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Abstract An extended Lagrangian stochastic dispersion model that includes time variations
of the turbulent kinetic energy dissipation rate is proposed. The instantaneous dissipation
rate is described by a log-normal distribution to account for rare and intense bursts of dis-
sipation occurring over short durations. This behaviour of the instantaneous dissipation rate
is consistent with field measurements inside a pine forest and with published dissipation
rate measurements in the atmospheric surface layer. The extended model is also shown to
satisfy the well-mixed condition even for the highly inhomogeneous case of canopy flow.
Application of this model to atmospheric boundary-layer and canopy flows reveals two types
of motion that cannot be predicted by conventional dispersion models: a strong sweeping
motion of particles towards the ground, and strong intermittent ejections of particles from
the surface or canopy layer, which allows these particles to escape low-velocity regions to a
high-velocity zone in the free air above. This ejective phenomenon increases the probability
of marked fluid particles to reach far regions, creating a heavy tail in the mean concentration
far from the scalar source.
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2 T. Duman et al.

1 Introduction

High Reynolds-number turbulence is characterized by pronounced intermittency in its small-
scale structure, where the velocity gradients and the instantaneous turbulent kinetic energy
(TKE) dissipation rate ε∗ exhibit large fluctuations in time (Chen 1971). Experiments have
repeatedly shown that the Eulerian probability density function (PDF) of the squared velocity
gradient is characterized by stretched exponential tails, indicating rare and intense bursts in
ε∗ over relatively short periods of time (Frisch 1996). During these bursts, the flow exhibits
unusually large local acceleration, evidenced by recent Lagrangian particle measurements
(Porta et al. 2001). For atmospheric boundary-layer (ABL) flows, intermittency in ε∗ can play
a significant role, where the ratio between ε∗ and its time-averaged value (= ε) can reach as
high as 50 (Pope 2000). This ratio may be larger inside canopies, where intermittency effects
are likely to be much higher (Finnigan 2000).

This intermittent behaviour in ε∗ can have a significant impact on how Lagrangian sto-
chastic (LS) particle trajectory approaches model dispersion, which frames the compass
of this work. LS models often used in atmospheric dispersion studies (e.g. Thomson 1987;
Wilson and Sawford 1996) typically do not account for intermittency in ε∗. They estimate
a local Lagrangian time scale as a function of a local ε. Although such models have been
used extensively for calculating concentrations and flux footprint of gases, aerosols, particles,
pollen, and seeds in both atmospheric and canopy flows (Flesch and Wilson 1992; Baldocchi
1997; Kurbanmuradov and Sabelfeld 2000; Rannik et al. 2000; Kljun et al. 2002; Nathan et al.
2002; Cassiani et al. 2005a,b; Poggi et al. 2006; Vesala et al. 2008; Hsieh and Katul 2009),
they are based on the assumption of a layer-wise constant but vertically inhomogeneous
Lagrangian time scale formed by the mean TKE and the mean dissipation rate ε.

Pope and Chen (1990) suggested using an extended LS model that includes not only the
instantaneous velocity, but also the instantaneous dissipation (ε∗) along a particle trajectory,
thus introducing time fluctuations for the dissipation rate for the first time. In this model, ε∗
is sampled from a log-normal PDF, by solving an additional stochastic differential equation
for χ ≡ ln(ε∗/ε). This model relies on the hypothesis that in high Reynolds-number flows,
ε∗ is log-normally distributed (Kolmogorov 1962; Obukhov 1962), which was later shown to
be valid in homogeneous isotropic turbulence from experiments (Monin and Yanglom 1975)
and from direct numerical simulation (DNS) calculations (Yeung and Pope 1989).

This model, hereafter referred to as the log-normal model, was previously applied to
several flow types, including turbulent wall-bounded flows (Pope 1991; Minier and Pozorski
1999), swirling flows (Anand et al. 1993) and mixing layers (Pope 1991). In these works,
the log-normal model was employed for retracing the so-called super-statistics of turbulence,
showing good performance in reproducing higher-order moments of the velocity (skewness
and kurtosis). This log-normal model is extended here to include scalar dispersion, focusing
specifically on atmospheric turbulence. The motivation is to explore the effects of high
intermittency in ε∗ on LS dispersion models for ABL and canopy flows. Establishing a
correct dispersion model for these types of flows is becoming necessary for a large number
of applications including inverse models that are aimed at inferring scalar sources and sinks
from mean concentration profile measurements (Raupach 1989; Flesch et al. 1995; Leuning
et al. 2000; Nemitz et al. 2000; Siqueira et al. 2000; Kljun et al. 2002; Siqueira et al. 2002,
2003; Simon et al. 2005; Juang et al. 2006; Tiwary et al. 2007).

To begin quantifying the effects of ε∗ �= ε on dispersion, LS trajectory calculations of
marked fluid particles are conducted with and without the addition of an equation describing
the time variations of χ . As a case study, a thermally stratified ABL flow is first considered,
where the inhomogeneity in ε is monotonic with height z from the ground. Another case study
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A Velocity–Dissipation Stochastic Model for ABL and Canopies 3

explores a neutrally stratified canopy flow, where the inhomogeneity in ε is not monotonic
with z. The resulting dispersion patterns with the addition of an equation forχ (the log-normal
model) are then compared with the standard LS model (Thomson 1987), which includes the
effects of a vertical variation of ε on dispersion without consideration of the variability in ε∗
over time.

The paper commences with a brief review of the theoretical description of the extended
stochastic model, which is formulated for a two-dimensional fully-developed inhomogeneous
turbulent flow (Sect. 2). This formulation is achieved by coupling Thomson’s (1987) standard
LS model with the log-normal model for χ as proposed by Pope and Chen (1990). Although
it is established that the instantaneous dissipation rate in the ABL exhibits a log-normal PDF
(Chen 1971), there is no previous information about its behaviour inside dense canopies.
Hence, in Sect. 3, this characteristic is further investigated using simultaneous multi-level
velocity measurements collected inside a pine forest described elsewhere (Katul and Albert-
son 1998). These experiments empirically suggest that ε∗/ε is sufficiently large to warrant
the addition of an equation for χ . The coupled velocity-χ formulation is then assessed via
the so-called well-mixed condition (Thomson 1987), which is a necessary prerequisite for
any LS model. In Sects. 4 and 5, the log-normal model for χ is employed to conduct tra-
jectory simulations in atmospheric flow systems. The conventional case of a stationary and
planar-homogeneous high Reynolds-number ABL flow in the absence of subsidence is first
considered with velocity statistics described by Monin–Obukhov similarity theory. Marked
fluid particles are released from a continuous elevated source and steady-state concentration
fields are computed across different levels of thermal stratification for both the log-normal
model and the standard LS model. In Sect. 5 the log-normal model is applied next to a canopy
flow configuration, where the flow statistics are computed from a detailed second-order clo-
sure model. The advantage of this second-order closure model is that it solves an actual
transport equation for ε (Siqueira et al. 2012). The comparison between the conventional LS
model and the log-normal model focuses on dispersion patterns, peak concentration values
and locations, and decay rates with distance from the release location.

2 The Velocity–Dissipation Lagrangian Stochastic Model

The formulation of the LS model is based on the generalized Langevin equation, which is
used to compute trajectories of marked fluid particles, representing a scalar parcel (Thomson
1987; Rodean 1996),

du pi = ai dt + bi j dW j , (1)

dx pi = (
u pi + ui

)
dt. (2)

It is assumed that the position of the particle x pi and its Lagrangian turbulent velocity
fluctuation u pi along its trajectory both evolve as a Markov process. Here, ui is the Eulerian
mean velocity of the fluid along the particles trajectory, and dW is an incremental Wiener
process with a zero mean and a variance of dt . The sub-indexes i and j = 1, 2, 3 with repeated
indexes imply summation. The coordinates x1 = x, x2 = y, x3 = z are aligned so that x1 is
along the longitudinal or mean wind direction, x2 is the lateral direction, and x3 is the vertical
direction. The velocity components u1 = u, u2 = v, u3 = w are the velocity components
aligned along x, y, z, respectively. Since only two-dimensional cases are considered, i and
j each take on values of 1 and 3.
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4 T. Duman et al.

To satisfy both Kolmogorov’s hypothesis of local isotropy in the Lagrangian frame of
reference and the well-mixed condition (Thomson 1987), the diffusion (=bi j ) and drift (=ai )
terms in Eq. 1 take the following form for the fully-developed two-dimensional case according
to Thomson’s (1987) simplest solution (for notational convenience a1, a3, b11, and b33 are
replaced with au, aw, bu , and bw respectively),

au = −b2
u
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σ 2
wup − u′w′wp

)
+ 1
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σ 2
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, (4)

bu = bw = √
C0ε∗, (5)

A = 2
(
σ 2
wσ

2
w − u′w′2

)
, (6)

where σu, σw are the Eulerian velocity standard deviations in the horizontal and vertical
directions (x and z), and u′w′ is the Reynolds stress. C0 is the Lagrangian Kolmogorov
constant for the Lagrangian structure function taken to be 3.125 based on a matching of the
Lagrangian time scale to similarity theory (Li and Taylor 2005). Traditionally, the diffusion
term b (Eq. 5) is calculated using ε. To include fluctuations in the dissipation rate, ε is
replaced with ε∗. Following Pope and Chen (1990), the quantity χ ≡ ln(ε∗/ε) is defined to
be normally distributed when ε∗ is log-normally distributed. To include the memory effects
of χ , it is treated as a Markov process whose dynamics can be described by an additional
Langevin equation given as,

dχ = − (χ − 〈χ〉) dt

Tχ
+

√
2σ 2

Tχ
dW, (7)

where σ is the standard deviation (SD) of χ, 〈χ〉 is its ensemble mean that must be set to
−0.5σ 2 (Pope and Chen 1990), and Tχ is the Lagrangian integral time scale of χ . Equation 7
is valid only for Gaussian homogeneous turbulence. Pope (1991) extended the log-normal
model to include inhomogeneous flows. While Eq. 7 introduces only two new parameters (σ
and Tχ ), the stochastic model for inhomogeneous flows is much more complex, and includes
additional parameters that are difficult to estimate a priori. Also, this extension is justified
by the need to correct for possible non-log-normality in the dissipation rate distribution.
Instantaneous dissipation rate measurements for both ABL and canopy flows appear to behave
approximately log-normal as shown in Sect. 3. Hence, as a logical starting point, Eq. 7 is
employed despite the vertical inhomogeneity in the flow. As shown later, this simplified
model is able to generate a realistic time evolution of instantaneous dissipation rates.

To use Eq. 7, the parameters σ and Tχ must be determined. Tχ is taken to be T −1
χ = Cχω,

where ω is the mean turbulent frequency that is defined as the ratio between the mean
dissipation rate and the mean TKE ω ≡ ε/k. Originally, Pope and Chen (1990) set the value
of Cχ = 1.6, based on moderate Reynolds-number DNS runs for homogeneous isotropic
turbulence (Yeung and Pope 1989), to yield a ratio of TL/Tχ = 0.9 (TL is the Lagrangian
integral time scale of the turbulent velocity fluctuation). This value may be incompatible
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with ABL and canopy flows, due to the fact that they are not homogeneous and isotropic and
the Reynolds number and turbulent intensity are much higher than those reported for these
DNS runs. The sensitivity of the log-normal model to the values of Cχ is further examined
in Sect. 4; the value of σ defines the width of χ’s distribution and is discussed in details in
Sect. 3.

3 The Probability Distribution of the Dissipation Rate in Canopy Flows

To explore the PDF of the dissipation rate in canopy flows, multi-level field measurements
from a uniform pine forest are used (Katul and Albertson 1998). From the time series of the
measured velocity at five levels, four inside and one above the canopy, the value of χ can be

estimated by the approximation χ ≈ ln
[
(∂u/∂t)2 / (∂u/∂t)2

]
. Figure 1 shows that the mean

SD of the approximated χ for the pine forest is approximately constant, with a value of 2.5,
for all levels within the canopy. Above the canopy, a somewhat higher value is observed with
a wider spread across different runs (each run representing a 30-min sampling duration). The
calculated values from the pine forest far exceed the value of σ = 1, chosen originally by
Pope and Chen (1990) according to their DNS runs. This higher σ represents an increased
intermittent behaviour with more frequent events experiencing higher dissipation rate values
than ε.

The PDF of χ from the field experiment, shown in Fig. 2a, resembles a Gaussian dis-
tribution. However some skewness may be observed, where the large negative excursions
in χ have lower probability of occurrences and large positive excursions in χ have lower
magnitudes when compared to a normal distribution. A probability plot test (Fig. 2b) reveals
the PDF deviations from a Gaussian distribution, which is displayed in this type of plot as
a straight line with a slope set to the inverse of the SD. The same skewed behaviour was
previously observed in ABL measurements by Chen (1971), Antonia (1973), and Freytag
(1978). Chen’s (1971) results, which are shown also in Fig. 2a for reference, produce almost
the same PDF as the canopy flow results reported here, with similar values for both the
mean and the SD of χ . Freytag (1978) relates this behaviour to the use of the approximated
dissipation rate formulation, and shows from ABL measurements that using the exact defin-
ition of the dissipation of TKE (ε = 0.5ν(∂ui/∂x j + u j/∂xi )

2) produces a Gaussian PDF

Fig. 1 The profiles of the
dissipation SD χ , calculated from
pine forest experiments (the x’s
indicate 30-min 10-Hz
measurement runs, and the dots
are the mean values)
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Fig. 2 a PDF of χ , calculated from the pine forest experiments. Compared with ABL measurements (Chen
1971) and with a fitted Gaussian distribution. b A probability plot test of the pine forest experiment, with the
corresponding Gaussian distribution

for χ . Chen (1971) attributes this skewness and also the fact that the measurement shows
〈χ〉 �= −0.5σ 2 to an inconsistency in the original definition of Kolmogorov and Obukhov
of the local dissipation rate, which should be averaged over a sphere of radius r instead of a
point measurement. Such a correction reconstructs a Gaussian PDF with lower values for σ ,
but still higher than unity (σ ≈ 1.7), and a mean of −0.5σ 2.

It can be surmised that the dissipation rate is log-normally distributed even for canopy
flows, and that the large calculated values of σ justify incorporating the time variability of
the dissipation rate in the LS model. To test the sensitivity of the log-normal model to the
value of σ , two scenarios are examined: one with σ = 1 as suggested originally by Pope
and Chen (1990), and another using the upper limit from the in-canopy measurements (i.e.
σ = 2.5).

4 Application to the Atmospheric Boundary Layer

Satisfying the well-mixed condition (Thomson 1987) is an important prerequisite for correct
dispersion simulations. The model proposed here includes PDFs of dissipation and velocity
that are independent, and its formulation satisfies the well-mixed condition, as shown in
Appendix 1. This has been verified thoroughly by conducting a numerical test, showing
that an initially released well-mixed concentration of particles in a highly inhomogeneous
canopy flow remained well-mixed with an error of less than 2 % for all combinations of
σ and Cχ values. The details of the well-mixed test and its results are also presented in
Appendix 1. After checking that the model satisties the well-mixed condition as expected, it
is now employed in trajectory simulations for a fully-developed ABL.
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A Velocity–Dissipation Stochastic Model for ABL and Canopies 7

4.1 ABL Simulation Details

Neutral, stable and unstable stability conditions are now considered with flow statistics
determined from Monin–Obukhov similarity theory (MOST). The details of the Eulerian
velocity statistics profiles for all stability conditions are provided in Appendix 2. For all
the simulations, the friction velocity and aerodynamic roughness length were chosen to be
u∗ = 0.4 m s−1 and z0 = 1.7 mm, respectively.

The particle trajectory simulations included a continuous elevated source positioned at a
height zs = 2 m above the ground. All simulations lasted for 1.5 h during which 106 particles
were released from the source. The particle locations were saved each 10 s and a steady
state was determined as the time for which the number of particles remained constant in a
window frame of (x, z) = (200,000 × 200)m2. The timestep for the trajectory simulations
was calculated dynamically as dt = 0.02TL to satisfy the necessary condition that dt 	 TL

(for details about the calculation of TL see Appendix 2). Using smaller timesteps revealed
negligible changes in the concentration results. For each timestep, the turbulent velocity
fluctuations up and wp were calculated using Eqs. 1 and 3–6, and the particle locations
were determined from Eq. 2. The instantaneous dissipation was also calculated for each t by
solving Eq. 7 for χ and obtaining ε∗ = ε exp(χ), which was then used for the calculation
of the stochastic diffusion term b. With the addition of the log-normal model, a second
limitation on the timestep is necessary to ensure that dt 	 Tχ . Furthermore, the timestep
was limited to prevent large jumps in the vertical direction, so the chocice of dt was dt =
min(0.02TL, 0.02Tχ , zmax/w(t − dt)), where zmax was set to 1 m.

The ground and the boundary-layer top (set at 1 km for neutral and unstable conditions,
and 300 m for stable conditions) were taken to be perfect reflectors so as to conserve the total
mass in the domain at all times. A particle that reached either the top of the boundary layer
or the ground was perfectly reflected in the vertical direction with respect to the boundary,
and the sign of its velocity fluctuations up and wp was reversed. In practice, the ground was
taken at a height of 50 mm to prevent unrealistic high values of ε, which becomes unbounded
as TL → 0 near the ground.

For ABL flows, the drift terms au and aw (Eqs. 3, 4) reduce to a simple form. In the neutral
and the stable cases, all the Reynolds stress terms are constant (σu, σw , and u′w′), so Eqs. 3
and 4 are reduced to

au = −b2
u

A

(
σ 2
wup − u′w′wp

)
, (8)

and

aw = −b2
w

A

(
σ 2

uwp − u′w′up

)
, (9)

respectively. However, the unstable conditions introduce vertical variability in the fluctuating
velocity SD (i.e. σu , and σw), while the terms related to ∂u′w′/∂z remain zero.

The simulations were performed with the standard LS model and the proposed log-normal
model. Two values of σ = 1 and 2.5 were examined, as mentioned before, and the sensitivity
to Cχ was further tested. Since Cχ is a measure of the relation between TL and Tχ , we choose
to check the originally suggested value of Cχ = 1.6, as well as approximately doubling its
value to 3 and reversing the relation by setting Cχ = 0.5. At the end of the simulations,
the mean concentration maps of particles were calculated based on the steady-state particle
locations.
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Fig. 3 Horizontal variation of normalized concentration Cn = C
SI/ur zs

as a function of distance from the
source x for ABL flows. SI stands for source intensity and ur is the wind velocity at source height. a–c present
the horizontal variation at the source height (zs) for stable, neutral and unstable conditions respectively. d–f
are the same but at ground level (zg). The solid lines in all sub-figures represent simulations with Cχ = 1.6.
For the neutral case (b, e), simulations of Cχ = 0.5 and 3 are also shown by the dashed lines and the dotted
lines respectively

4.2 Results

Figure 3 shows how the mean concentration C changes with increased downwind distance x
from the source location. These C variations with x are presented at two heights: the source
release height zs (Fig. 3a–c), and ground level zg (Fig. 3d–f). The downwind concentration
variations with x at the source height reveal three distinct regions: a near-field and a far-field
that exhibit approximate power laws with distinct exponents (i.e. C(x, zs) ∼ xα), and a very
far-field where the concentration attains a near constant value (i.e. dC(x, zs)/dx ≈ 0).

In Lagrangian fluid mechanics, the behaviour of near-field and far-field concentration
variations with x have been recognized and defined analytically for turbulent diffusion when
turbulent statistics are Gaussian and spatially homogeneous (Taylor 1921). These two fields
are related to the ratio of the travel time t of an ensemble of passive particles since their
release to the Lagrangian integral time scale TL. In the near-field t 	 TL, the dispersion or
spread is dominated by persistence of initial particle velocities through the drift term a, and
the particle cloud size grows nearly linearly with t . In the far-field t � TL, the dispersion is
dominated by the diffusion term (e.g. b), and the spread of the particle cloud is slower and
grows as t0.5. For inhomogeneous flows, the relation between travel time or distance and the
particle cloud spread becomes more complicated, and a numerical analysis must be used to
distinguish between the near-field and far-field behaviours.

In the results presented here (Fig. 3), the near-field appears concentrated in a short distance
of x ≈ 20zs downwind from the source. For C(x, zs) (Fig. 3a–c), this region is characterized
by a rapid decay in C(x, zs) with increasing x . The exponent α = −0.85 describing this
decay appears insensitive to atmospheric stability or the addition of ε∗. As noted earlier,
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for
unstable ABL flow. The figure presents values multiplied by 1,000 for convenience. The results are for a
standard model, and b log-normal model conducted with σ = 2.5 and Cχ = 1.6

this insensitivity can be attributed to the persistence of the initial velocity conditions of the
particles near the release at zs for all stability conditions. Moreover, the inclusion of ε∗ is not
likely to affect the near-field C(x, zs) variation with x since such addition mostly affects the
diffusion term b of the Langevin equations that does not dominate the spread in the near-field.

For the mean concentration distribution with x at ground level (Fig. 3d–f), C(x, zg) rapidly
increases with x in the near-field, until a peak value is reached. Here, the log-normal model
shows a rapid increase in the mean concentration with x characterized by a peak concentration
location closer to the source. The addition of ε∗ generates a strong sweeping motion of
particles from the source towards the ground, which occurs during bursts of high excursions
in ε∗. Increasing the value of σ amplifies this effect, since these events become more frequent
for σ = 2.5.

In the far-field, the decrease of C(x, zs) with x is much slower than its decrease in the
near-field, similar to what occurs in homogeneous flows. In this region the normalized con-
centration drops by less than 0.1 over a distance of more than 1,000zs. The decay exponent
α in this region is the same for both the ground-level and the source-height concentrations.
The addition of ε∗ primarily increases the decay rate of C(x, zs) and C(x, zg) with x in this
region. Hence, the very far-field steady-state concentration approaches a near constant value
located closer to the source when compared to the standard LS model. Increasing σ increases
the decay rate, and transitorily reduces the concentration below the final ‘well-mixed’ con-
centration state (for neutral and unstable conditions). The effect of the log-normal model
on this region is expected, since it explicitly changes the stochastic diffusion term (=b) that
dominates the far-field behaviour. Another type of particle motion that explains this differ-
ence in decay rate has been identified to be generated by the log-normal model. This motion
is linked to strong intermittent ejections of particles from the surface layer to a higher velocity
zone in the upper regions of the ABL coinciding with the mixed layer. This phenomenon
is better shown in the mean concentration contour plot for unstable conditions (Fig. 4). In
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Fig. 5 The Eulerian flow statistics used for the canopy flow case study as computed by the second-order
closure model

the log-normal model, the concentration rises to high values in the mixed-layer much closer
to the source, compared with the standard model. Further from the source, the log-normal
model generates a region of low concentrations near the ground. The ejected particles are
finally mixed (due to reflecting boundary conditions), which induces further mixing so that
the mean concentration decays with x in the mixed layer and increases near the ground.

The results show minor sensitivity to the value of Cχ for all the simulations that were
conducted, as demonstrated for the neutral conditions in Fig. 3. This robustness to Cχ vari-
ations makes the log-normal model attractive, since it now requires one parameter, σ , that
describes the entire behaviour of the instantaneous dissipation PDF.

5 Application to Canopy Flow

The log-normal formulation is now used to model dispersion for a canopy-flow configuration.
For this type of flow, all vertical gradients in velocity statistics affect the drift and diffusion
terms. Moreover, unlike the ABL case study earlier, ε does not monotonically decrease with
increasing z. For dense canopies, it was shown that ε peaks around the canopy top (Fig. 5c);
hence, an enhanced effect of the log-normal model may be expected in the upper parts of the
canopy (Raupach and Thom 1981; Wilson 1988; Poggi et al. 2004).

The canopy-flow statistics were generated by solving a second-order one-dimensional
closure model, which includes a transport equation for ε. This model, described elsewhere
(Siqueira et al. 2012), was previously tested for dense canopies. The flow was solved for a
friction velocity u∗ = 0.4 m s−1 defined at the canopy top, a foliage drag coefficient Cd = 0.1
and a leaf area index L AI = 3, which was distributed unevenly with height as shown by the
leaf area density (LAD) in Fig. 5a. The flow was solved to five times the canopy height (hc),
and a neutral ABL logarithmic profile was matched above this solution from 5hc to the top
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Fig. 6 The variation of the
normalized concentration Cn as a
function of distance x from the
source for a canopy flow
(Cχ = 1.6): a at source height,
and b at ground level
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of the ABL (1 km). The flow statistics from the solution of the second-order closure model
are presented in Fig. 5, and serve as an input to the LS models.

The source height was chosen to be at 0.8hc of the canopy height, the layer where scalar
source strength is expected to be largest for biologically active scalars such as water vapour
or CO2. The reason is that light interception, which drives stomatal opening, and high foliage
concentration are roughly co-located in this vicinity (Siqueira et al. 2002; Juang et al. 2008).
All other simulations details are identical to those for the ABL flow (Sect. 4).

Horizontal concentration variations (Fig. 6) show again three regions. The addition of the
log-normal model affects the decay already in the near-field at the source height (Fig. 6a). The
combination of low mean velocity and high dissipation value at the source height enhances
the two types of particle motion discussed above: the sweeping motion towards the ground
and the ejections of particles from inside the canopy to above. The sweeping motion creates
again an increase in the concentration values near the ground, and shifts the concentration
peak location closer to the source (Fig. 6b). Particles ejected above the canopy have a smaller
chance to re-enter the canopy due to the rapid change in the gradients of the flow statistics
near the canopy top. This effect is further amplified in the log-normal model by creating
short events of high ε∗ during which more ejections occur. In the far-field, the spatial decay
rate of the mean concentration is similar to the standard and the log-normal models, and is
also not affected by increasing σ from 1 to 2.5. In this region, the concentration within the
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Fig. 7 Modelled profiles of normalized mean concentration Cn at different distances from the source location
for a canopy flow (Cχ = 1.6)

canopy is governed mostly by the scales of the canopy height, while the particles that are
reflected from the top of the boundary layer are “trapped” above the canopy and rarely affect
the concentration within the canopy.

Vertical profiles of concentration (Fig. 7) show distinctly higher dispersion close to the
source in the upwind direction, which is amplified by the addition of the log-normal model.
For σ = 2.5, the canopy effect is much more evident, showing two peaks in concentration,
one below the canopy and one above. The high concentration above the canopy is created by
the ejection of particles, and at x = 20hc (Fig. 7f) the concentration distribution is reversed for
high values of σ , where the concentration above the canopy is higher than the concentration
within the canopy.

For canopy flows, the importance of the near-field region is quite significant despite its
restricted extent. From Fig. 6, the near-field region is shown to extend to only about 2hc, and
the effect of intermittency in this region cannot be ignored. The enhanced ejection phase may
lead to more frequent particle escapes from the canopy volume and promote longer-dispersal
distances from the source. Concentration and flux footprints are likely to be influenced even
more by increases in high dissipation events due to their high sensitivity to the dispersion at
the source location.
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6 Conclusions

In this work, the conventional Lagrangian trajectory approach is expanded to include a sto-
chastic model for the instantaneous dissipation rate that is based on a log-normal distribution
law. This novel approach is employed to conduct trajectory simulations in highly inhomoge-
neous atmospheric turbulent flows. Using multi-level field measurements from a pine forest,
it is demonstrated that instantaneous dissipation rates in canopy flows are reasonably log-
normally distributed, and that the relative variability in the mean dissipation rate far exceeds
those reported in DNS studies at moderate Reynolds number. These results (empirically)
suggest that incorporating the variability in the TKE dissipation rate is warranted for such
an atmospheric flow system.

The proposed model demonstrates that the addition of dissipation rate variability amplifies
two types of motion governing the spatial evolution of the mean concentration with increasing
distance from an elevated source. The first is connected to strong sweeping motion that
enhances the decay rate of the mean concentration with increased downwind distance, and
the second is linked to strong intermittent ejections of particles from the canopy immediately
adjacent to the source. Shortly after their release, these particles escape the low-velocity
region within the canopy volume to a high-velocity region in the free air above the canopy
via a strong ejection motion. This ejective phenomenon increases the probability of single
particles to reach far regions, creating a heavy tail in the mean concentration far from the
scalar source. These types of motion for now should be treated as model-based conjectures
that cannot be directly predicted using standard LS approaches. A direct verification of their
importance may be achieved using scalar release experiments. However, such experiments
may be complicated by the fast decay of tracer concentration near the source.

With regards to applications, especially those pertinent to inverse modeling, the extended
model can be readily used to compute the elements of a dispersion matrix (i.e. how a unit
source at position i affects the concentration at location j) employed in common inverse
schemes such as the localized near-field theory. Also, the extended model can be coupled to
inertial particle trajectories along similar lines as is done for conventional LS models. Such
an extension allows variability in ε∗ to be included in seed and pollen dispersion, the subject
of future work.

Acknowledgments This work was supported by Research Grant Award No. IS-4374-11C from BARD, the
United States—Israel Binational Agricultural Research and Development Fund.

Appendix 1: Verification of the Well-Mixed Condition for the Log-Normal Model

All LS models used for turbulent dispersion must satisfy the so-called well-mixed condi-
tion (Thomson 1987). According to the well-mixed condition, particles of a tracer initially
well-mixed in a turbulent flow must remain well-mixed at all times. The formulation of
the drift and dispersion in the standard model by Thomson (1987) satisfies the well-mixed
condition. In the log-normal model the well-mixed condition should be preserved by the
construction of the model. However, this model is new and therefore the log-normal model
must be first tested before being applied especially for the inhomogeneous flows considered
here.

Here two checks are conducted—a theoretical one to assess whether the formulation of
the log-normal model satisfies the well-mixed condition, and a numerical one where the
log-normal model is tested for a case of strong inhomogeneous flow.
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The Well-Mixed Condition: Formulation Analysis of the Log-Normal Model

By construction the model considered in the manuscript satisfies the well-mixed condition
and has independent one-point one-time Eulerian PDFs of velocity and dissipation, i.e. the
joint PDF of velocity and logarithm of the normalized dissipation f uχ

E can be simply written
as f uχ

E = f u
E f χE .

These properties can be shown starting from a general model of the form,

dui = ai (x,u, ε)dt + bi j (ε)dW j , (10)

dxi = ui dt, (11)

dχ = M(χ)dt + DdW, (12)

where, M(χ) = −(χ − 〈χ〉)/Tχ , D =
√

2σ 2/Tχ , and ε = 〈ε〉 exp(χ). For simplicity and

convenience ε is used here for the random dissipation (instead of ε∗), and 〈ε〉 stands for the
averaged dissipation. Moreover, no special notation is used for the particle random variable
appearing in the stochastic differential equation (SDE), although it must be understood that
here the SDE refers to the Lagrangian particle quantity.

The previous system of SDE satisfies a Fokker–Planck equation for the Lagrangian joint
PDF f uχ

L and, by the relation between Lagrangian and Eulerian PDFs (e.g. Novikov 1969,
1986; Pope and Chen 1990; Pope 2000; Thomson 1987), the one-point one-time Eulerian
PDF f uχ

E satisfies as well a Fokker–Plank equation of the form,

∂ f uχ
E

∂t
+ ∂ui f uχ

E

∂xi
+ ∂ai f uχ

E

∂ui
− 1

2
bikbk j

∂2 f uχ
E

∂ui∂u j
+ ∂M f uχ

E

∂χ
.− 1

2

∂2 D2 f uχ
E

∂χ∂χ
= 0 (13)

This equation is general and does not assume that the two PDFs are independent. Assuming
independency f uχ

E = f u
E f χE and integrating over the whole space of the variable χ (under

some regularity conditions, see e.g. Pope (2000), p. 466 and Thomson (1987), p.534, it is
possible to obtain an equation for the marginal PDF f u

E ,

∂ f u
E

∂t
+ ∂ui f u

E

∂xi
+ ∂ 〈ai 〉χ f u

E

∂ui
, −1

2

〈
bikbk j

〉χ ∂2 f u
E

∂ui∂u j
= 0 (14)

where the notation 〈 〉χ (≡ ∫ ∞
−∞ f χE dχ

)
indicates that the average is taken only over the

space of χ . With the choice of bi j (ε) = √
C0εδi j used here, and by noting that 〈ε〉χ =

〈〈ε〉 exp(χ)〉χ = 〈ε〉 〈exp(χ)〉χ = 〈ε〉, since χ is normalized so that 〈exp(χ)〉χ is unity
(Pope and Chen 1990), we have,

∂ f u
E

∂t
+ ∂ui f u

E

∂xi
+ ∂ 〈ai 〉χ f u

E

∂ui
− 1

2
C0 〈ε〉 ∂2 f u

E

∂ui∂ui
= 0. (15)

If we assume a pre-defined form of f u
E we obtain from the previous equation that

〈ai 〉χ = 1

f u
E

(
1

2
C0 〈ε〉 ∂ f u

E

∂ui
+Φi (ui )

)
, (16)

whereΦi is as defined by Thomson (1987) Eq. 9b (for more details see Rodean 1996, Chap.
8). Satisfying this condition ensures that the model has independent PDFs ( f uχ

E = f u
E f χE )

and that the Eulerian velocity PDF is a solution to Eq. 15. However, this is a necessary but not
sufficient condition for the well-mixed condition since it does not define the drift coefficient
ai in Eq. 10 but only its averaged value. Indeed, looking at Eqs. 10 and 11 seperately from
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Eq. 12 we obtain another Fokker-Plank transport equation that the Eulerian velocity PDF f u
E

must satisfy (given bi j (ε) = √
C0εδi j ),

∂ f u
E

∂t
+ ∂ui f u

E

∂xi
+ ∂ai f u

E

∂ui
− 1

2
C0ε

∂2 f u
E

∂ui∂ui
= 0. (17)

Satisfying the well-mixed condition (i.e. the fact that a given f u
E is a solution of Eq. 17)

brings to the definition of the drift coefficient used here,

ai = 1

f u
E

(
1

2
C0ε

∂ f u
E

∂ui
+Φi (ui )

)
, (18)

where Φi is again as defined by Thomson (1987). Comparing the definition in Eqs. 18 and
16, we see that Eq. 18 respects Eq. 16 since upon ensemble averaging of Eq. 18 over the
space of χ , Eq. 16 is retrieved. Therefore, Eq. 18 is more restrictive, and its definition of the
drift coefficient is necessary and sufficient for the well-mixed condition to be satisfied. Also,
since Eq. 18 contains Eq. 16 it also turns out that f u

E and f χE are independent.

The Well-Mixed Test

For the well-mixed test, a highly inhomogeneous canopy flow dataset was selected from
an open-channel experiment, where laser Doppler anemometry measurements were avail-
able for all flow statistics (Poggi et al. 2006). For this type of flow, all the terms of the
drift coefficients au and aw are included (Eqs. 3, 4), so the most general form of the model
can be examined. In all simulations, the particles that reach the ground or the water level,
which extends to 5hc, are reflected in the vertical direction and the sign of their velocity
fluctuations is also reversed. Since the canopy domain and the free flow domain above the
canopy are of the same order of magnitude and have a distinct differences in the flow sta-
tistics, the test is presenting an extreme flow environment to the LS model in terms of flow
inhomogeneity.

The flow conditions are described in Poggi et al. (2006) and the flow statistics are shown
in their Fig. 2. In each test 5 × 106 particles were released uniformly across all z at x =
0. The trajectories were computed using the LS equations (Eqs. 1–7) for some 150 s—
sufficiently enough to test whether they truly stay well-mixed over time. The log-normal
model parameters were set to σ = 1 or 2.5, and Cχ = 0.5, 1.6 or 3. For details about the
choice of σ and Cχ , see Sects. 3 and 4 respectively. At the end of the simulation, the domain
was divided into 50 vertical layers, and the number of particles in each layer was computed
and then divided by the expected well-mixed value. a perfectly well-mixed distribution of
the horizontally integrated concentration should be unity in each layer.

The test results clearly show that the well-mixed condition is satisfied for all the sim-
ulations. Figure 8 shows the normalized concentration at the end of the well-mixed test
simulations for the log-normal model with σ = 1 and 2.5 for Cχ = 1.6, compared with the
results for the standard model. The particle distribution is equal to the expected well-mixed
concentration at all heights with an error of less than 2 %. All the other tests (for Cχ = 0.5
and 3) gave similarly good results and are not shown here. These results verify that the
log-normal model satisfies the well-mixed condition, and may be used to perform correct
dispersion simulations in inhomogeneous atmospheric flows.
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Fig. 8 The verification of the
well-mixed condition: final
particle distribution normalized
by the expected well-mixed
value. The vertical lines stand for
a perfectly well-mixed
distribution (at 1), and an error of
±5 %
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Appendix 2: Atmospheric Boundary-Layer Flow Statistics (MOST)

The profiles of the Eulerian flow statistics needed in the ABL case study are presented here.
These include the mean velocity, its SD, the Reynolds stress, and the mean dissipation rate
(or integral time scale). Using Monin–Obukhov similarity theory, the following profiles were
employed for neutral, stable and unstable conditions (Kaimal and Finnigan 1994).

The mean wind speed u(z) is calculated as

u(z) = k

u∗

(
ln

(
z

z0

)
− ψ

)
, (19)

where k = 0.4 is the von Karman constant, u∗ is the friction velocity, and z0 is the aero-
dynamic roughness length. The values of the last two were set to u∗ = 0.4 m s−1 and
z0 = 1.7 mm in all ABL simulations.
ψ is the stability correction function, which is expressed by,

ψ(z) = −5z/L , for z/L ≥ 0

ψ(z) = 2ln
(

1+φ
2

)
+ ln

(
1+φ2

2

)
− 2tan−1(φ)+ π

2 for z/L < 0,
(20)

where the Obukhov length L was chosen to be 200 for stable conditions, −10 for unstable
conditions, and φ is given by: φ(z) = (1 − 16z/L)1/4. For neutral conditions L → ∞, and
therefore ψ = 0.

The velocity SD profiles are expressed as,

σu = 2.5u∗, σw = 1.25u∗, for z/L ≥ 0

σu = 2.5u∗
(
1 − 3 z

L

)1/3
, σw = 1.25u∗

(
1 − 3 z

L

)1/3 for z/L < 0.
(21)

The Reynolds stress is constant for all stability conditions: u′w′ = −u2∗.
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Finally, the Lagrangian time scale is estimated using the diffusion coefficient according
to K theory as TL = K/σ 2

w (Rodean 1996), and the mean dissipation rate is calculated from
the consistency with the Kolmogorov’s similarity theory for locally isotropic turbulence as
ε = 2σ 2

w/C0TL. C0 is a phenomenological constant, taken to be 3.125, based on matching
of the Lagrangian time scale to similarity theory (Li and Taylor 2005), and the diffusion
coefficient is estimated by K (z) = kzu∗/φh , with φh given by (Hsieh et al. 2000),

φh(z) = 1 + 5 z
L , for z/L ≥ 0

φh(z) = 0.032
(
0.037 − z

L

)−1/3
. for z/L < 0

(22)

For stable conditions (z/L > 0) all the correction functions are stretched to the top of the
ABL (taken as 300 m for this case). For the unstable conditions (z/L < 0), the corrections
are used only for the surface layer, which is estimated as 20 % of the entire height of the
ABL (200 m of the 1 km height of the ABL). Above this height, in the mixed layer, all the
statistics are taken as constants for the unstable case.
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