting constant as , implying that we may be a
fixed distance from the sum-capacity for any . We would like
a theory that predicts the limiting value of as .

One way to achieve capacity on “dirty paper” and “dirty tape”
interference channels is to encode consecutive symbols using
an -dimensional lattice [26]. At the receiver, a modulo opera-
tion is performed against the lattice, removing the influence of
the interference. This technique may be applied to our problem
as well; a multiuser signal may be encoded with a temporal lat-
tice and applied to the inverse channel to possibly reduce

even further. A lattice technique was shown to achieve the
diversity-versus-multiplexing tradeoff for point-to-point mul-
tiple-antenna channels in [27]. Perhaps lattice techniques could
be used successfully on our problem.

Another area we treated only superficially is computing the
exact effect on performance of normalizing at the transmitter
with , versus normalizing with (2). The most practical
choice is , because the receivers then do not need to know

. We, however, chose in our paper for three reasons: 1)
does not need to exist (this is important in Part I of the paper); 2)
it is simpler in our simulations to instantly compute rather
than to compute ; 3) we found the performance difference to
be very small. For example, we show in Fig. 6 the bit probability
of error for rate turbo-encoded data using 16-QAM
symbols (same scenario as in Fig. 4 for ) when
normalizing by (instantaneous) and by (average). We
see that the performance is actually improved very slightly by
normalizing by .

When the transmitter normalizes by , the receivers do
not need to know anything at all about the channel for our tech-
niques to work. Perhaps we should be comparing our results
with the channel capacity that is attained when only the trans-
mitter knows the channel. Unfortunately, this capacity is appar-
ently not as easy to compute as when both transmitter and re-
ceivers know the channel.

We mention that we have not considered how to handle mul-
tiple receive antennas at the terminals, or how to find an-
alytically in the cost function (22). We have also not analyzed
the optimum to choose; for example, increasing reduces de-
coding errors due to the mod-operation, but increases . Finally,
we have also not discussed how to handle users with differing
average received signal power. This extension would be partic-
ularly useful for systems where there are many users, and some
are much nearer to the access point than others.

Other possible applications of our technique include (single-
or multiple-antenna) CDMA systems, where a transmitter com-
municates with multiple users through spreading sequences that
are nonorthogonal because of ISI. Our algorithm provides a
method for compensating for the cross-coupling in the matrix
of effective spreading codes . We leave the analysis of this
possible application for future work.

Since the appearance of a preliminary version of this paper
[28], Shi and Schubert [29] have considered applying our
methods with unequal SINRs at each user, and Windpassinger
et al. [30] have used the Lenstra–Lenstra–Lovász algorithm
[31] to lower the complexity of minimizing the cost function
(22).
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