
THE JOURNAL OF TRANSPORT AND LAND USE http://jtlu.org     
VOL. 7 NO. 2 [2014] PP. 135–51 http://dx.doi.org/10.5198/jtlu.v7i2.468 

 
Copyright 2014 David Brownstone and Hao (Audrey) Fang 
Licensed under the Creative Commons Attribution – Noncommercial License 3.0 

 

A vehicle ownership and utilization choice model with endogenous  
residential density 

David Brownstone Hao (Audrey) Fang  

University of California, Irvine eBay Inc. 

dbrownst@uci.edu hafang@ebay.com 
 

 

Abstract:   This paper explores the impact of residential density on households’ vehicle type and usage choices using the 

2001 National Household Travel Survey (NHTS). Attempts to quantify the effect of urban form on households’ vehicle 

choice and utilization often encounter the problem of sample selectivity. Household characteristics that are unobservable to 

the researchers might determine simultaneously where to live, what vehicles to choose, and how much to drive them. Unless 

this simultaneity is modeled, any relationship between residential density and vehicle choice may be biased. This paper ex-

tends the Bayesian multivariate ordered probit and tobit model developed in Fang (2008) to treat local residential density as 

endogenous. The model includes equations for vehicle ownership and usage in terms of number of cars, number of trucks 

(vans, sports utility vehicles, and pickup trucks), miles traveled by cars, and miles traveled by trucks. We carry out policy 

simulations that show that an increase in residential density has a negligible effect on car choice and utilization, but slightly 

reduces truck choice and utilization. The largest impact we find is a -.4 arc elasticity of truck fuel use with respect to density. 

We also perform an out-of-sample forecast using a holdout sample to test the robustness of the model. 

1 Introduction 
 

Attempts to quantify the effect of urban form on households’ vehicle choice and utilization often en-
counter the problem of sample selectivity. That is, household characteristics that are unobservable to the 
researchers might determine simultaneously where to live, what vehicles to choose, and how much to 
drive. Unless this simultaneity is modeled, any relationship between residential density and vehicle choice 
may be biased. In this paper, we study to what extend residential density affects households’ vehicle own-
ership and vehicle miles traveled, using a Bayesian approach that corrects for the endogeneity of the den-
sity choice. Moreover, we perform an out-of-sample forecast using the estimates obtained to test the ro-
bustness of the model.  

The purpose for studying a more precise relationship between residential density and households’ ve-
hicle type choice and utilization is to provide a piece of evidence for or against using residential density as 
a tool to control people’s travel behavior, a proposal often explored in urban literature (Cervero and 
Kockelman 1991, Dunphy and Fisher 1996, Ewing and Cervero 2001, Brownstone and Golob 2009, 
Kim and Brownstone 2013, Bento et. al. 2005 and 2009).  

The paper extends the models developed in Fang (2008) to treat local residential density as endoge-
nous, and it extends the empirical work to cover the United States instead of just California. The model 
includes equations for vehicle ownership and usage in terms of number of cars, number of trucks, miles 
traveled by cars, and miles traveled by trucks.1 Number of cars and trucks are modeled as multivariate 
ordered probit, and usage of cars and trucks are modeled as multivariate Tobit, both at a disaggregate 
level. Residential density at the census block level is added to the system as an additional dependent vari-
able. As a whole, we will estimate a simultaneous residential density and vehicle ownership and usage 
model system. As such, we need additional exogenous covariates in the density equation other than the 
explanatory variables used in the vehicle ownership and usage equations to identify the system. The extra 
exogenous variable, or the instrumental variable, we use in this study is the average density for a tract’s 

                                                        
1Car is defined as automobile, or station wagon; truck refers to van, sports utility vehicle, or pickup truck. 
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MSA, following Brueckner and Largey (2008). The basic assumption is that the average MSA density is 
correlated with the density at a more localized level, such as at the census block or tract level, but is un-
correlated with the unobserved factors that influence households’ choice of vehicle ownership and utiliza-
tion. We argue that people’s decisions on what types of vehicles to drive and how much to drive are only 
influenced by immediate areas surrounding where they live, and not by density at the MSA level. There-
fore, the average MSA density variable should be excluded from the vehicle ownership and utilization 
equations, while included in the localized density equation.  

The practice of using variables at a more aggregate level as instrumental variables could also be found 
in Evan, Oates, and Shwab (1992). They found that two thirds of the families who chose to move in the 
last five years from their current residency moved within the same metropolitan area. The analysis there-
after in this paper is conditional on the metropolitan area people live in, but unconditional on where in 
the metropolitan area people choose to reside. If the unobserved characteristics also influence a house-
hold’s decision on which metropolitan area to live, then the average MSA density will no longer be a val-
id instrument.  

Other than addressing the endogeneity issue, this paper differs from Fang (2008) in two other as-
pects. Fang only uses the California subsample from the 2001 National Household Travel Survey 
(NHTS), but this paper uses a much larger data set including households across all states in the U.S. The 
larger data set not only provides more variation in the explanatory variables, but also provides enough 
observations so that proper out-of-sample forecasting can be executed. To our knowledge, this is the first 
paper in the literature that performs out-of-sample forecasts as an additional robustness check of the 
model. Note that we do not use the more recent 2009 NHTS data since this survey did not collect dual 
odometer readings. Lave (1994) shows that dual odometer readings are needed to accurately measure 
vehicle miles traveled. 

The paper is organized as follows: section 2 describes the model used for estimation and the proce-
dures for the Bayesian estimation; section 3 discusses the data used in the study, and the statistical de-
scription of the variables; detailed parameter estimation results and policy simulations are presented in 
Section 4; in section 5, we perform out-of-sample forecasts to test the robustness of the model; and sec-
tion 6 concludes.  

2  Model 

 

The behavior of each household is characterized by five equations:  

 ii ii
Dy xα β ε

∗
= + +  (1) 

 
ii i

D zγ η= +  (2) 

where 
iy
∗
 is a 4 by 1 vector of latent dependent variables for number of cars, number of trucks, mile-

age on cars, and mileage on trucks; 
i
D  is a measure of density for households i  at the census block level, 

and is endogenous. The relationships between the latent dependent variables and their observed values 
are:  
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The two equations of car and truck counts are modeled as bi-variate ordered probit, and the two 
equations of car and truck miles travelled are modeled as censored Tobit. Parameter identification of the 
ordered probit specifies the two cut points to be zero and one, and the variances be unrestricted (Nan-

drum and Chen 1996, Webb and Forster 2008, Fang 2008). Therefore, 
0
0α =  and 

1
1α = . Note that 

this ordered probit specification for the car and truck counts can match any unimodal distribution and is 
more flexible than Poisson or Negative Binomial count models. The miles traveled equations could also 
be modeled as a Heckit model, but this leads to a much more complicated estimation problem. We have 
experimented with this Heckit version of our model and get essentially the same results. 

ix  is a vector that contains household i ’s demographics and its neighborhood characteristics; iz  is a 

vector of instrument variables that includes ix . The error terms ε  and η  are normally distributed with 

mean zero, and with a 5 5×  covariance matrix: 
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Σ Σ  gives the correlations between the endogenous density variable and the four dependent 
variables on vehicle ownership and usage, and measures the degree of endogeneity. We can rewrite Equa-
tions 1 and 2 in the following form:  
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Equation 4 can be simplified again as the following:  

 X UY φ∗ = +  (5) 

where ( )ii
DyY

ʹ′∗∗ ʹ′= , , (( ) )ii iX diag D zx
∗∗= , , , ( )φ α β γʹ′ ʹ′ ʹ′ ʹ′= , , , ( )U ε ηʹ′ ʹ′ ʹ′= , .  

Due to the discrete nature of the system, the likelihood function involves integrals of multivariate 
normal densities. In this paper, we use data augmented Gibbs sampling for limited dependent variable 
models to avoid direct evaluation of the likelihood function (Albert and Chib 1993, Li 1998, Fang 
2008). There are three advantages of the approach used. First, using augmented latent variables avoids 
evaluation of the multivariate normal distributions and reduces computational costs. Second, it provides 
exact finite sample inference of the parameters and hence is free from the use of asymptotic approxima-
tions. Finally, we can easily take parameter uncertainty into account in deriving posterior and predictive 
densities for the function of interest (Li 1998).  

We assume a normal prior for
0 0( )N Vβ β ,: , and an Inverse-Wishart for ( )IW QνΣ ,: , where 

0 0
, , ,  and V Qβ ν  are pre-specified prior parameters chosen to make the prior distributions diffuse.  

These prior distributions are chosen for computational convenience, but the posterior distributions 
are not sensitive to any of the prior parameters. The Gibbs sampling procedure is as follows:  
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Step 1: draw 
iy
∗
 conditional on 

i
D φ, ,Σ  from multivariate truncated normal distribution  

 12 12( )ii
D MVTNy φ µ σ

∗

| || , ,Σ ,:
      (6) 

where 
1
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| = + + Σ − , and 
1
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Step 2: draw φ  conditional on 
iY
∗ , Σ  from multivariate normal distribution  

 ( )i MVN VYφ φ∗| ,Σ ,:        (7) 
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Step 3: draw Σ  conditional on 
iY
∗ , φ  from Inverse Wishart distribution  

 1
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    (8) 
In this paper, the instrumental variable is the average MSA residential density measured by housing 

units per square mile. The correlation between the average MSA residential density and the residential 
density at the census block level is .433.  

The model system in equations (1) and (2) could be estimated by maximum likelihood methods, alt-
hough given the multiple integrals in the likelihood function this would typically be done using simula-
tion methods (see Train, 2003). We have chosen to use Bayesian methods for both computational and 
statistical reasons. Our Gibbs sampling procedure described above directly samples blocks of parameters 
and does not use any Metropolis-Hastings steps. It therefore runs very quickly, and sampling the parame-
ters in blocks reduces the correlation between the draws. Maximum likelihood computation may be 
more difficult because the log-likelihood function is not convex in the correlation parameters (off-
diagonal elements in Σ  ), and this requires manually restarting the optimization from different starting 
points to help find a global maximum. 

Even if the maximum likelihood estimates are correctly calculated, there is still the problem of infer-
ence. Most software either uses some numerical approximation to the inverse Hessian of the log likeli-
hood or the “sandwich estimator” favored by Train (2003). Unfortunately these two different methods 
can give very different estimates, and there is no way to distinguish between them using standard asymp-
totic theory. Even if the covariance estimates agree, there is still the problem of producing confidence 
regions for complex functions of the model parameters. Daly, Hess, and de Jong (2012) show that it is 
quite complicated to get valid confidence intervals for relatively simple functions of the underlying pa-
rameters such as willingness to pay measures. Their methods would be very difficult to implement for the 
policy simulations in Tables 3 and 4 or the predictions in Tables 6 and 7. 

The Bayesian methods used in this paper have clear prescriptions for inference. Confidence regions 
are given by highest posterior density regions, and confidence regions for complex functions of parame-
ters and data can easily be calculated by using the draws of parameters from the Gibbs sampling scheme 
described earlier in this section. It turns out that the highest posterior density regions for the parameters 
and policy simulations are symmetric and unimodal, so the intervals implied by posterior standard devia-
tions reported in the tables in the rest of this paper are very good approximations to the highest posterior 
density regions. 

Bayesian methods do require a choice of prior distribution, and they may not have good repeated 
sampling properties. Fortunately the inferences and estimates presented in this paper are not sensitive to 
different diffuse priors. We carried out some Monte Carlo studies on the model in Fang (2008), and the-
se studies confirmed that the Bayesian procedures were very similar to maximum likelihood and had 
good repeated sampling properties. The model in Fang (2008) is very similar to the one used here, but it 
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treats density as exogenous and therefore omits equation (2). It is therefore likely that the methods used 
in this current paper also have good repeated sampling properties. 

3  Data 

 

We use data from the 2001 National Household Travel Survey (NHTS), a cross-section survey of a total 
of 69,817 households nationwide. Among them, 26,038 are in the national sample, and 43,779 are from 
nine add-on areas, states or local jurisdictions that purchased additional households in their jurisdiction 
to be interviewed and included in the NHTS for area-specific studies. This paper only includes house-
holds in the national sample, and we do not use the more recent 2009 NHTS because the 2009 survey 
did not include the two odometer readings required to get accurate utilization measures (Lave, 1994). By 
merging the household file, vehicle file and person file, we obtain a sample of 25,057 households that 
contain detailed information on households’ demographics, various measures of land use density, vehicle 
properties including year, make, model, and complete estimates of annual miles traveled. Out of these 
25,057 households, we randomly choose 5,863 households for estimation. The rest of the observations 
will be used for the out-of-sample forecast in Section 5. Households with missing information on various 
measures of density are dropped from the sample. Throughout the paper, we assume that whatever made 
people answer the survey is independent of density and vehicle choice, conditional on demographics. 
Hence the sample used for estimation can be seen as random. All of these data and associated documen-
tation are available from http://nhts.ornl.gov/download.shtml. 

Explanatory variables include density and household demographic characteristics. Density is meas-
ured by housing units per square mile at the census block level, which is highly correlated with popula-
tion per square mile and jobs per square mile. To capture local transit networks and non-motorized facil-
ities, an indicator of whether or not the MSA has rail, and the number of bicycles in the households are 
considered. Demographic variables include total household annual income, the highest education level 
achieved within a household, household size, number of adults, children’s ages, home ownership, and 
urban/rural indictor of the residence area.  

The summary statistics of the variables for the national sample and the sub-sample are listed in Ta-
ble 1. Only 6 percent of the 25,057 national sample households own 3 or more cars, and only 4 percent 
of these households own 3 or more trucks. This partially justifies aggregating 2 or more cars and 2 or 
more trucks into one category. Note that the average variable values largely agree between the national 
sample and the randomly drawn sub-sample.  

Note that there are very few vehicles in the estimation sample whose dual odometer readings show no 
change. These vehicles are either driven very infrequently or are held primarily as investments or collecti-
bles. We left these vehicles in our samples since the results are unchanged when they are excluded. Unlike 
Brownstone and Golob (2009) we do not directly model fuel use even though it is relevant for many pol-
icies. The measures of fuel use in the NHTS sample are derived from matching vehicle efficiency based 
on reported year/make/model of each household vehicle. There are substantial missing data in these vari-
ables, so directly modeling fuel use reduces the sample size by about 20 percent and potentially biases the 
sample since the more vehicles in a household the more likely it is for at least one of them to be missing 
key information.  
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Table 1: Descriptive Statistics 

 

Variables  National  Subsample  
 Mean  (Std.)  Mean  (Std.)  

Observations  25,057  5,863  

Explanatory Variables   

Housing units/sq. mile (block)  1397  (1505)  1452  (1526)  
Population/sq. mile (block)  3638  (4657)  3799  (4834)  
Employment/sq. mile (tract)  1306  (1472)  1334  (1475)   
Housing units/sq. mile (tract)  1217  (1367)  1254  (1388)  

Population/sq. mile (tract)  3102  (4051)  3211  (4116)  
Number of adults  1.91  (0.70)  1.88  (.71)   

Number of children  .65  (1.05) .65  (1.05)  
Highest education achieved high school  30.6%   30.0%   

Highest education achieved bachelor  37.8 %   37.8%   
Youngest child under 6  14.6%   15.4%   

Youngest child between 6 and 15  17.2%   16.4%   
Youngest child between 15 and 21  5.9%   5.4%   

MSA has rail  22.1%   23.6%   
Resides in urban area (tract) 75.3%   77.1%   

Household income is between 20k and 30k  12.4%   12.2%   
Household income is between 30k and 50k  23%   22.0%   
Household income is between 50k and 75k  17.9%   17.4%   

Household income is between 75k and 100k  11%   10.3%   
Household income is greater than 100k  12%   12.7%   

Household owns home  80.1%   78.7%   
     

Vehicle Choice and Utilization     
Household owns no car 22.1%  22.4%  
Household owns one car 51.7%  51.9%  

Household owns two or more than two cars 26.2%  25.7%  
Household owns no truck 41.2%  43.6%  
Household owns one truck 38.2%  37.6%  

Household owns two or more than two trucks 20.6%  18.8%  
Average car miles per year conditional on owning 

cars 
11,470 10,021 11,362 9,648 

Average truck miles per year conditional on own-
ing trucks 

12,982 10,669 13,082 11,320 

4  Estimation Results 

 

Since we don’t want to impose a priori the possible effects of residential density on household’s vehicle 
type choice and utilization, we make the priors relatively noninformative. We set the variance of the 

normal prior to be large and prior degree of freedom of the Wishart to be small. Specifically, we set 
0

β  

to be a vector of zeros, and 
0
V  to be a diagonal matrix with 100 on the diagonal, ν  to be 10, and Q  an 

identity matrix. We check the effect of the prior by increasing the prior variance of β  to reflect the non-

informativeness of the prior. Since results obtained from the noninformative priors are virtually the same 
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with the relatively noninformative prior mentioned above, we conclude that data information is predom-
inant.  

In the Gibbs Sampler, we take 20,000 iterations and burn in the first 2,000 to mitigate start up ef-
fects and use the remaining draws to get posterior inferences. We experimented with up to 100,000 itera-
tions and discarding the first 10,000 but there were no differences from the results presented here. We 
also tried taking every 20th draw to reduce the impact of correlation between draws, but there were no 
differences suggesting that correlation is not a problem with this model and data. Table 2 lists the estima-
tion results of the model. The five columns stands for the five equations estimated, with log of density at 
the census block level as dependent variable for the last equation. There is a close relationship between 
the possibly endogenous variable (the density at the census block level) and the instrument variable (aver-
age MSA density). Specifically, a 1 percent increase in the average MSA density is associated with approx-
imately .57 percent increase in the density at the census block level.  

The effects of household demographics have expected signs. Household size is positively correlated 
with number of trucks and truck utilization, and is negatively correlated with number of cars and car 
utilization. Meanwhile, as the number of adults increases, both numbers of cars and trucks and their uti-
lizations increase. Since the number of children in a household equals household size less number of 
adults, the above observation shows that when the number of children increases, it is more likely for the 
family to own trucks. Recall that our definition of trucks includes SUVs and vans, and these vehicle types 
are useful for transporting children and their friends. Income has a significantly positive impact on vehi-
cle holdings and utilization. Accessibility to public transit, such as rail, makes people choose fewer trucks 
and drive them less.  

After obtaining posterior draws of the parameters, we calculate the marginal effects of density on ve-
hicle choices for each household and present the average effects across households. Table 3 shows the 
mean and standard deviation of the probability changes for holding zero, one, and two or more 
cars/trucks with respect to changes in density. When density increases by 50 percent (a very large amount 
– see Downs, 2004, Chapter 12), the probability of not holding trucks increases by approximately 2.67 
percentage points (equivalent to an arc elasticity of .053), and the probabilities of holding one truck and 
two trucks decrease by around 1.07 and 1.60 percentage points respectively (equivalent to arc elasticities 
.021 and .032). These changes are around two times bigger than those obtained in Fang (2008), in 
which only California data are used and endogeneity left uncorrected. In that study, when density in-
creases by half, the probability of not holding trucks increases by approximately 1.2 percentage point, 
and the probabilities of holding one truck and two trucks decrease by around .75 and .46 percentage 
point respectively. Qualitatively, however, the two sets of results largely agree - residential density has a 
modest and statistically significant impact on truck ownership. If we further increase residential density 
to the extent that it doubles, the reduction in truck ownership deepens by modest 4.56 percentage 
points.  

Residential density affects households’ choice of cars with a much smaller scale and in a less signifi-
cant way. When density increases by 50 percent, the probability of holding zero cars decreases by .47 
percentage points, that of holding one car increases by .05 percentage points, while the probability of 
holding two or more cars increases by .42 percentage points.  

Table 3 shows that the demand for car ownership is inelastic with respect to residential density, but 
the demand for truck ownership is relatively more elastic. The intuition is that the demand for vehicles is 
largely influenced by income, the life cycle of the family, number of children, and many factors other 
than residential density. As will be shown later, however, vehicle utilization is more susceptible to resi-
dential density variation. When we add the effects of vehicle ownership change and utilization reduction 
together, we found that residential density has a fairly large impact on energy consumption.  

Note that the difference in density between Philadelphia (2561 units/sq. mile) and Los Angeles 
(3322) is about 25 percent, the difference between Phoenix (2317) and New York (3792) is about 50 
percent, and the difference in density between Atlanta (1180) and Phoenix is about 100 percent.  
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Table 2: Coefficient Estimates 

Variable  Coefficient  

 number of 
cars 

number of 
trucks 

annual avg 
car miles  

(in 1,000s) 

annual avg 
truck miles  
(in 1,000s) 

Log of block  
density 

log(block density)  0.0375 -0.1969  0.0342 -3.2304  -   

 (0.0433)  (0.0455) (0.4929) (0.6602)  -  

Number of bikes  -0.0273  0.1093  -0.1293  1.2140  0.0138   

 ( 0.0130 )  ( 0.0130 )  ( 0.1480 )  ( 0.2097 )  (0.0127)   

Household size  -0.1204  0.0980  -1.1827  2.1654  -0.0317   

 ( 0.0270 )  ( 0.0274 )  ( 0.3115 )  ( 0.4278 )  ( 0.0262 )   

Number of adults  0.3239  0.1671  3.5415  1.5293  -0.0113   

 ( 0.0346 )  ( 0.0358 )  ( 0.4002 )  ( 0.5610 )  ( 0.0336 )   

Urban  -0.0039  0.1747  -1.0355  3.1176  2.4098   

 ( 0.1250 )  ( 0.1298 )  ( 1.4218 )  ( 1.9134 )  ( 0.0385 )   

Income between 20k and 30k  0.1255  0.3805  1.1598  5.5918  -0.0032   

 ( 0.0561 )  ( 0.0614 )  ( 0.6343 )  ( 0.9864 )  ( 0.0532 )   

Income between 30k and 50k  0.1554  0.5828  2.4567  8.7760  -0.0686   

 ( 0.0501 )  ( 0.0556 )  ( 0.5693 )  ( 0.8782 )  ( 0.0483 )   

Income between 50k and 75k  0.1347  0.7135  2.7229  11.8910  -0.1108   

 ( 0.0553 )  ( 0.0603 )  ( 0.6334 )  ( 0.9540 )  ( 0.0539 )   

Income between 75k and 100k  0.3262  0.6780  4.2178  11.4340  -0.1700   

 ( 0.0655 )  ( 0.0697 )  ( 0.7414 )  ( 1.1015 )  ( 0.0641 )   

Income greater than 100k  0.2539  0.7526  3.9113  12.8280  -0.3294   

 ( 0.0660 )  ( 0.0700 )  ( 0.7490 )  ( 1.1065 )  ( 0.0646 )   

Income data missing  0.2381  0.2795  0.6552  3.7614  -0.1050   

 ( 0.0650 )  ( 0.0731 )  ( 0.7459 )  ( 1.1589 )  ( 0.0631 )   

Owns home  0.0675  0.3937  -0.4018  3.3768  -0.3576   

 ( 0.0423 )  ( 0.0458 )  ( 0.4828 )  ( 0.7257 )  ( 0.0372 )   

MSA has rail  0.0598  -0.1962  0.2095  -2.0256  -0.0203   

 ( 0.0421 )  ( 0.0449 )  ( 0.4758 )  ( 0.7046 )  ( 0.0413 )   

Highest education: high school  0.1008  -0.0022  1.1975  0.6450  0.0217   

 ( 0.0385 )  ( 0.0402 )  ( 0.4415 )  ( 0.6449 )  ( 0.0375 )   

Highest education: Bachelor  0.2265  -0.1654  2.5117  -1.1363  0.1622   

 ( 0.0421 )  ( 0.0441 )  ( 0.4815 )  ( 0.7033 )  ( 0.0403 )   

Youngest child under 6  0.1033  0.1264  2.4547  2.1375  -0.0254  

 ( 0.0711 )  ( 0.0730 )  ( 0.8176 )  ( 1.1478 )  ( 0.0695 )   

Youngest child between 6 and 
15  

0.1197  0.0873  2.1364  1.3270  -0.0418   

 ( 0.0634 )  ( 0.0649 )  ( 0.7299 )  ( 1.0186 )  ( 0.0619 )   

Youngest child between 15 and 
21  

0.0779  -0.1235  2.0036  0.4597  -0.0193   

 ( 0.0683 )  ( 0.0717 )  ( 0.7839 )  ( 1.1416 )  ( 0.0685 )   

log(average MSA Density)  -  -  -  -  0.5743   

 -  -  -  -  ( 0.0244 )   

Notes: The base groups are households with income below 20k, do not own home, are high school dropout,  

have no children, and live in rural area. Posterior standard deviations are reported in parentheses;  
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Table 3: Changes in vehicle choice when block density increases 

 
Percent changes in  Probability changes for truck choice  

density  Δ
P(tnum=0)  

Δ
P(tnum=1)  

Δ P(tnum

≥2)  

10 %  .0063  -.0024  -.0038  
 (.0014) (.0005)  (.0009)  

25 %  .0147  -.0058  -.0089   
 (.0032)  (.0012)  (.0020)  

50 %  .0267  -.0107  -.0159   
 (.0058)  (.0023)  (.0035)  

100% .0456 -.0190 -.0265 
 (.0099) (.0042) (.0058) 
  

Percent changes in  Probability changes for car choice   
density  Δ

P(cnum=0)  
Δ

P(cnum=1)  
Δ P(cnum

≥2)  

10 %  -.0011  .0001  .001  
 (.0013)  (.0002)  (.0011)  

25 %  -.0026  .0003  .0023  
 (.0030)  (.0004)  (.0026)  

50 %  -.0047  .0005  .0042  
 (.0054)  (.0007)  (.0048)  

100% -.0080 .0008 .0072 
 (.0092) (.0010) (.0083) 

Notes: posterior standard deviations are reported in parentheses  

 

Table 4 shows that changes in density do not seem to affect car utilization. Annual average miles driv-
en in cars by a household would only increase by around 14 miles when housing units per square mile 
increases by 50 percent. Even when the housing density doubles, the annual average car utilization would 
merely increase by about 24 miles. On the contrary, annual average miles of trucks respond more sharply 
to density changes. When housing units per square mile increases by 50 percent, utilization of truck 
would decrease by approximately 610 miles, with a standard deviation of about 118 miles. This effect is 
in the same scale as that found in Fang (2008), in which a 50 percent increase in density will reduce 
truck utilization by about 562 miles. Doubling the residential density would reduce annual average truck 
miles by about 1004 miles, which is a 13.6-percent reduction in truck utilization and equivalent to a 
.136 arc elasticity.  
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Table 4: Changes in vehicle miles when density increases 

 

 Δ car 
miles  

%Δ car 
miles  

Δ truck 
miles  

%Δ truck 
miles  

10 %  3.23 .04  -149.63  -2.03  
 (46.29)  (.53)  (29.76)  (.40)  

25 %  7.63  .08  -344.34  -4.67   
 (108.34) (1.23) (67.61)  (.92)  

50 %  14.02  .16  -610.5  -8.27  
 (196.79) (2.23)  (117.66)  (1.59)  

100% 24.37 .28 -1003.6 -13.6 
 (336.14) (3.82) (187.23) (2.54) 
Notes: posterior standard deviations are reported in parentheses  

 
We can also obtain an approximation of residential density’s marginal effect on energy consumption 

using vehicle fuel efficiency data and density’s marginal effect on vehicle type choice and utilization. In 
our sample, average fuel efficiency of cars is 21.8 miles per gallon, and average fuel efficiency of trucks is 
16.6 miles per gallon. The 5863 households in our sample drive a total of 74 million car miles and 61 
million truck miles per year, equivalent to a total consumption of 3.4 million gallons by car usage and 
3.7 million gallons by truck usage. When density doubles, we redistribute cars and trucks among the 
5863 households using probability changes presented in Table 3. Because we classify number of vehicles 
equal or larger than two as one group, the redistribution of cars/trucks among families with cars/trucks 
exceeding quantity one is done based on the assumption that the percentage of two, three, etc., vehicles 
in the group remain constant before and after the density change. This assumption is conservative be-
cause one would expect the vehicle number distributed more towards smaller numbers when density in-
creases. By holding constant the vehicle distribution for households with two or more vehicles, we pro-
vide conservative (lower magnitude) estimate of the marginal effect of density increase. Average car/truck 
miles after the density increase can be easily calculated using the percentage changes in vehicle miles pre-
sented in Table 4. With the new distribution of cars and trucks among the households in the sample, and 
new average car/truck miles, we calculate the total energy consumption by the 5863 households after the 
density doubling to be 3.4 million gallons by car usage and 2.2 million gallons by truck usage. The ener-
gy usage of cars barely changes at all by increasing about 1.8 percent, and the energy usage of trucks de-
creases by about 40.7 percent (corresponding to an arc elasticity of .41). This amounts to a substantial 
reduction of 1.4 million gallons, or 20 percent, of total gasoline consumption by vehicle usage.  

Table 5 shows the correlation matrix of the structural error matrix Σ . We find that the unobserved 
characteristics affecting number of cars held and number of trucks held have a negative correlation of -
.40. The correlation between miles driven by cars and miles driven by trucks is -.15. This indicates a sub-
stitution effect between cars and trucks, not only type-wise but also usage-wise. The unobserved charac-
teristics that make people to live in dense areas also tend to make people choose more trucks, and drive 
more truck miles. The correlation, controlled for observed characteristics, between density and the num-
ber of trucks is .09 with a standard deviation of .051, and that between density and average truck miles is 
.1 with a standard deviation of .044. Hence we conclude that controlling for the endogeneity of the den-
sity variable is necessary in the estimation. 
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Table 5: Correlation Matrix of Structural Errors (Σ ) 

 

 number of 
cars  

number of 
trucks  

avg car  
  mile  

avg truck 
mile  

density  

number of cars  1.00  -  - -  -  
number of trucks  -.40  1.00  -  -  -  

 (.014)     
avrg car mile  .53  -.29  1.00  -  -  

 (.011)  (.015)     
avrg truck mile  -.31  .59  -.15  1.00  -  

 (.015)  (.011)  (.015)    
density  -.016  .09  -.04  .1  1.00   

 (.049)  (.051)  (.046)  (.044)   
Notes: Highest posterior standard deviations are reported below each correlation   

5.  Prediction 

 

As a robustness check, we carry out the out-of-sample forecast of vehicle choice and utilization for ran-
dom observations from the rest of the national sample. Generally, the Bayesian predictive probability 

distribution function of the future observable dependent variable p
y  can be expressed as the following,  

 ( ) ( ) ( )p pf f f d dβ β β| = | , ,Σ ,Σ | Σ∫ ∫y y y y y     (9) 

where y  is the in-sample data used for estimation, and ( )f β ,Σ | y  is the posterior distribution of 

the parameters. Since Equation 9 cannot be solved analytically, one may use the following strategy (Koop 

2003) in the same fashion of a Markov Chain Monte Carlo to obtain draws of p
y  that can be considered 

to be from the predictive probability distribution:  
 

Step 1: Get draws of s sβ ,Σ  from the posterior ( )f β ,Σ | y . In this case, they are simply draws 

from the Gibbs Sampler from the in-sample estimation.  
 

Step 2: Draw ps
y  from a multivariate Normal distribution of ( )s sMVN Xβ ,Σ .  

 

With sequence of random draws of ps
y , we can obtain the mean and standard deviation of its predic-

tive distribution. One complication with the prediction in this paper is that the dependent variables are 
not continuous, but limited. Therefore, additional steps are needed to obtain the quantitative probabilis-
tic predictions for vehicle ownership. For example, if we would like to predict the probability of having 
zero car for a particular household, we obtain the probability that the latent utility towards having zero 

car, 
1

0
py ∗
< , from the following:  

 

1

0

1 1

Prob( 0 )

( )

p

p p

y y

f y y dy

∗

∗ ∗

−∞

< |

= |∫
 

(substitute in Equation 9) 
0

1 1( ) ( )p pf y y f y d d dyβ β β∗ ∗

−∞

⎛ ⎞| , ,Σ ,Σ | Σ⎜ ⎟
⎝ ⎠
∫ ∫∫  
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(Fubini´s Theorem) =  
0

1 1( ) ( )p pf y y dy f y d dβ β β
⎛ ⎞∗ ∗⎜ ⎟
⎜ ⎟−∞⎝ ⎠

| , ,Σ ,Σ | Σ∫ ∫ ∫  

=  
1Prob( 0 ) ( )py y f y d dβ β β∗ < | , ,Σ ,Σ | Σ∫ ∫  

 
The steps needed to calculate the above probability are:  

Step 1: Get draws of 
s sβ ,Σ  from the posterior ( )f β ,Σ | y .  

Step 2: Calculate 1

11

( )
s

s

XsP
β

σ

−
= Φ .  

Step 3: Averaging across all the probability draws, 1
1 1

Prob( 0 )
Np s

N s
y y P∗

=
< | ≈ ∑ .  

 
Calculation for the other predictive probabilities follows the same procedure. A number of random 

samples are taken to perform the prediction, and the forecast results from which all follow the same pat-
tern. Table 6 lists the actual and predicted number of households that hold zero, one, and two or more 
cars/trucks for a random sample of 101 and a random sample of 4991 observations. The prediction for 
zero car, one car, one truck, and two and more trucks are in the ball-park of the actual values, taking 
standard deviations into account. But the model consistently underestimates the number of households 
for holding two or more cars and overestimates the number of households not holding trucks.  

Table 6: Predicted number of households 

 

 c=0  c=1  c ≥  2  t=0  t=1  t ≥  2   

 Random sample of 101 obs.  

Predicted number of 
households  

26  54  21  50  35  16   

(standard deviation)  (.6)  (.7)  (.5)  (.6)  (.7)  (.6)  

True number of 
households  

24  49  28  49  33  19   

 Random sample of 4991 obs.  

Predicted number of 
households  

1301  2677  1013  2413  1774.6  804   

(standard deviation) (28.8)  (33.8)  (25.5)  (29.7)  (34.9)  (25.9)  

True number of 
households  

1060  2601  1330  2165  1884  942   

 

 

Forecasts for vehicle miles perform much better than those for vehicle type choice aforementioned, as 
are shown in Table 7. The predicted average miles are more accurate for a random sample of 4,991 
households than for that of 101 households, presumably due to simulation errors, as reflected by the dif-
ference in standard deviations. For a sample of 101 households, the predicted car utilization is 9,155 
miles, 16 miles less than the true value, and the predicted truck utilization is 7,592 miles, less than two 
standard deviations away from the true value. For a random sample of 4,991 households, the predicted 
average miles driven by cars is 9,114, 21 miles less than the actual value observed; the predicted average 
miles driven by truck is 7,649, 445 miles higher than the actual value.  
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Table 7: Predicted average miles driven for households in the sample 

 

 average miles by cars  average miles by trucks   

 Random sample of 101 obs.  
Forecast  9155.6  7592.4   

(standard deviation)  (927.6)  (1018.7)   
True  9171.9  5882.2  

 Random sample of 4991 obs.  
Forecast  9113.6  7649.3  

(standard deviation) (178.9)  (210.6)   
True  9135  7204.4   

 

It is difficult to interpret the results of the out of sample predictions discussed above. Ideally we 
would like the posterior forecast intervals to always contain the true values, but failure to reach this ideal 
does not necessarily imply that the model is performing worse than other models used for this type of 
work. Until other models are subjected to these out of sample forecasting exercises it will be difficult to 
judge the results. 

6.  Conclusion 

 

This paper extends the model in Fang (2008) to include the possibility of unobserved factors that affect 
both vehicle choice and density choice - an endogeneity problem that might bias the estimation results. 
We control for part of this by using disaggregate data and detailed household characteristics. More im-
portantly, we utilize an instrument variable, average MSA density, in the estimation to correct for the 
endogeneity. We apply this model to the 2001 NHTS survey data, and we find statistically significant 
error correlations indicating endogeneity bias. However, the magnitude of this bias is small and our re-
sults are qualitatively and quantitatively similar to Fang (2008) who assumed zero error correlations. This 
finding of essentially no error correlation between density and vehicle miles corroborates similar findings 
using a different model structure in Brownstone and Golob (2009). However if detailed household char-
acteristics are not controlled, then these models have larger error correlations and substantial endogeneity 
bias. 

The results show that even a very large increase in residential density has a negligible effect on car 
choice and utilization, but slightly reduces truck choice and utilization. Since trucks are considerably less 
efficient than cars due to differences in fuel economy regulations in the U.S., fuel consumption is re-
duced by a larger amount. The changes in residential density used in our policy simulations are very 
large, and it is very unlikely that these changes will occur except in isolated new developments. The 
Bayesian confidence intervals are quite narrow, so these results are precisely estimated. To further test the 
robustness of the model, we perform forecasting on a number of random samples from the population. 
We find that the predicted values are largely consistent with the true values, more so for vehicle utiliza-
tion than vehicle choice, confirming the robustness of the model used.  

The model used here only looks at the choice of cars and trucks, but U.S. fuel economy standards 
imply that this split is responsible for most of the differences in fuel economy. Fang (2008) extended the 
model to split trucks and cars into large and small subcategories, but the qualitative and quantitative re-
sults were not changed. The New York MSA is frequently an outlier in studies of vehicle use due to its 
high density and high share of transit use. The appendix re-estimates our model excluding the New York 
MSA, and we find that our results are essentially unchanged. This suggests that the socio-demographic 
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variables included in our model effectively capture the differences between New York and the rest of the 
country. 
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Appendix: Estimation of Tables 3, 4, and 5 excluding the New York MSA: 

Table 8: Coefficient Estimates 

Variable  Coefficient  

 number of  number of  annual avg  annual avg  Log of  

 cars  trucks  car miles  truck miles  block   

   (in 1,000s)  (in 1,000s)  density  

log(block density)  0.0492  -0.2039  0.2201  -3.1961  -  
 ( 0.0445 )  ( 0.0480 )  ( 0.5072 )  ( 0.6641 )  -  

Number of bikes  -0.0303  0.1085  -0.1281  1.1545  0.0151   
 ( 0.0133 )  ( 0.0135 )  ( 0.1530 )  ( 0.2072 )  ( 0.0129 )   

Household size  -0.1351  0.1015  -1.2631  1.9227  -0.0235   
 ( 0.0277 )  ( 0.0283 )  ( 0.3201 )  ( 0.4275 )  ( 0.0270 )   

Number of adults  0.3463  0.1595  3.6115  1.6839  -0.0221   
 ( 0.0363 )  ( 0.0371 )  ( 0.4163 )  ( 0.5654 )  ( 0.0351 )   

Urban  -0.0473  0.2114  -1.6378  3.2418  2.4392   
 ( 0.1300 )  ( 0.1396 )  ( 1.4905 )  ( 1.9448 )  ( 0.0391 )   

Income between 20k and 30k  0.1107  0.3987  1.1120  5.7851  0.0024   
 ( 0.0575 )  ( 0.0629 )  ( 0.6628 )  ( 0.9794 )  ( 0.0555 )   

Income between 30k and 50k  0.1339  0.5919  2.4171  8.7623  -0.0674   
 ( 0.0517 )  ( 0.0561 )  ( 0.5955 )  ( 0.8643 )  ( 0.0496 )   

Income between 50k and 75k  0.1079  0.7342  2.6215  11.6860  -0.1051   
 ( 0.0569 )  ( 0.0615 )  ( 0.6524 )  ( 0.9417 )  ( 0.0558 )   

Income between 75k and 100k  0.3102  0.6788  4.1733  11.3900  -0.1832   
 ( 0.0677 )  ( 0.0721 )  ( 0.7723 )  ( 1.1044 )  ( 0.0661 )   

Income greater than 100k  0.2307  0.7533  3.9036  12.6610  -0.2888   
 ( 0.0683 )  ( 0.0722 )  ( 0.7830 )  ( 1.0999 )  ( 0.0666 )   

Income data missing  0.2240  0.2695  0.6353  3.4862  -0.1083   
 ( 0.0678 )  ( 0.0747 )  ( 0.7795 )  ( 1.1687 )  ( 0.0647 )   

Owns home  0.0550  0.4076  -0.4725  3.3606  -0.3448   
 ( 0.0427 )  ( 0.0473 )  ( 0.4946 )  ( 0.7259 )  ( 0.0380 )   

MSA has rail  0.0627  -0.1910  0.5114  -2.1291  0.0101   
 ( 0.0447 )  ( 0.0487 )  ( 0.5135 )  ( 0.7320 )  ( 0.0434 )   

Highest education: high school  0.1128  -0.0117  1.2880  0.5475  0.0274   
 ( 0.0397 )  ( 0.0415 )  ( 0.4586 )  ( 0.6454 )  ( 0.0384 )   

Highest education: Bachelor  0.2219  -0.1589  2.4910  -1.0394  0.1605   
 ( 0.0431 )  ( 0.0450 )  ( 0.4969 )  ( 0.6940 )  ( 0.0420 )   

Youngest child under 6  0.1368  0.1083  2.4931  2.3481  -0.0342   
 ( 0.0734 )  ( 0.0755 )  ( 0.8450 )  ( 1.1509 )  ( 0.0713 )   

Youngest child between 6 and 15  0.1501  0.0765  2.3366  1.4450  -0.0427   
 ( 0.0651 )  ( 0.0671 )  ( 0.7497 )  ( 1.0135 )  ( 0.0636 )   
Youngest child between 15 and 21  0.0959  -0.1383  2.2486  0.3411  -0.0269   

 ( 0.0701 )  ( 0.0736 )  ( 0.8226 )  ( 1.1326 )  ( 0.0704 )   
log(average MSA Density)  -   -  -  (0.5690)   

 -  -  -  -  0.0246   

Notes: The base groups are households with income below 20k, do not own homes, are high school dropouts,  
have no children, and live in a rural area. Posterior standard deviations are reported in parentheses;  
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Table 9: Changes in vehicle choice when block density increases 

 

Percent changes in  Probability changes for truck choice  
density  Δ

P(tnum=0)  
Δ

P(tnum=1)  
Δ P(tnum≥

2)  

10 %  .0065  -.0024  -.004   
 (.0014)  (.0005)  (.0009)  

25 %  .0152  -.0058  -.0093   
 (.0034) (.0012)  (.0021)  

50 %  .0276  -.0109  -.0167   
 (.0061)  (.0024)  (.0038)  

100% .0471 -.0193 -.0278 
 (.0104) (.0043) (.0062) 

  
Percent changes in  Probability changes for car choice   

density  Δ
P(cnum=0)  

Δ
P(cnum=1)  

Δ P(cnum≥

2)  

10 %  -.0014 .0002 .0013  
 (.0013)  (.0002)  (.0011)  

25 %  -.0034  .0005  .0030   
 (.0031)  (.0004)  (.0027)  

50 %  -.0062  .0008  .0054  
 (.0056)  (.0007)  (.0050)  

100% -.0105 .0011 .0094 
 (.0094) (.0010) (.0085) 

Notes: posterior standard deviations are reported in parentheses  

 

Table 10: Changes in vehicle miles when density increases 

 

 Δ car 
miles  

%Δ car 
miles  

Δ truck 
miles  

%Δ truck 
miles  

10 %  20.64 .23  -153.01  -2.07  
 (47.52)  (.54)  (30.66)  (.42)  

25 %  48.40  .55  -352.15  -4.77   
 (111.29) (1.26) (69.61)  (.94)  

50 %  88.10  .10  -624.33  -8.46  
 (202.31) (2.30)  (121.06)  (1.64)  

100% 151 1.71 -1026.1 -13.90 
 (345.97) (3.91) (192.69) (2.61) 
Notes: posterior standard deviations are reported in parentheses  

 

 


