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Abstract

Alignment of multiple multi-relational networks,
such as knowledge graphs, is vital for AI applica-
tions. Different from the conventional alignment
models, we apply the graph convolutional network
(GCN) to achieve more robust network embedding
for the alignment task. In comparison with existing
GCNs which cannot fully utilize multi-relation in-
formation, we propose a vectorized relational graph
convolutional network (VR-GCN) to learn the em-
beddings of both graph entities and relations simul-
taneously for multi-relational networks. The role
discrimination and translation property of knowl-
edge graphs are adopted in the convolutional pro-
cess. Thereafter, AVR-GCN, the alignment frame-
work based on VR-GCN, is developed for multi-
relational network alignment tasks. Anchors are
used to supervise the objective function which aims
at minimizing the distances between anchors, and
to generate new cross-network triplets to build a
bridge between different knowledge graphs at the
level of triplet to improve the performance of align-
ment. Experiments on real-world datasets show
that the proposed solutions outperform the state-
of-the-art methods in terms of network embedding,
entity alignment, and relation alignment.

1 Introduction

Network alignment has recently attracted special attention
from both industry and academia. It aims at finding the cor-
responding network elements (referred to as anchors there-
after), such as nodes or relations, in different networks if
they refer to the same entity/relationship. The alignment of
networks, such as aligning multi-lingual knowledge graphs,
helps to construct more complete and compact networks, thus
increasing the accuracy and robustness for applications like
knowledge inference and cross-domain recommendation.

Embedding-based models are promising and efficient so-
lutions for network alignment tasks because they are capable
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of representing and preserving the structures of networks in
low-dimensional subspaces. Thereafter, the alignment can be
achieved in the embedding spaces by sharing or transforming
the embeddings of anchors.

Recent research in embedding models focuses on develop-
ing representation learning algorithms to acquire numerical
representations of networks. Single-relational networks, in
which all edges are of the same type, require to embed only
nodes by representing each node i as a vector ui ∈ Rd. In
comparison, multi-relational networks, in which the vertices
are connected by various types of edges or relations, require
to embed both nodes and relations as low-dimensional vec-
tors to preserve the network structure.

In general, two categories of embedding models can be
summarized based on whether considering the embedding
of relations. For example, DeepWalk [Perozzi et al., 2014],
and Node2Vec [Grover and Leskovec, 2016] target at single-
relational networks and belong to “embedding without rela-
tions”. In comparison, TransE [Bordes et al., 2013] and its
extensions [Wang et al., 2014] model relations as translat-
ing operations on the low-dimensional embedding of the en-
tities. That is, if there is an edge (h, r, t), in which a relation
r links the head entity h and the tail entity t, then the equation
h + r = t should be preserved in the embedded space. They
belong to “embedding with relations”.

Motivated by the success of deep learning, increasing in-
terests have emerged to apply task-driven deep network em-
bedding for graph data [Bruna et al., 2013; Defferrard et al.,
2016]. [Kipf and Welling, 2016] utilized a two-layer graph
convolutional network (GCN) to achieve semi-supervised
classification of graph nodes. With the integration of ran-
dom walk or attention mechanism, [Niepert et al., 2016] and
[Ying et al., 2018] proposed more dedicated GCN models
for single-relational network embedding. However, the con-
ventional spectral-based GCN and its variants can only pro-
cess undirected single-relational networks because they re-
quire normalized graph Laplacian to be real symmetric pos-
itive semidefinite to facilitate graph Fourier transform, indi-
cating that the adjacency matrix must be symmetric, and the
2-D adjacency matrix also restricts edges to be the same type.

To deal with multiple relation types, R-GCN [Schlichtkrull
et al., 2017] utilizes more representative node embeddings
with the consideration of the effects of different relation types
by iteratively accumulating weighted neighbor entities. How-
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ever, it has no relation representations involved.
In summary, existing GCN-based models belong to “em-

bedding without relations”. It is evident that relations in
networks also carry rich semantic information as nodes, and
the incorporation of relation embeddings would help to boost
the effectiveness of relevant applications, such as knowledge
base completion and multi-lingual knowledge graph align-
ment. Therefore, conventional GCNs and R-GCN cannot be
applied for multi-relational network alignment tasks.

Addressing this issue, in this paper, we propose a vec-
torized relational graph convolutional network (VR-GCN),
which generates both entity embeddings and relation embed-
dings simultaneously, to enable the incorporation of GCN and
multi-relational networks. The design of its convolution func-
tion should consider the following three criterions:

1. Explicit relation embedding: VR-GCN should explicitly
include the vectorized relation, and the relation embed-
dings will affect the learning of the entity embeddings.

2. Role discrimination: VR-GCN should be capable of per-
forming different convolution operations on an entity ac-
cording to its role. Generally, the same entity may take
the role of being a head role in one triplet but of a tail
in another. This requirement becomes indispensable for
directed graphs.

3. Translation adoption: VR-GCN should conform to the
translation operation h+r ≈ t to imply the network edge
which has two entities h and t connected by a specific
relation r.

Based on the network embedding, graph alignment can be
achieved in the subspaces. Graph alignment, in fact, consists
of entity alignment and relation alignment. However, most
existing models for multi-relational network alignment, no
matter they include relation embedding or not, either ignore
the needs of relation alignment or assume all relations are pre-
viously aligned. Therefore, we propose an alignment frame-
work, with VR-GCN as the network embedding model, to
support both entity alignment and relation alignment. Exper-
iments demonstrate that the inclusion of relation alignment,
in turn, improves the outcomes of entity alignment.

The main contributions of this paper include:

1. We proposed VR-GCN for the embedding of multi-
relational networks, in which both entity embeddings
and relation embeddings are explicitly supported. VR-
GCN combines the strength of both convolutional and
translational properties for multi-relational networks.

2. We proposed AVR-GCN, the alignment framework
based on VR-GCN, to support both entity alignment and
relation alignment for multi-relational networks. Opti-
mization techniques are designed to improve the effec-
tiveness of the alignment results.

3. We evaluated the proposed alignment framework with
entity alignment, relation alignment, and link prediction
tasks on knowledge graphs. The results demonstrate that
our method constantly outperforms other state-of-the-art
approaches for various tasks, and prove that the inclu-
sion of relation alignment can improve the outcomes of
entity alignment.

2 Related Work

Our work is mainly related to two lines of research: network
embedding and knowledge graph alignment.

2.1 Network Embedding

Network embedding refers to learning representations of
nodes/edges in networks, which has demonstrated its effec-
tiveness in many application scenarios. For single-relational
networks, DeepWalk and Node2vec extend the skip-gram
model in natural language processing to the representation
learning of networks. LINE attempts to generate the rep-
resentations of nodes by retaining the “first-order proxim-
ity” and/or “second-order proximity” of local structures.
For multi-relational networks, TransX [Bordes et al., 2013;
Wang et al., 2014; Lin et al., 2015] interprets relations as
translating operations between head and tail nodes, which can
be denoted as h+ r ≈ t.

Motivated by the powerful feature extraction capability and
remarkable success of deep neural networks, [Defferrard et
al., 2016] proposed a spectral graph theoretical formulation
of CNNs on graphs and a convolutional network extending
the conventional CNNs to non-Euclidean space. [Kipf and
Welling, 2016] further extended this idea and proposed graph
convolutional neural networks (GCNs) to integrate the con-
nectivity patterns and feature attributes of graph-structured
data, and achieved remarkable results in semi-supervised
classification. Thereafter, a series of improvements and ex-
tensions were proposed based on GCN. GAT [Velickovic et
al., 2017] employs the attention mechanism to GCNs, in
which each node gets an importance score based on its neigh-
borhood, thus providing more expressive representations for
nodes. R-GCN is a relation-aware node embedding model
based on GCN for knowledge graphs. The convolution of R-
GCN is a relation-specific transformation in which the impact
weights between different nodes depend on the relation types.

Although R-GCN applies the relation information as the
weights to induce node embedding, it does not support the
representations of relations themselves. In fact, the vector
representations of relations are critical in tasks like relation
alignment of Knowledge graphs. Moreover, the proper repre-
sentation learning of relations may help to improve the qual-
ity of node representations.

2.2 Knowledge Graph Alignment

The alignment of multi-relational networks centers on align-
ing knowledge graphs. It is generally accomplished by us-
ing network embeddings to identify the linkage between net-
works via the structural and anchor information.

MTransE [Chen et al., 2017] embeds entities and relations
of each knowledge graph in a separate space with TransE,
and then provides five different variants of transformation
functions to project the embedded vectors from one subspace
to another. The candidate set of one node’s correspondence
in the other network can be obtained by ranking the dis-
tance between them in the transformed space. In contrast,
ITransE [Zhu et al., 2017] utilizes TransE to learn one com-
mon low-dimensional subspace for all knowledge graphs,
with the constraint that the observed anchor seeds from dif-
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ferent knowledge graphs share the same vector representa-
tion in the subspace. Furthermore, ITransE iteratively up-
dates the embeddings of entities and relations to perform the
alignment when the “confidence” of a newly discovered an-
chor pair is larger than an empirical threshold. AlignE [Sun et
al., 2018] also adopts TransE to learn network embeddings,
and applies parameter swapping to encode networks into a
unified space. Instead of using TransX to direct the represen-
tation learning of knowledge graph, NTAM [Li et al., 2018]

employs a probabilistic embedding model [Liu et al., 2017]

to learn the node embeddings for alignment tasks. It claims
to retain the triangular structures in networks that TransX
fails. GCN(SE) [Wang et al., 2018] levers on the conven-
tional GCN to encode the entities from multiple knowledge
graphs into a unified embedding space to perform the align-
ment. It views the relations as influential weights on entities
in proportion to the number of entities connected with differ-
ent types of relations.

However, the aforementioned alignment approaches focus
on entity alignment across networks without explicit relation
representations [Wang et al., 2018] or assuming the relations
are previously fully aligned [Zhu et al., 2017]. Therefore,
they are inherently insufficient or incapable of relation align-
ment tasks, which we argue is also an important task as illus-
trated in Sec. 1. In comparison, we propose a vectorized rela-
tional GCN (VR-GCN) to learn the embeddings of both nodes
and relations explicitly for knowledge graphs. With both en-
tity and relation representations learned, the alignment frame-
work could be optimized by minimizing the “entity loss” as
well as “relation loss”, which is semi-supervised by the ob-
served entity anchor pairs and relation anchor pairs.

3 Model

A Knowledge Graph KG = (E,R, T ) is a directed network,
where E, R and T denote the set of entities, relations and
triplets respectively. A triplet (h, r, t) represents a tail entity
t is connected to the head entity h by the relation r. Knowl-
edge Graph Alignment finds the aligned entities and relations
between KGi = (Ei, Ri, Ti) and KGj = (Ej , Rj , Tj). The
prior knowledge of the aligned entities/relations are observed
anchors. They are denoted as the set of anchor entity pairs
Ea = {(ei, ej)|ei ∈ Ei, ej ∈ Ej} and the set of anchor rela-
tion pairs Ra = {(ri, rj)|ri ∈ Ri, rj ∈ Rj} respectively.

3.1 VR-GCN Framework

In comparison with existing GCNs, VR-GCN is capable of
learning the vectorized embedding of relations, in addition to
that of entities, in the convolution process.

VR-GCN integrates the strength of GCN and the trans-
lational property in knowledge graphs [Bordes et al., 2013]

(h+ r ≈ t) to design the new propagation model. Eq.(1) de-
fines the update rule for the entity and relation embeddings:

hl+1
i = σ((

∑

r∈Nr

∑

t∈Nr
t

c(hl
t, h

l
r) +

∑

r∈Nr

∑

h∈Nr
h

ĉ(hl
h, h

l
r) + hl

i)W
l) (1)

where Nr denotes the set of relations connecting the entity
i. Nr

t denotes the set of tail entities connected with the en-
tity i by the relation r. Nr

h denotes the set of head entities

Figure 1: Embedding process in VR-GCN. Yellow represents the
center entity, red represents relations connected with it, and green
represents its neighboring entities. If the entity has the head role,
accumulating its neighboring tail nodes and relations with t − r; If
it has the tail role, accumulating its neighboring head nodes and re-
lations with h+ r. The role discrimination representations are accu-
mulated in a (normalized) sum and passed through a ReLU function.
Meanwhile, the embeddings of relations are also updated.

connected with the entity i by the relation r. hl
h ∈ Rd(l),

hl
r ∈ Rd(l), and hl

t ∈ Rd(l) denote the lth layer embedding
of the head entity, relation, and tail entity respectively in the
neural network, and d(l) is the dimensionality of this layer’s
representation. σ is the activation function, such as Sigmoid
and Relu. c(·, ·) is the function to describe the relationship
between hl

t and hl
r, and ĉ(·, ·) describes the relationship be-

tween hl
h and hl

r. W l is the weight matrix of the lth layer.
Eq.(1) features the role discrimination (Section 1) criterion

to identify if entity i in the knowledge graph takes the role of
head or tail entity regarding a specific relation r. It performs
different convolution operations for them: if i has the head
entity role, its embedding is calculated by combining the re-
lated tail entity hl

t and relation hl
r; Otherwise, its embedding

is calculated with the related head entity hl
h and relation hl

r.
Thereafter, all occurrences of head roles and tail roles of i are
added, together with a single self-connection representation
hl
i, to infer the l + 1 representation of the entity i.
The design of function c and ĉ features the translation

adoption criterion which is h + r ≈ t for a triplet (h, r, t)
in the graph. Alternatively, the translational property can be
transformed into h ≈ t− r and t ≈ h+ r. Therefore, let

c(hl
t, h

l
r) = (hl

t − hl
r) (2a)

ĉ(hl
h, h

l
r) = (hl

h + hl
r) (2b)

Apply them to Eq.(1), the convolutional function becomes:

hl+1
i = σ((

1

di
(
∑

r∈Nr

∑

t∈Nr
t

(hl
t − hl

r) +
∑

r∈Nr

∑

h∈Nr
h

(hl
h + hl

r)) + hl
i)W

l) (3)

where di is the normalization coefficient which equals to the
degree of the entity i, including its outdegree and indegree.
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Figure 2: AVR-GCN: Knowledge Graph Alignment Framework
based on VR-GCN

Fig.1 illustrates the embedding process defined by Eq.(3).
It updates the embedding of an entity by accumulating the
embeddings of its neighboring entities and relations, and up-
dates the embedding of a relation by integrating embeddings
of its head and tail entities. It can be applied to a neural net-
work to update embeddings of entities and relations, and mul-
tiple layers can acquire more flexible structure information.

The proposed convolutional function is capable of distin-
guishing different roles of entities and utilizing the transla-
tional property in knowledge graphs to learn the embeddings
of both entities and relations, which in fact helps to retain the
structural information of the graphs. In comparison with ex-
isting GCNs, the vectorized representations of relations have
better support for knowledge graph alignment tasks.

3.2 VR-GCN-based Knowledge Graph Alignment

This section introduces AVR-GCN, a knowledge graph align-
ment framework based on VR-GCN.

As illustrated in Fig.2, given two knowledge graphs KGX

and KGY , each of them learns its embedding representa-
tion based on VR-GCN first to capture the structural informa-
tion of each graph. Denote their embeddings as VR-GCNX

and VR-GCNY respectively. Since each graph has a unique
embedding space, the weight sharing mechanism [Wang et
al., 2018] is utilized to join them into a unified space for

alignment. By sharing the weight matrices W (X) and W (Y ),
the problem of estimating the probability of entities/relations
alignment is converted into measuring the distance between
entities/relations in the unified embedding space.

Anchors are the knowledge about the aligned entity or re-
lation pairs from different graphs. In this framework, anchor
information is applied in two ways to enhance the alignment
performance. It is first utilized to define the objective func-
tion for the alignment. In the shared embedding space, the
distances between aligned entities/relations should be min-
imized and those of unaligned entities/relations should be
maximized. Therefore, the objective function is:

O =
∑

(ex,ey)∈Ea

∑

(e′x,e
′

y)/∈Ea

[d(ex, ey) + ξ − d(e
′

x
, e

′

y
)]+

α
∑

(rx,ry)∈Ra

∑

(r′x,r
′

y)/∈Ra

[d(rx, ry) + ξ − d(r
′

x
, r

′

y
)]

(4)

Dataset DBPZH-EN DBPJA-EN DBPFR-EN

#aligned entity 15,000 15,000 15,000

#aligned relation 891 592 814

#Entity
19,388(ZH)
19,572(EN)

19,814(JA)
19,780(EN)

19,661(FR)
19,993(EN)

#Relation
1,701(ZH)
1,323(EN)

1,298(JA)
2,451(EN)

1174(FR)
1,208(EN)

#Triplet
70,414(ZH)
95,142(EN)

77,214(JA)
93,484(EN)

105,998(FR)
115,772(EN)

Table 1: Dataset summary

where (ex, ey) and (rx, ry) denote a pair of aligned entities

and relations respectively, and (e
′

x, e
′

y) and (r
′

x, r
′

y) denote its
corresponding unaligned (negative) pair of entities and rela-

tions. Boldfaced ex, ey, rx, ry, e
′

x
, e

′

y
, r

′

x
, r

′

y
represent the

corresponding vectorized embeddings acquired by VR-GCN
for aforementioned graph elements. d(x, y) = ‖x − y‖1. ξ
is a margin hyper-parameter separating positive and negative
alignments, and α is also a hyper-parameter balancing the im-
portance of the entity and relation alignment.

The second way is to use existing entity anchors to gener-
ate new cross-network triplets to build a bridge between dif-
ferent knowledge graphs at the level of triplet. Let Tx and
Ty be the triplet sets for knowledge graph KGX and KGY

respectively. Following [Sun et al., 2018], we generate the
supervised triplets as:

Ta={(ey, r, t)|(ex, r, t) ∈ Tx}∪{(h, r, ey)|(h, r, ex) ∈ Tx}

∪{(ex, r, t)|(ey, r, t) ∈ Ty}∪{(h, r, ex)|(h, r, ey) ∈ Ty}
(5)

After injecting the generated triplet set Ta into both graphs,
KGX and KGY are expanded to have more shared edges.
Consequently, their embeddings would be closer to each
other, which will help to improve the alignment performance.

Putting them together, the following strategy is adopted:

(1) Randomly select a subset of anchors to generate Ta.
Then, inject Ta to graphs before learning their embed-
dings with VR-GCN.

(2) With the learned embeddings, use the remaining anchors
to minimize Eq.(4).

4 Experiment

We first evaluated AVR-GCN framework on cross-lingual en-
tity alignment and relation alignment tasks to testify its effec-
tiveness on multi-relational network alignment. In addition,
VR-GCN model was experimented with link prediction task
for its effectiveness on multi-relational network embedding.

4.1 Knowledge graph alignment

The experiments consist of cross-lingual entity alignment and
relation alignment on the trilingual datasets, which were ex-
tracted from the real knowledge graph DBpedia containing
multilingual versions of DBPZH−EN (Chinese to English),
DBPJA−EN (Japanese to English) and DBPFR−EN (French
to English). Table 1 lists their statistical summaries.
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Dataset ZH-EN&EN-ZH JA-EN&EN-JA FR-EN&EN-FR

Metrics(%) Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR

MTransE 13.46 31.44 41.45 23.22 13.02 29.45 38.80 21.88 7.00 21.76 31.81 14.64
ITransE 21.94 45.90 54.77 32.88 17.02 39.95 48.74 27.57 12.46 34.10 43.51 22.50
NTAM 25.01 53.45 62.55 33.02 22.10 50.00 58.28 28.23 20.43 51.10 62.30 27.34
AlignE 31.78 59.21 69.43 45.25 30.34 58.25 69.88 43.30 32.60 63.54 74.92 46.65
GCN(SE) 26.00 54.88 64.69 38.96 27.05 56.47 66.10 40.03 27.25 56.84 67.96 40.58
GCN(SE)∗ 31.02 60.12 69.37 43.87 32.03 59.83 69.63 46.78 32.20 61.79 72.45 45.51
AVR-GCN(rl.exl.) 33.20 61.54 70.50 48.26 32.34 60.33 69.36 44.81 33.43 64.96 74.51 47.45
AVR-GCN 37.96 64.60 73.27 50.19 35.15 61.66 72.15 47.03 36.06 66.11 75.14 49.46

Table 2: Performance comparison on entity alignment

Metrics
Ratio

0 0.2 0.4 0.6 0.8 1.0

Hit@1(%) 34.30 34.41 35.16 37.72 38.77 39.34

Hit@5(%) 61.97 62.39 62.87 64.89 65.53 66.13

Hit@10(%) 70.25 70.61 71.55 73.13 73.87 75.06

Table 3: Training ratio of aligned relations vs. entity alignment

Evaluation Metrics. Standard metrics, Hits@k and mean
reciprocal rank (MMR), were used to evaluate the perfor-
mance of knowledge graph alignment. Hits@k measures the
proportion of correct items in top-k ranked candidates and
MMR measures the mean reciprocal rank of correct entities
and relations. Regarding the bi-directional feature of network
alignment, which means the alignment may start with either
network as the source, Hits@k in this paper is computed as
the average of iterating each network as the source.

Baselines and Settings. For the model configuration, the
input feature vectors of entities and relations were randomly
initialized, and then fed to the 2-layer VR-GCN to update the
embeddings. In the experiments, d = 300, ξ = 3, α = 1,and
the ratio of anchors for new triplet generation was 0.5.

The following state-of-the-art approaches were included in
the comparison for the graph alignment task:

• MTransE uses linear transformations between two vec-
tor spaces which are built by TransE.

• ITransE embeds entities from different graphs into a
unified vector space and uses the predicted anchors it-
eratively to improve performance.

• NTAM utilizes a probabilistic model to obtain network
embeddings to accomplish the alignment task.

• AlignE takes ε-truncated uniform negative sampling and
parameter swapping to implement KG embedding. It is
a variant of BootEA without bootstrapping.

• GCN(SE) uses structural information to align entities
based on the entity embeddings learned by GCNs.

• GCN(SE)∗ is an extension to GCN(SE) by running
GCN(SE) on the alignment framework proposed in this
paper. We provided GCN(SE)∗ for a fair comparison.

• AVR-GCN(rl.exl.) is a variant of AVR-GCN but with
the relation component in the objective function ex-

(a) ZH-EN (b) JA-EN

Figure 3: Performance comparison for relation alignment

cluded. It serves as a baseline to differentiate the impact
of relation alignment on entity alignment.

Entity Alignment

Each dataset was split into training and test sets as 30-70
which used less prior anchor information for the learning pro-
cess. Moreover, for a given entity, the lookup scope for align-
ing candidates should include the entire network. Otherwise,
if only known anchor entities are included in the lookup pro-
cess, which was used in some existing models, the results
may not be practical because of its implicit assumption that
all anchors are known and accurate.

Table 2 reports the results, showing that AVR-GCN outper-
forms all other methods on all trilingual datasets. Specifically,

• AVR-GCN is significantly better than most translation-
based methods, such as MTransE and ITransE. It proves
that VR-GCN has better support for capturing the com-
plex structure information in multi-relational networks
than translation-based models. Besides, NTAM, which
utilizes a probabilistic embedding space, also performs
better than MTransE and ITransE, supporting the argu-
ment that TransX is inefficient in capturing complex net-
work information.

• GCN(SE)∗ performs better than GCN(SE), showing
that the proposed alignment framework is beneficial for
graph alignment tasks.

• AVR-GCN(rl.exl.) outperforms other baselines even
though no relation anchor information is applied in the
alignment stage, indicating that the explicit consider-
ation of relation embedding helps to improve entity
alignment. Meanwhile, AVR-GCN is better than AVR-
GCN(rl.exl.). The only difference between them is the
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dataset WN18 FB15k-237

metrics
MRR Hits@ MRR Hits@

Raw Filter 1 3 10 Raw Filter 1 3 10

TransE 0.335 0.454 0.064 0.803 0.916 0.143 0.210 0.146 0.222 0.330
DisMult 0.540 0.829 0.726 0.923 0.940 0.127 0.220 0.144 0.238 0.369
R-GCN 0.526 0.773 0.650 0.889 0.944 0.138 0.225 0.133 0.249 0.423
VR-GCN 0.565 0.847 0.764 0.929 0.946 0.155 0.248 0.159 0.272 0.432

Table 4: Link prediction performance comparison in individual networks

inclusion of relation anchors in the alignment stage.
Therefore, it is evident that the aligned relation infor-
mation can boost the alignment performance.

• Finally, in comparison with GCN(SE)∗ which likewise
utilizes GCN and the same alignment framework, VR-
GCN boosts the performance by up to 22%, proving that
the vectorized relation representations or relation em-
beddings are valuable for alignment tasks.

To evaluate the correlation between entity alignment and
relation alignment, we incrementally increased the ratio of
known aligned relations in the training process on the one-
side ZH-EN dataset. It actually demonstrates the changes
when we evolve from AVR-GCN(rl.exl.), which includes
no relation alignment, to AVR-GCN, which has all relation
alignment. Table 3 shows that the more previously known
aligned relations included, the better performance for entity
alignment. The observation validates the importance of rela-
tion alignment which has not attracted enough attention. In
other words, AVR-GCN is capable of levering on the relation
alignment to not only support relation alignment tasks, but
also improve the performance of entity alignment.

Relation Alignment

Fig.3 depicts the results of relation alignments, showing that
AVR-GCN consistently outperforms other methods on all
baselines. Only Hits@1 − Hits@5 are shown in the graph
because the datasets have insufficient numbers of relations
tagged. It should be noted that conventional GCNs are not
capable of performing relation alignment due to their lack
of support for relation embeddings. Therefore, they are not
included. In comparison with translation-based models and
NTAM, AVR-GCN benefits from its modeling of interactions
between entity and relation in the process of convolution.

4.2 Link Prediction

Link prediction, which is widely used to evaluate the effec-
tiveness of network embedding models, does training and
testing with a single network. It targets at predicting the miss-
ing h or t for a triplet (h, r, t) in a given KG to improve the
completeness of the network.

Following R-GCN, we adopt the graph auto-encoder
model, which consists of an entity-relation encoder and a
scoring function (decoder). VR-GCN acts as an encoder to
map each entity and relation to the real-valued vector. For the
scoring function needs to support the non-linear and transla-
tional properties in convolution process, we utilized h+r and

t − r to replace t and h in the scoring function proposed in
DistMult [Yang et al., 2014], then:

f(h, r, t) = (h+ r)M(t− r) (6)

The triplets (h, r, t) appeared in the dataset were taken as
the positive samples, and negative samples were generated
by randomly corrupting each triplet (h, r, t) with head h or
tail t replaced. The cross-entropy was utilized to restrict that
positive samples have higher scores than negative ones.

Datasets and Baselines. The experiments were based on
two well-known benchmark datasets, WN18 and FB15k-2371

which were extracted from the relational database WordNet
and Freebase respectively. The State-of-the-art models in-
cluded for comparison are TransE, DisMult, and R-GCN.

Result. Table 4 shows the results of link prediction by base-
lines and VR-GCN on two individual networks. VR-GCN has
consistent improvements on both datasets. VR-GCN and R-
GCN both perform better than TransE, indicating that deep
model has a stronger capability of acquiring the structure in-
formation than TransX. VR-GCN outperforms the baseline
DistMult, showing the effectiveness of the VR-GCN encoder.
VR-GCN also performs better than R-GCN favorably, which
highlights the significance of vectorized relation embedding.

5 Conclusion

This paper proposes a vectorized relational graph convo-
lutional network (VR-GCN) to learn the embeddings of
both graph entities and relations simultaneously for multi-
relational networks. The role discrimination and translation
property of knowledge graphs are adopted in the convolu-
tional process. Thereafter, AVR-GCN, the alignment frame-
work based on VR-GCN, is developed for multi-relational
network alignment tasks. The weight sharing mechanism is
utilized to join the embeddings of graphs into a unified space
for alignment. Anchors are used to supervise the objective
function which aims at minimizing the distances between an-
chors. Moreover, anchors are also used to generate cross-
network triplets to build a bridge between knowledge graphs
at the level of triplet to improve the performance of align-
ment. The experimental results on the real-world datasets
show that the proposed solutions outperform the state-of-the-
art methods in network embedding, entity alignment, and re-
lation alignment. For future work, we plan to integrate the at-
tention mechanism and semantic information into the model.

1FB15k-237 is a version of FB15k with problematic inverse re-
lation pairs removed.
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City, Québec, Canada, pages 1112–1119, 2014.

[Wang et al., 2018] Zhichun Wang, Qingsong Lv, Xiaohan
Lan, and Yu Zhang. Cross-lingual knowledge graph align-
ment via graph convolutional networks. In Proceedings
of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 349–357, 2018.

[Yang et al., 2014] Bishan Yang, Wen-tau Yih, Xiaodong
He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases.
CoRR, abs/1412.6575, 2014.

[Ying et al., 2018] Rex Ying, Ruining He, Kaifeng Chen,
Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-
scale recommender systems. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK, Au-
gust 19-23, 2018, pages 974–983, 2018.

[Zhu et al., 2017] Hao Zhu, Ruobing Xie, Zhiyuan Liu, and
Maosong Sun. Iterative entity alignment via joint knowl-
edge embeddings. In Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI,
Melbourne, Australia, pages 4258–4264, 2017.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4141


