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A VECTOR-SUM THEOREM AND ITS APPLICATION 
TO IMPROVING FLOW SHOP GUARANTEES* 

IMRE BARANY 

Hungarian Academy of Sciences 

We prove that if a closed polygonal path in Rd consists of a finite number of line segments 
of at most unit length, then it is possible to transpose the segments in such a way that the new 
polygonal path is contained in a ball of radius [3 d]. Using this result we give a near optimal 
algorithm for the NP-complete flow shop problem. The error of the algorithm cannot exceed a 
constant depending on the maximal execution time and the number of machines but not 
depending on the number of jobs. Our theorems improve earlier results of the same type by 
Belov and Stolin. 

Introduction. The m-machine n-job flow shop problem can be stated as follows. 
The shop is an ordered set of m different machines indexed by 1, . . ., m. There are n 
jobs to be executed. Each job consists of m operation indexed by 1, . .. , m and thejth 
operation of a job precedes its (j + 1)th operation for j = 1, . . ., m - 1. Further, the 

jth operation of any job has to be carried out on thejth machine. An operation cannot 
be interrupted once it has begun execution. The execution time of the jth operation of 
the ith job is given. We must give the order of the executions of the operations on the 
m machines so that finish time be minimal. 

This problem is solved effectively only when m = 2. The solution was given by S. M. 
Johnson [6]. His algorithm works in time at most proportional to n log n where n is the 
number of jobs. For m > 2 there has been a pronounced absence of efficient schedule 
optimization algorithm for flow shops [5]. This lack can be explained by the fact that 
for m > 2 the flow shop problem belongs to the class of NP-complete problems [5]. 
For NP-complete problems it is a natural approach to search for efficient algorithms 
that are not optimal, only near optimal. 

In 1974 Belov and Stolin [2] gave an algorithm for the flow shop problem yielding a 
permutation schedule, i.e., a schedule for which the order of the execution of the 
operations is the same for each machine. This permutation schedule is near optimal in 
the sense that its error cannot exceed a constant C(m, K) independent of the number 
of jobs, depending only on the number of machines m and on the maximal execution 
time K. They use a theorem from [7] which is known in the Russian literature as the 
Steinitz lemma. It says that there is a constant C(d) depending only on d such that if a 
closed polygonal path in Rd consists of a finite number of line segments each of which 
is of at most unit length, then it is possible to transpose the segments in such a way 
that the new (closed) polygonal path is contained in a ball of radius C(d). In fact, 

Kadec [7] gave an algorithm for this end yielding C(d)= /(4d - 1) = 0(2d) with 
complexity O(nd) where n is the number of segments. From this fact Belov and Stolin 
proved C(m,K) = (m - 1)(Vm- 1 C(m - 1) + 1)K = O(m3/22mK), their algorithm is 
of complexity O(n"- ). 

*Received February 16, 1979; revised September 15, 1980. 
AMS 1980 subject classification. Primary 90B35. 
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The aim of this paper is to present better bounds for C(d) and for C(m,K) with 
better complexity results. We shall give an algorithm proving C(d) < [ 3d] with 

complexity O(n2d3 + nd4). This, in turn, yields an algorithm of complexity O(n2m3 + 

nm4) for the flow shop problem with bound C(m,K) = (m - 1)[ (3m - 1)]K 
= O(m2K). 

In 1977, independently of Belov and Stolin's results, Tibor Fiala [4] rediscovered the 
connection between the flow shop problem and the Steinitz lemma and proved the 
latter for d = 2. It was his result that made me think of proving the above statement on 
polygonal paths. My thanks are due to him not only for that but for the many 
discussions we had and for the help in preparing this paper as well. I am also indebted 
to E. G. Bajmoczy for valuable suggestions and conversations. 

After having written this paper I learned that Sevast'yanov [8], too, had found an 
algorithm yielding C(d) < d in O(d2dn2) steps. From this he gets 

C(m,K)=(m - 1)572K 

with an algorithm of complexity O(m2mn2). 
Comparing Sevast'yanov's algorithm with our algorithm, we first mention that the 

algorithm presented here runs in time polynomial both in m and n. Previous algo- 
rithms were exponential in m. Secondly, the translation between the Steinitz lemma 
and the performance bound has been tightened saving a factor of m in our algorithm. 
But Sevast'yanov's algorithm if combined with this improved translation yields a 
slightly better performance guarantee (m2K vs. m2K). However, Sevast'yanov's 
algorithm is much less efficient (O(m2mn2) vs. O(n2m3 + nm4)). 

Notations and theorems. The m machines will be indexed by j = 1,2, . ., m 
according to their order of priority. There are n jobs, the ith job is given by an ordered 
set of nonnegative real numbers ti, . ..., ti, m where ti j is the execution time of thejth 
operation of the ith job (1 < i < n, 1 < j < m). Let us introduce the following 
notations: 

n 

K = max ({t, 4}, M--- ti, , and 

M = maxM. 

A permutation of the index set 1,2, . . ., n will be denoted by il, i2, . . ., in. Given a 
vector x = (xl, . . . , x) E Rd we write llxll for the maximum norm of x, i.e., llxll 
= max lxil. For a finite set H we denote the number of elements by IHI. Finally we 
mention that speaking of a set V C Rd we usually mean a multiset, i.e., an indexed 
family of elements where the same element may occur with different indices. This will 
not cause any confusion. 

Now we give our theorems. 

THEOREM 1. For a finite set V = {v, . . . , vn} C Rd with 
n 

v,=i0 and Ilvill < I (i = 1,..., n), 

there is a permutation i,I . . , in such that 

k 

max E v < [-d1. l<k<n j= [ 2 

This permutation can be given in O(n2d3 + nd4) steps. 

446 



VECTOR-SUM THEOREM: IMPROVING FLOW SHOP GUARANTEES 

THEOREM 2. There is a permutation schedule for which finish time T satisfies the 
following inequalities 

M < T < M + (m- 1)[ 3m- 1 K. 

This schedule can be given in O(n2m3 + nm4) steps. 

PROOF OF THEOREM 2 (using Theorem 1). First we construct fictive execution times 
ti' such that ti < t' Kand =ti = M for allj = 1, . . ., m. This can be done 
quite easily (in O(nm) steps) because 

n 

2 (K- ti ) = nK - Mj > M - Mj. 
i= I 

Thus if Mj < M, then we can divide the value M - Mj into n parts so that the ith part 
does not exceed K- ti, j. Adding these numbers to the ti, values we get the fictive ti' i. 

It is known [9] and can be checked easily that if a permutation schedule is given by 
the il, . . ., in permutation of the jobs, then the finish time T can be expressed as 

m-I kj+I 

T= max E tisj+1 
=ko<kl < ... <km=n =0 s=kj 

Applying this formula to the fictive execution times we get 

m-1 kj+ 

T'= max ZE + 
=ko< ... km=n j=0 s =k 

Clearly M < T < T'. Further, rewriting the above expression 

T' =M+max ', + ( - 
'= j I J =l 1 

m-1 kj 

<M+(m-1)K+max2 2 (t-tl,j+,) 
j=1 s=l 

where max is taken over 1 = ko < k, < ... km = n. In order to estimate the double 
sum put 

vi = (1 i, 2' - 
i, 2 i- ti,3 t * - I - lt,m) E -R 

Clearly 2 _=_vi = 0 and vill < K, further, 

m-1 kj 

max 2 (t' j 
- t' j+l) 

j=l s=l 

k 

< (m-1 1) max vi. 
<1k<;n s=1 

Now Theorem 1 (with d = m - 1) gives a permutation i, ... , in for which 

ax- 3(m - 1) 
- 

max 2 v6 < K. 
\<k<n s=l 2 

This implies 

M< T< T' < M+(m-1)[ 3m 1]K 2 
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as desired. The complexity of the algorithm is the same as in Theorem 1 with 
d=m- 1. I 

PROOF OF THEOREM 1. We are going to give an algorithm to produce the desired 
permutation. We say that a map y: V-> R is a linear dependence (for V) if v2 ' y(v) 
v = 0. For any c E R put V(y > c) = {v E V: y(v) > c). V(y = c) and V(-y < c) are 
defined analogously. The algorithm will produce a finite sequence of linear depen- 
dences Yo, Yi' .... . , y. Put now for i = 0, . . .p 

Ai = V(yi = 1), B = V(yi > 0) n V(y, < 1), and 

Ci = V(j, = 0). 

The linear dependences will satisfy the following conditions: 
(a) 0 < -y(v) < 1 for v E V, 
(b) v evyi(v)v = 0, 
(c) IBil < d, 
(d) Ai+. D Ai and Ai+I =t- Ai, 
(e) Ap = V, and 
(f) IBi+ U Ai+i\Ail < 2d. 
Because of (a) Ai, Bi and Ci are pairwise disjoint and their union is V. The sum in 

(b) is a relation between vectors from A, and Bi. Condition (c) says that there are only 
a few vectors in this relation with coefficients different from 1 and so the sum of the 
vectors from A, is near to zero. Condition (d) shows that the Ai - s form a strictly 
increasing sequence of sets. In view of (f), this sequence cannot increase very fast, so 
the sum of all vectors from Ai and a few vectors from Ai+ \Ai is also near to zero. 

For the construction of this sequence we shall make use of the following lemma 
which is a suitable modification of the well-known Caratheodory's theorem. 

LEMMA. Let V C R d, | V = n and let X: V-> [0, oo) be a nontrivial linear dependence 
and v* be an arbitrary vector from V(X > 0). Then one can find in O(nd3) steps an 
a: V-> [0, oo) nontrivial linrear dependence such that for D = V(a > 0) 

v* D and ID < d+1. 

PROOF OF THE LEMMA. If I V(X > O)l < d + 1, then put a = X. If not, then let 
G C V(A > 0)\ v*)} be an arbitrary set with IG I = d + 1 and let us solve the following 
linear system by the well-known Gauss algorithm: 

E (v)v-O. (1) 
vE V 

We get a nontrivial solution because there are d equations and d + 1 variables. Putting 
,t(v) = 0 for v M G we get a /t: V-> R nontrivial linear dependence. Now, if all u(v) 
are nonnegative, then write 

A(v) 

and if j,(v) < 0 for some v E G, then put 

t0= min {t(< (v)) <} 

Now define X' = X + to /u. Because of the definition of to A': V-> [0, oo) is again a linear 
dependence, moreover, 

I V(X' > O) < I V(X > O) and 
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If I V(X' > 0)1 < d + 1, then put a = X'; if not, we replace X by X' and repeat the above 
procedure. 

In view of (2), the linear system (1) has to be solved at most n times. As the 
complexity of the Gauss algorithm is 0(d3) we can get a in 0(nd3) steps. 

Having finished the proof of the lemma we give the construction of the sequence ys 
for s = 0, 1, ... ,p. 

For s = 0 let 70 = 0 for each v E V, i.e., we start with the trivial linear dependence. 
Clearly Ao and Bo equal the empty set and CO = V, so for i = 0 conditions (a), (b) and 
(c) hold. Using induction on s we suppose that y, is defined for some s > 0 so that for 
i = s (a), (b) and (c) hold. Now to construct ys + we consider two cases. 

Case 1. I V\AsI > d. 
Let us consider the following nontrivial linear dependence: 

X(v)=1- y(v) for vEV. 

Let v* be an arbitrary element from Bs (or, if it is empty, from CQ) and apply the 
lemma. We get an a: V- [0, oo) nontrivial linear dependence and a set D = V(a > 0) 
with IDI < d+ 1 and v* ED. For this set D 

IBsUDI< 2d (3) 

because IBsI < d by induction, ID I < d + 1 and if Bs is not void, then v* is a common 
element of Bs and D. Now we determine the maximal value of t for which 

-y(v) + ta(v) < 1 for all v E V. 

This value is given by 

to = min a(vS) :a(v) > 0 .O 

Put now fl(v) = -y(v) + toa(v). Clearly V/: V-[0, 1] is again a linear dependence and, 
by the choice of to, 

V(/ = 1) D A, V(# = 1) # As and (4) 

V(O <,< 1)= Bs U D\V(3= 1). (5) 

At this point we split Case 1 into two further subcases. 
Case l(a). I V(0 < ,B < 1)1 < d. In this case put +y1 = /8. Now (4) implies that (d) 

holds for i = s. Condition (f) is a consequence of (5). It is obvious that (a), (b) and (c) 
hold true in this case. 

Case l(b). | V(0 < fl < 1)1 > d. In this case we decrease I V(0 < /3 < 1)1 in the same 
manner as in the lemma. 

Let us choose a set G C V(0 < /3 < 1) with IGI = d + 1 and find a nontrivial 
solution to the following system 

2 (v)v= O0. (6) 
vEG 

Defining t(v) = 0 for v 4 G we determine the maximal number to for which 

0 < /3(v) + tog)+(v) < 1 

holds for all v E V. Then for /3' = /8 + to ji we have by the definition of to 

IV(O < /' < 1)I < V(O </ < 1)I. (7) 
If I V(O < /3' < 1)1 > d, then we replace P/ by ,/' and repeat the above procedure from 
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the choice of G to the construction of ,/'. At the end we get the linear dependence fl' 
with 

jV(0 < l'< 1)1 <d, (8) 

V( = 1) D AS, V( '=l1) =As and (9) 

V(' > 0)\As C Bs U D. (10) 
Putting Y+y = 8' we get the following element of the sequence { y). Now condition 
(d) holds for i = s because of (9), (f) is a consequence of (10) and (3) and, in view of 
(8), condition (c) holds true for i = s + 1. 

Case 2. V\As| < d. If [V\ASI = 0, we are done; ys is the last element of the 
sequence and p = s. Otherwise define y,s+ I(v) = 1 for all v E V and p = s + 1, so ys+ 1 
is the last element of the sequence. Clearly Ap = V, Bp and Cp are empty, thus 
conditions (a), (b) and (c) hold for i = p and (d) and (f) hold for i = p - 1 = s. 

Having finished the construction of sets Ai we define the order of vectors as the 
order of first appearance in some Ai. More precisely, we define a total order >/i on 
each of the sets Ai\Ai_l arbitrarily. Secondly we define a total order on V: for 
v E Ai\A,i_ and v' E Aj\Aj_ 1 let v > v' iff either i = j and v >iV, or i < j. Clearly, 
this is a total order on V. Now let iI be the index of the greatest element of V for this 
total order, i2 the second greatest and so on. We claim that i1, i2 ... , i, is the desired 
permutation. 

We have to show that the estimation of the theorem holds. To do so first remark 
that by condition (b) 

v=- yi(v)v, 
veA, vE B, 

so by (c) we have for i = 0, 1,. . ., p 

2v <d. 
yEA, 

Now let F = vi,, ... ., )} and suppose that Ai C F C Ai+ . In this case 

k 

E V, < v + v < df+ |jF\A|j. 
t= l|v5EV Ai vE EF\Ai 

Similarly 
k 

t=l vEAi+I tvAiA+t\F 

ue Bi+ vEAi+ i\F 

consequently 
k 

vi, < IBi+I U Ai+ I\Fl. 
t=l 

Because of condition (f) the sum of these two bounds for IlEk= vi, 11 cannot exceed 3d. 
It follows from this that the minimum of these bounds cannot exceed [3d/2]. 

To estimate the complexity of the algorithm we remark that condition (d) implies 
p < n, so we apply the lemma at most n times. This gives complexity O(n2d3). (5), (7) 
and (3) imply that for the construction of y, from %y we must solve the equation (6) 

450 



VECTOR-SUM THEOREM: IMPROVING FLOW SHOP GUARANTEES 

at most d times in Case l(b). This gives complexity 0(nd4), so the desired permutation 
can be given in O(n2d3 + nd4) steps. I 

Numerical example. Consider the following three machine examples with 4n jobs 
(n is arbitrary). The jobs are of three types: 

A type jobs: ti = 2, t2 = 1,3 =3 (i = 1, ., 2n), 
B type jobs: til = 2, t2= 2, t2 =0 (i = 2n + 1, . . . ,3n), 
C type jobs: ti = 1, ti2= 3,ti3 = 1 (i = 3n + 1, . . ., 4n). 

In this case M= Ml = M2 = M3 = 7n and K = 3. It is easy to see that the optimal 
order of the jobs is 

ACAB ACAB ACAB ... ... ACAB 

when the machines work without idle time and T = Tmin = 7r-+ 3. 
There is some freedom in implementing the algorithm of Theorem 2 (for instance, 

the choice of v* or the ordering of Ai+\Ai). For this example the algorithm gives 
several near-optimal schedules (including the optimal one) for all of which, of course, 

7n + 3 < T < 7n + 24. 

We mention that other standard heuristics could have errors proportional to n for 
this example. For instance, the method of Palmer [9] gives the permutation schedule 

AAA...A CCC...C BBB...B 

with finish time T = 9n + 1. The method of Cambell, Dudek and Smith [9] gives the 
same schedule. This is explained by the fact that these heuristics schedule the jobs in 
such a way that if an A type job precedes a B type one than all A type jobs precede all 
B type jobs. This is not so with the algorithm of Theorem 2. 

REMARKS. Theorem 2 says that if we fix the maximal execution time K and the 
number of machines, then letting n--> oo, the finish time guaranteed by our algorithm 
is asymptotically equal to the optimal. However, we remark that Theorem 2 is not 
sharp even for m = 2. Applying Johnson's rule, Tmin < M + K is trivially a sharp 
upper bound in this case. For m = 3 Tmin < M + 5K is known [4]. 

Concerning Theorem 1 we mention that the estimation given in it is fairly good. 
Firstly, using Hadamard matrices one can give vectors v .. , vn E{ Rd with I7= v 
= 0 and vi, ll < 1 (for i = 1, ... ., n) such that for any permutation il, . , 

maxl<k<nl IlIvi,11 >V /2. Secondly, as it can be seen from the proof, Theorem 1 
holds true for any norm. Now for the l, norm we can give another example 
V .. ., vn E Rd with n= 1 vi = 0 and vlll, < 1 such that for any permutation 
maxl<kn I tk= I Vi, 1 11 >_ d/2. 

Finally we mention that the running time of the algorithm of Theorem 1 (and, 
consequently, of Theorem 2) can be improved to O(n2 + nd)M(d) where M(d) is the 
current best bound for d by d matrix multiplication (see [1]). The current value of 
M(d) is somewhere about 0(d26), so this would be an asymptotic improvement 
although quite impractical on reasonably sized problems. One can even wonder 
whether the repeated nature of the Gaussian elimination can be used to yield further 
savings in the running time of the algorithm. Probably Sevast'yanov's better bound 
can be obtained in time polynomial both in n and d. 

Note added in proof. The answer to the last question is in the affirmative as it was 
shown recently by V. S. Grinberg and S. V. Sevast'yanov. Their algorithm will appear 
soon. 
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