
A Vector Space Search Engine for Web Services

Christian Platzer and Schahram Dustdar
Vienna University of Technology, Distributed Systems Group,

Information Systems Institute
Argentinierstrasse 8 / 184-1, 1040 Vienna, Austria

cplatzer@infosys.tuwien.ac.at

Abstract

As Web services increasingly become important in dis-
tributed computing, some of the flaws and limitations of
this technology become more and more obvious. One of
this flaws is the discovery of Web services through com-
mon methods. Research has been pursued in the field of
”Semantic Web services”. This research is driven by the
idea, to describe the functionality of Web services as ac-
curately as possible and to create programs automatically
out of already existing Web services. In this paper we dis-
cuss a new method for discovery and analysis of Web ser-
vices. Our approach uses a Vector Space Search Engine
to index descriptions of already composed services. Rather
than generating or automatically composing applications,
this approach provides developers with a valuable utility to
browse repositories based on already existing information.
Furthermore, we propose some additional modifications to
extract the maximum amount of semantics from existing ser-
vice definition repositories.

1 Introduction

The basic idea behind our approach is a combination of
common information retrieval methods and existing stan-
dards for the description of Web services (WS). WSDL and
UDDI [5] are today’s standards to describe a SOAP-based
Web service well enough to place a remote procedure call
and therefore invoke the service. Unfortunately, the knowl-
edge how to call a method is not sufficient in many cases.
The ongoing research in the field of Semantic Web services
aims to describe the functionality behind the methods
too[3]. The major drawback here is that with increasing
possibilities to describe a method, the complexity of the
used ontology or description language rises equally. What
we propose is a different approach to solve this issue.

Instead of introducing a new language or ontology to de-

scribe a Web service, we first take a look at the existing in-
formation and use it as thoroughly as possible. A Web ser-
vice description, no matter if it is available as a WSDL file
or within a UDDI registry, contains a certain amount of in-
formation, entered by the programmer. The method names
are a very good example. Most programmers tend to name
their functions or methods according to their functionality
like “+getMaximumInteger()” or “searchByString()”. Fur-
thermore, most descriptions contain some sort of comments
for human readers. Our vision is, to create a search en-
gine, where all this information is gathered and used to find
the best matching method for a specific request. For this
purpose we utilize a search mechanism common in modern
information retrieval systems: The Vector Space Model
(VSM) [13]. This approach is mainly used for search en-
gines, based on natural language. Many search engines on
the Web utilize this method to search their repositories of
Web pages. The underlying concept is quite simple. A
document is split up in keywords. Each of this keywords
constitutes a dimension in a n-dimensional vector space.
Therefore, a document can be seen as a vector within this
“term space”. The position of this vector to other vectors
within the same vector space describes their similarity to
each other. The mathematical method to evaluate how simi-
lar two documents are to each other and respectively match
a given query, varies. A popular method is to calculate a
cosine value for them and express the result as a percentage
rating. This method produces very good results for natural
language but it is not limited to this field alone.
Virtually any document collection can be mapped to a vec-
tor space to create an efficient search mechanism. The map-
ping includes syntactical indices as well as a semantic rep-
resentation of the underlying structure.

The paper is organized as follows. Section 2 starts by
giving the motivation for our work. Section 3 discusses the
related work and the developed algorithm for searching dis-
tributed repositories. Section 4 introduces the developed
prototype search engine and the produced results. Section 5
finally concludes and gives an overview of the future work.

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

2 Motivation

Our research is driven by the same idea that drives the
whole Semantic Web Services community [3]: How is it
possible to describe the functionality of a program or a
service on the Web? This is not an official definition of the
term “Semantic Web Service” of course, but it gives quite
a good idea about the problem, today’s programmers are
confronted with. The ongoing research, especially in the
area of Web services, tries to find solutions for the semantic
description of services over the Internet [9].
In our particular case, we want to develop a method to
retrieve description files by just entering a search query.
A programmer for example, who wants to integrate the
Google search engine in his own Web site should be able
to enter a query like ”Google search Service” and get the
corresponding WSDL File for the Web Service.

Increasingly, research currently describes the functional-
ity of Web services by artificial means [4]. Although this
approach looks very promising, we think there will arise
some additional problems when introducing a solution:

• It is possible to create an ontology for Web services
and use it to describe the functionality of the service
itself. But what about the already established Web ser-
vices? There will be no way to assess the functionality
of existing services, if the description does not meet
the requirements, defined by the ontology. Instead,
these service descriptions would have to be reworked
or at least a gateway solution had to be introduced be-
fore they comply with this new standard.

• The second, and in our opinion even more important
issue, concerns the ontology’s potential. An ontol-
ogy, which is able to describe functionality in every
detail will raise in its complexity to a point where it
is no longer distinguishable from a programming lan-
guage. A simple ontology may be enough to describe a
method which adds two integers but for a function that
calculates the hamming-distance for two vectors, the
ontology will have to be more powerful and, therefore,
more complicated.

• Another well known problem when dealing with on-
tologies is authenticity. There is no guarantee for a se-
mantic description to actually represent the underlying
functionality of a service and not something else.

Given the problems stated above and the current estate for
Web services with the involved technologies, we investi-
gated the possibilities to enrich Web service descriptions
with information about what the services do. In this first
part of our work, we aim to use the available information
without adding new restrictions or requirements. Before

discussing our new approach in detail, we will take a look
on the information that is already provided in today’s repos-
itories.

2.1 Web service descriptions

Whenever a Web service is published, a WSDL File will
be created to provide all the needed (syntactical) informa-
tion for other programmers to invoke the service. Even
when the description is automatically generated by a devel-
opment tool, it still holds some valuable information about
the data types and their labels, assigned by the programmer.
Furthermore, the messages are indicators for the function-
ality of the underlying methods. A good example is the
WSDL File for the Amazon Web service [1].

Figure 1. Amazon WSDL Snippet

Even without any knowledge about the Web service
itself, the names of the elements put across quite a good
idea of the underlying function’s purpose.
But valuable information is not comprised in the actual tags
alone. There are often comments with a human readable
description about the elements or the whole service. Our
motivation is, to exploit all this information at a maximum
level.

2.2 Web service Discovery

UDDI registries are designed as the central point to regis-
ter Web services and to make them publicly available. They

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

ought to help discovering Web services for a particular op-
eration or from a known publisher.
Unfortunately, UDDI contains some serious flaws which
lead to detrimental effects:

• UDDI registries do not contain a proper functionality
for limiting the lifetime of a once registered service.
Because of that, entries are often out of date and there-
fore obsolete.

• Everyone can publish WSDL descriptions to a pub-
lic UDDI registries. As a result, a good deal of
the registered services were entered for testing pur-
poses only. When looking at the Microsoft public
registry for example, there are even entries where the
port address is entered with http://localhost/
MyWebservice/. Entries like this are useless, of
course, but it is obvious why things like this happen.
Unexperienced programmes let their development tool
create the WSDL description and because the service
runs on the local machine, localhost is used for the
port description. After publishing the WSDL File to
the UDDI registry, the programmer will wonder why
his service is not accessible. Availability is the second
important issue for those registries.

• The third issue concerns openness. Some of the UDDI
registries available today, require some type of sub-
scription, before they accept any files to be published
to their database. The IBM UDDI Business registry [8]
is a very good example for this. This restriction has the
very positive effect that most of the published descrip-
tions are meant serious. Availability, on the other hand
is still a problem, because the fact that one has to reg-
ister or pay before publishing a Web service does not
mean it is accessible all the time.

To summarize, there are two possibilities. Either a
UDDI registry is made publicly available and contains a
good deal of obsolete entries, or it requires registration
but only keeps a limited number of available service
descriptions.

2.3 Requirements

Before moving to the technical details of our approach,
we want to discuss some requirements that have to be met
before we can successfully apply our concept to a prototype.

2.3.1 Data resources

Our implementation uses WSDL Files as a source for the
data repository because these XML Files carry all the infor-
mation that is needed to describe a Web service. It would

also be possible to use data directly from UDDI registries,
but since the data is not required to be in XML but can be
only a textual description too, this method is not feasible for
our implementation. Retrieving enough WSDL Files from
the Internet to form a satisfying repository was a particulary
hard task.
We investigated three methods to obtain a large set of
WSDL files. Our main prerequisite was to only use “com-
mon” means of accumulation and not some research proto-
type or a single source like woogle [6] to keep the concept
as generic as possible.

• File Sharing: File sharing platforms like Emule or
Kazaa are capable of handling all types of files, includ-
ing WSDL files. Unfortunately, the amount of shared
descriptions is limited. We were able to retrieve 62
valid WSDL files this way.

• Web Crawler: Although web crawlers looked very
promising at first, we quickly realized that this method
is a very poor way to obtain a decent repository. This
is because web crawlers need a link that is directed to
a WSDL file to successfully retrieve the data. In most
cases the file itself is included in an API or some sort
of package which makes it impossible to retrieve by a
crawler. An enormous amount of traffic was produced
by our wget-based crawlers, before retrieving a single
WSDL file.

• tModel cross references: This third method finally
produced the desired results. By iterating through a
UDDI registry, we were able to retrieve links to service
endpoints and description files. We basically extracted
the links from UDDI registries and tried to retrieve the
files to our local repository. See the Implementation
section for a detailed description of the extraction pro-
cess.

To be accurate, a fourth method to gather Web service de-
scription files is provided by the possibility to upload data
directly to the server where the search engine is running.
This method, which is also implemented in our prototype,
is about the same as a UDDI registry, so it was not men-
tioned in the listing above.

2.3.2 Search engine

The key element is not the data itself. It is the engine,
that extracts interesting data and executes queries upon it.
The requirements for such an engine are very high. The
final product must possess both, good performance and a
good precision/recall rating. Designing this engine was the
main challenge and required some research in the field of
information retrieval. It is useful to take a look on available

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

search engines to get an idea how our solution looks like.

What we expected as an outcome of our research, was an
efficient search engine for Web services. This engine has to
be capable of handling both WSDL files and UDDI entries
at the same time. Furthermore, it should be possible to set
up this engine at different UDDI registries and join them to
one repository. We utilized state-of-the-art methods from
the area of information retrieval to provide a valuable tool
for developers.

2.4 Contribution

Our contribution is twofold. We will introduce an algo-
rithm which allows to join detached document repositories
to a single one and execute queries upon the resulting vector
space. Furthermore, we will present our proof-of-concept
prototype implementation.

We already mentioned in the introduction, that our
approach to solving the problems of Web service discovery
is novel. Our main inspiration came from Web search
engines like Google or Fireball. Even with all those
irrelevant pages around the Web, they manage to create
very valuable results for a large range of queries [11].
Our task was not much different. We developed a search
engine for Web services where developers are able to find
what they need for their applications amongst the available
repository, even if the repository contains a good amount of
improper entries.

2.5 Architecture

The basic use of the Vector Space Model presented in
the following section does not differ from applications for
natural language.

Service descriptions will be parsed for relevant data
like type definitions, elements, and service names. The
extracted keywords are then used to create a vector space
where every document represents a vector within it. See
Figure 2 for a visualization of the concept.

This architecture allows the creation of a localized
search engine that can be installed at a UDDI registry,
for example. We wanted to go one step further and allow
distributed search engines to interact with each other and
process queries as if they operate on one single document
repository. To to this with a vector space model, we
needed to extend existing approaches and introduce a new
algorithm.

UDDI

entry

WSDL File

repository

Parsing and

data extraction

tmodel

textual description

endpoints...

type

message

service

...

VSM

vector generation

Local Vector

repository

1

1

1
0

d1
d2

d3

�
�

�

User

Queries

1

3

54

5

2

2

3

1

4

4

5

User

upload

Original Web

reference

Figure 2. Basic architecture

3 Related Work

3.1 The VSM Concept

The VSM, as proposed by Salton [7] was basically de-
signed for various applications. This section provides a
bottom-up analysis with a discussion on the capabilities
which are needed for the above mentioned UDDI join.

3.1.1 The Term Space

The core of a Vector Space Engine is the Term Space itself.
The idea behind it is to create a Vector Space where each
dimension is represented by a term [15]. This space can
grow in dimension every time a new keyword is added.
In a vector-based retrieval model, each document is
represented by a vector d = (d1, d2, ..., dn) where each
component di is a real number indicating the degree of
importance of term ti in describing document d [15]. How
this weighting is done, has a major impact on the overall
performance and behavior of the system. The easiest
method is a boolean weight [14]:

di = 1 ∀ ti ∈ C with C being the Term Collection

which means, if term i of the collection C occurs in the
document, its corresponding value in the vector is 1 and 0
otherwise.
Binary values are the simplest form of a document repre-
sentation based on vectors.

Once, all documents (e.g. WSDL files) are represented
within the common term space, the relevance between
them can be rated according to various rating procedures.
Before moving to document rating and term weighting,
an evaluation of the presented model in respect to its
distribution capabilities is necessary.

The approach, discussed in the previous section is based
on the assumption that the term space is available at a

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

centralized point. When it becomes necessary to create a
distributed form of this model, certain additional points
have to be considered.
In the presented binary form, distribution is not a big
issue. Keeping vectors valid on different spots can simply
be achieved by transporting relevant vectors with their
corresponding keywords. At the destination space, the
vector is then treated as a new document, like in the
following example. We assume that there are two different
term spaces C1 and C2:

C1=

Dimension / Document d1 d2 d3

google 1 1 0
search 1 0 1
service 0 0 1

C2=

Dimension / Document d1 d2 d3

google 1 1 1
search 1 0 1
result 0 0 1

Now, if it is necessary to evaluate how relevant docu-
ment d3 from C1 is in C2, the simplest method is to transfer
the whole vector with all keywords and treat it like a
new document in C2. As a result, C2 is expanded by one
dimension resulting in the following term space:

C2=

Dimension /Document d1 d2 d3 d4

google 1 1 1 0
search 1 0 1 1
result 0 0 1 0

service 0 0 0 1

In general, binary weighting and vector creation is fit
for a distributed environment and therefore capable of
handling multiple UDDI registries, for example.

3.2 Weighting

Binary weighting like presented in the in the previous
section will not be sufficient for a sophisticated search
engine. It completely ignores important information like
term frequency or document length. For this reason, term
weights are assigned to the vector-elements. A common
method to assign term weights is to store the inverse docu-
ment frequency of a document as the vector element [7].

3.2.1 Term frequency and inverse document fre-
quency:

The inverse document frequency idf of a term is a function
of the frequency f of the term in the collection and the
number N of documents in the collection [11]. Its purpose
is to weight terms highly if they are frequent in relevant
documents, but infrequent in a collection as a whole.
According to Salton [7], the inverse document frequency is

calculated as:

idfk = ld(
N

nk
+ 1).

Therefore the term weight tf x idf is calculated as:

wik = tf ik ∗ ld(
N

nk
+ 1).

with Tk = term k in Document Di

tfik = frequency of term Tk in document Di

idfk = inverse document frequency of term Tk in collection
C
N = total number of documents in the collection C
nk = the number of documents in C that contain Tk

When it comes to using this weighting scheme for dis-
tributed UDDI joins, the solution is not a trivial one any
more. Because the vector components are now dependent
on each other, the method used to add new documents and
store the vector values must be taken into account.
In common Information Retrieval systems, term weights
are updated, once a new document is added to a reposi-
tory. After the update, the values for each vector reflect
the overall number of documents and the particular weights
for each term. Unfortunately, this is only possible in a cen-
tralized model, because the values for N and nk are known.
When two separated vector spaces must be combined, this
knowledge is not available a priori. Thus, sending an al-
ready weighted document vector to another term space is
not possible for a successful comparison in separated vec-
tor spaces. Instead, all necessary data has to be stored in-
dividually, to enable weighting at runtime. This, of course,
means an additional overhead for query processing. Adding
new documents on the other hand, is extremely fast with our
approach. The following steps are carried out, when a new
document is added to the repository:

• The raw term frequencies are calculated for the docu-
ment. If one or more terms are not present in the term
space, the space is expanded, by adding a new entry to
the list of known terms.

• The raw term frequencies are stored for each term that
occurs in the new document.

• The values for N and nk are updated.

The data structure to store the term frequency will be a
hash table or indexed list in most cases. Every keyword
represents an entry in this hash table. The following exam-
ple shows how a document or query from one collection
is used to create a relevance rating at another collection.

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

We start with the collection C1, indexed with the raw term
frequencies:

C1=

nk1 Dimension d1 d2 d3

2 google 5 3 0
2 service 4 0 8
1 search 0 0 9

,N1 = 3

C2=

nk2 Dimension d1 d2 d3

2 google 8 0 2
3 result 3 2 6
2 search 2 0 1

,N2 = 3

Now, document d3 of C1 shall be rated at Collection
C2.
For this purpose, document d3 is merged with C2 to a tem-
porary term space with N = N1 + N2 = 6. For all terms
occurring in d3 the temporary term count is calculated as
nk = nk1 + nk2 ⇒ nservice = 2 and nsearch = 3.

Thus, in a distributed environment with m diverse term
spaces, the values for N and nk of a single document vector,
located at any term collection Cj are:

N =
m∑

i=1

Ni

and

nk =
m∑

i=1

nki{k|tk �= 0}.

If any document is present in more than one collection,
a slightly reduced term weight would be the result. This
weighting scheme does not apply to the comments of ser-
vice descriptions only. It is used for every weighted key-
word.

3.2.2 tf x idf normalization

Moreover, the bare tf x idf value is not enough, because it
rates longer documents higher than shorter ones [2]. Out of
this reason, term weights are usually normalized to an in-
terval between 0 and 1, so the total number of occurrences
within one document does not matter anymore. The follow-
ing formula is used, to normalize the weight of term k in
document i [7]:

wik =
tfik ∗ ld(N

nk
)√∑t

k=1(tfik)2[ld(N
nk

)]2

Distribution capabilities are the same as mentioned in 3.2.1.
There are no additional values required to normalize the
weights according to our formula.

3.3 Rating Algorithms

This section discusses the most important rating algo-
rithm and its distribution capabilities for common vector
space models. Once the term weights for a document or
a query are properly assigned, the similarity to other docu-
ments within the same term space can be rated and compiled
to a final ranking of the most relevant results. One method
is quasi-state of the art for data repositories based on natural
language [13][6].

3.3.1 The Cosine Coefficient

The cosine value is the most commonly used rating algo-
rithm. It takes two vectors of the term space and generates
the cosine value for the angle between them [2]. In a n-
dimensional space, the cosine value between two vectors p
and q is calculated as

cos(p, q) =
p · q
p × q

,

whereas p · q entitles the dot product and is calculated by
multiplying term weights of the query- and document vector
together[15]. Therefore the cosine value can also be written
as

cos(p, q) =
∑n

i=1 piqi√∑n
i=1 p2

i

∑n
i=1 q2

i .

If the values for p and q are already normalized to the
Euclidean norm, the cosine value can also be written
as

∑n
i=1 qidi. The idea behind this approach is, that

two documents with a small angle between their vector
representations are related to each other. Documents
with no terms in common will have a cosine of 0 while
identical documents will produce a cosine of 1. This is
where the whole concept is getting a little fuzzy. The
assumption that semantics are primarily expressed by term
frequencies is not equally valid for every field, especially
within natural language processing. Therefore, the results
of rating functions can produce outputs of varying quality.
Because of the few words, method names consist of, and
therefore the small dimensionality of the resulting vector,
we expected good results for those components of a service
description.

One aspect of the chosen method is its linearity. As a
result, the form of distribution, presented in 3.2 is also ap-
plicable. The ad-hoc generation of term weights in addition
with the transported values for term- and document counts
are sufficient to create a coherent term space where the re-
sulting relevance rating is valid, even when term spaces are
split and distributed like in our case.

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

4 Implementation

To demonstrate the reliability our concept and to show
how an application for the presented architecture may look
like, we implemented a prototype search engine. We de-
signed our application with a Web frontend and made it pub-
licly available to offer the possibility to try some of its func-
tions and evaluate the produced results.f The Web applica-
tion can be accessed via http://www.vuse.de.vu .

4.1 Set-up

We implemented the search engine and the Web fron-
tend in Visual Studio 7.1.3088 using the .NET Framework
Version 1.1.4322 SP1. This IDE is a good tool to create
a fast Web-based implementation without worrying about
circumferential problems like deployment or compatibility.
Memory requirements and Processor speed are negligible
for our sample repository of 4096 WSDL files. The test
machine is a 800 Mhz Pentium III Machine with 512 MB
of main memory.

4.2 UDDI extraction

We used the Microsoft UDDI SDK Version 2.0 Beta for
interaction with UDDI V2.0 conform services to communi-
cate with public UDDI registries. The extraction took place
in the following sequence.

• A public UDDI registry is entered and the application
extracts an alphabetical list of available TModels.

• For every entry in the retrieved list, the TModelInfo
has to be retrieved, consisting of a representation of
every entry, including the TModelKey.

• Finally, every TModelKey has to be retrieved in a
single request, and for each Key, the DocumentURL
is stored in a list. Our query at the Microsoft Pub-
lic UDDI regsitry [10] gave a result of 6438 parsable
URLs.

• In the final step, we generated 30 Threads to retrieve
the WSDL descriptions contained in the URL and
added them to our local repository.

The first interesting result showed when we iterated through
the URLs we received from our initial query. Out of 6711
entries, we were able to actually download 1272 files from
their original site, which means that 19% of the entries are
actually functional. We expected a far lower ratio because
the registry is public and free to use for everyone.
546 of the downloaded files where valid XML files and
were parsed by our keyword extractor, which means that
9% of the original entries are actually WSDL descriptions.

The other files where either pdf descriptions or plain HTML
files. For security reasons, we did not implement a frontend
for our UDDI extraction functionality. It would be easy to
misuse the provided extraction procedure to initiate a DOS-
attack for public UDDI registries.

4.3 Keyword extraction

A service description, no matter if it is a WSDL file, or
data from a UDDI registry, consists of two different types of
data, as far as the Vector Space Model is concerned. First,
there are user comments written in plain text. This informa-
tion is voluntarily and not every developer will enter com-
ments as descriptions. If comments were entered, the ex-
tracted data is treated as natural language. Therefore, famil-
iar methods for vector space engines like stop word lists or
normalization procedures can be applied [12]. On startup,
the keyword extractor iterates through all files in the reposi-
tory and isolates as many keywords as possible. Our current
version handles the following elements:

• Endpoint URLs: The endpoint, which is present in ev-
ery WSDL file, is split up to multiple keywords con-
taining domain names and suffixes.

• Types and their attribute names are parsed and split up
if possible.

• Messages are parsed for their names and split up to
single words.

• XML comments are parsed and treated as natural lan-
guage. Like other elements, the words are split if pos-
sible and fed to the search engine.

After extracting the keywords, the vector for this document
is built according to the keyword frequencies, and added to
the local vector space.

4.4 Query Processor

The query processor takes a query string, in our case
”Google Search Service”, and splits it up to a list of key-
words. After building the corresponding query-vector, it is
projected into the local term space where the cosine-value
is evaluated for all other documents. The result is a list of
documents, sorted by their similarity rating. See Figure 3
for a screenshot of the results for the query.

4.5 Joiner

To finally join one or more of the search engines, we
implemented the query interface as a Web service. Two
methods are visible from the outside:
RemoteQueryStats: This method takes a query string and

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

Figure 3. Query Results - Screenshot

returns all necessary values to invoke a distributed query,
namely nk, N and a list of Query words.
processDistributedQuery: This method finally processes
a distributed query on the local repository with the Values
retrieved by the above function.

The invoking host first gathers all required information
from all peers and then invokes the distributed query with
an assembly of all statistics. The result must be displayed
by the invoking host, of course.

4.6 Frontend

The frontend is deliberately kept simple. It supports
file uploads, local queries, statistic analysis of the local
repository and remote query processing.
To join the local repository with a remote web service, the
service endpoint can simply be added by typing it in the des-
ignated field and pressing ”Add”. Because the sample ap-
plication will most probably be the only one running at the
time, it is possible to test it with it’s own endpoint at http:
//{domainname}/VSMWeb/VSMJoiner.asmx. In
this case, the search result will of course display the same
file twice, since it is processed localy and remotely. The
screenshot in figure 3 shows how the result for the joined
repository looks like.
The original repository contains about 250 WSDL files
from the UDDI extraction process along with the files
retrieved by file sharing systems. We left erroneous files
in the repository on purpose, to show the percentage of
valid files that were retrieved. The prototype is open for
file uploads to test the application with user-defined WSDL
files.

5 Conclusion and future work

In this paper we presented a novel distributed Web
service search engine based on the Vector Space Model
for information retrieval. We gave an overview of the
underlying technologies and extended the existing methods
with a technique to make the concept work for distributed
environments. We finally discussed our prototype imple-
mentation and showed that the presented approach works
even for large WSDL repositories.

Unlike other search engines, no template document
collection exists to evaluate the final precision/recall rating.
To formally evaluate and optimize the search engine’s
performance parameters, a test-collection with predefined
results has to be established. Furthermore, the vector
matrix is currently uncompressed. By erasing zero entries
in the matrix and therefore compressing the vector space,
we think the performance can be increased significantly.

We think that it is very hard to automatically generate
working applications out of Web services without human
judgement. Creating ontologies may help to a limited de-
gree. For the future, we plan to extend the indexing proce-
dure from purely syntactical data to a semantic level. For
this purpose we will utilize a domain-specific ontology to
describe the functionality of a service endpoint and inte-
grate the result in a BPEL-process. The major problem
here is, to find a fitting indexing method for the ontology
itself. Furthermore, by using a domain-specific resource,
the application domain is limited equally, which is quite the
opposite of what we want to achieve. A possible tradeoff
could be achieved by combining syntactical analysis and
ontology-supported weight adjustment. It remains to be
seen how beneficial the application of ontologies is to lever-
age the search mechanism to a semantic level.

Acknowledgements

We would like to thank the reviewers of this paper for
their constructive remarks. This paper is partially funded
by the EU Project Nedine.

References

[1] Amazon. Amazon Web service definition File. soap.
amazon.com/schemas2/AmazonWebServices.
wsdl, 2005.

[2] D. L. L. Budi Yuwono. Search and ranking algorithms for
locating resources on the world wide web. IEEE, 1996.

[3] A. M. Christoph Bussler, Dieter Fensel. A concep-
tual architecture for semantic web enabled web services.
htpp://swws.semanticweg.org, 2003.

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

[4] O. Conlan, D. Lewis, S. Higel, D. O’Sullivan, and V. Wade.
Applying adaptive hypermedia techniques to semantic web
service composition, 2003.

[5] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the web services web: an intro-
duction to soap, wsdl, and uddi. IEEE Internet Computing,
2002.

[6] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang.
Similarity search for web services. VLDB, 2004.

[7] M. J. M. Gerard Salton. Introduction to Modern Information
Retrieval, volume 1. McGraw-Hill, Inc., 1983.

[8] IBM. IBM Business registry. https://uddi.ibm.
com/ubr/registry.html, 2005.

[9] S. McIlraith, T. Son, and H. Zeng. Semantic web services,
2001.

[10] Microsoft. Microsoft public UDDI registry. http://
uddi.microsoft.com/inquire, 2005.

[11] B. C. Monika Henzinger, Brian Milch and S. Bin. Query-
free news search. ACM/WWW, 2003.

[12] M. Porter. Porter stemming algorithm, 10 2004.
http://www.tartarus.org/ martin/PorterStemmer/.

[13] W. Z. SKM Wong and patrick Wong. Generlized vector
space model in information retrieval. ACM, 1985.

[14] M. S. Xiaoying Tai and Y. Tanaka. Improvement of vec-
tor space information retrieval model based on supervised
learning. ACM, 2000.

[15] S. W. Z.W.Wang and Y. Yao. An analysis of vector space
models based on computational geometry. ACM/SIGIR,
1992.

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

