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Every important idea is simple.

War and Peace
Count Leo Tolstoy



SYSTEMS ENGINEERING AND ANALYSIS SERIES

In a society which is producing more people, more materials, more things,
and more information than ever before, systems engineering is indispens-
able in meeting the challenge of complexity. This series of books is an
attempt to bring together in a complementary as well as unified fashion the
many specialties of the subject, such as modeling and simulation, comput-
ing, control, probability and statistics, optimization, reliability, and
economics, and to emphasize the interrelationship between them.

The aim is to make the series as comprehensive as possible without
dwelling on the myriad details of each specialty and at the same time to
provide a broad basic framework on which to build these details. The
design of these books will be fundamental in nature to meet the needs of
students and engineers and to insure they remain of lasting interest and
importance.
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Preface

Models and optimization are fundamental to the design and operation of
complex systems. This book is intended as an intuitive, probing, unified
treatment of the mathematics of model analysis and optimization. It
explores in a unifying framework the structure of deterministic linear
system models and the optimization of both linear and nonlinear models.
The unification is accomplished by means of the vector space language
and a relatively small number of vector space concepts. The mathematical
concepts and techniques, although not new, become more accessible when
treated in an intuitive, unified manner.

This book is broader in coverage than most books on the subject, and is
relatively low in its level of mathematical sophistication. I have de-
emphasized mathematical proofs; I have attempted instead to develop
concepts by means of geometrical intuition and analogies to ideas familiar
to engineering graduates. All concepts are illustrated with specific detailed
examples. In addition, I have tried to relate the mathematical concepts to
the real world by presenting practical applications and by discussing
practical computer implementations of techniques for model analysis and
optimization. Thus the development is less sterile than the treatments
found in mathematics books.

I have attempted to build up the mathematical machinery in a way that
demonstrates what can and cannot be accomplished with each tool. This
methodical buildup helps to develop a fundamental feel for the mathemati-
cal concepts. For example, I withhold the definition of the inner product
until late in the development in order that it be clear that perpendicular
coordinate systems are not fundamental to the modeling process.

The background required of the reader is a familiarity with elementary
matrix manipulations and elementary differential equation concepts. The
selection of topics and the order of presentation reflect seven years of
experience in presenting the material to full-time graduate students and to
practicing engineers at the Moore School of Electrical Engineering, Uni-
versity of Pennsylvania. The book is designed for use as a text in a
two-semester course sequence for first-year graduate students in engineer-
ing, operations research, and other disciplines which deal with systems. As



x Preface

a consequence of the extensive cross-referencing and the numerous de-
tailed examples, the book is also suitable for self-study. At the end of each
chapter references that are good general references for much of the
material in that chapter are indicated with asterisks (*). Answers to
selected problems are included.

The symbols P & C appear frequently throughout the text in reference to
the Problems and Comments sections at the end of each chapter. These
problems and comments form an important part of the book. Those
problems that are in the form of statements are intended to be proved or
verified by simple examples. The problems marked with asterisks (*)
present concepts which are used later in the book, or which are significant
extensions of the text material; these problems should at least be read and
understood.

The reader will find that abstract symbols can be understood more
easily if they are thought of in terms of simple examples. If possible,
concepts should be illustrated geometrically with two- or three-dimensional
arrow vectors.

In a two-semester course sequence, it would be appropriate to treat
Sections 1.1-5.3 in the first semester (a vector space approach to models)
and Sections 5.4-8.5 in the second (a vector space approach to optimiza-
tion). There is not sufficient time in two semesters to include all the
applications if all the mathematical concepts are covered. (I have usually
omitted some of Section 4.4 and some of the applications.) By deleting
Chapter 3 and by de-emphasizing differential systems and nondiagonaliz-
able matrices in the remaining chapters, the two semesters can be reduced
to two quarters. The accompanying diagram shows how the chapters
depend on each other.

Because the concepts treated in this book find application in many
fields, it is difficult to avoid conflicts between different standards in



Preface xi

notation. I have tried to be as consistent as possible with previous stan-
dards. Because instructors cannot use bold print at the blackboard, I have
avoided the use of boldfaced type as a primary means of distinguishing
vectors and transformations. However, I do use boldfaced type redun-
dantly to emphasize the interpretation of an object as a vector or trans-
formation of vectors.

I wish to express my appreciation to H. R. Howland, W. A. Gruver, and
C. N. Campopiano, who read the full manuscript and suggested helpful
improvements. Thanks are also due to Renate Schulz for her help in
proofreading and drawing, to Pam Dorny and Nancy Maguire who did
most of the typing, and to the Moore School of Electrical Engineering of
the University of Pennsylvania which provided support for much of the
effort. Most of all, I wish to express my gratitude to my wife and children
who waited patiently for the long nights, weekends, and summers to end.

C. NELSON DORNY

May 1975
Philadelphia,  Pennsylvania
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