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 Operating in today’s highly competitive global markets, transnational enterprises always seek to 
optimize internal vendor-buyer coordinated systems to ensure timeliness and quality deliveries, 
given the reality of unreliable machines and limited capacity. To facilitate accurate decision 
making to help organizations gain competitive advantages in such situations, this study explores 
an intra-supply-chain problem featuring a partial outsourcing batch fabrication plan, random 
scrap, Poisson-distributed breakdown rate, and multiple shipments of end-product. First, we 
build a model to characterize the problem clearly. Then, we carry out formulations, analyses, 
and derivations of the model to attain the problem’s cost function. We then use differential 
calculus and propose a specific algorithm to confirm the convexity of the obtained cost function 
and derive the optimal runtime. Finally, we offer a numerical illustration to demonstrate the 
result’s applicability for other business circumstances. Additional elements of the problem are 
then discussed, including the individual and combined influence of variations in scrap, 
outsourcing, breakdown, and shipping frequency. The features of an optimal operating policy 
and cost relevant parameters are now revealed to assist management with strategic planning and 
decision making in real-world intra-supply-chain environments. 
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1. Introduction 

 

Transnational firms, operate in today’s highly competitive world markets, constantly pursue to optimize 
internal vendor-buyer coordinated systems to ensure timeliness and quality deliveries, given the reality 
of unreliable machines and limited capacity. To facilitate accurate decision making to help organizations 
gain competitive advantages in such situations, this study explores an intra-supply-chain problem 
featuring a partial outsourcing batch fabrication plan, random scrap, Poisson-distributed breakdown rate, 
and multiple shipments of end-product. Unreliable production equipment is a troubling issue in most real 
manufacturing environments and it interrupts fabrication process and hence, draws special attentions of 
operation management. Alam and Sarma (1974) studied a deteriorating equipment which is subject to 
breakdown and determined its optimal maintenance schedule. Chakravarthy (1983) analyzed the parallel 
system’s reliability, wherein multiple identical components in the system are subject to exponential 
failures and have the phase type repair times. Alvarez-Vergas et al. (1994) considered the continuous-
flow production lines with finite buffers and unreliable machines. Seventy manufacturing lines were 
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simulated with various production rates and other performance indexes to demonstrate that it is a decent 
approximation to the asynchronous model. Levitin (2003) considered the linear multi-state elements 
allocation problem with vulnerable nodes. The connected nodes of elements can be ruined by a 
probabilistic external impact, and when both internal failures and external impact take place, the system 
can still survive if at least one good connected path exists from the source to the sink. The author proposed 
a genetic optimization-tool algorithm and an algorithm for seeking the multi-state elements distribution. 
Golmakani and Moakedi (2012) studied an unreliable system with two repairable components. When the 
first component fails (only detected through inspection), the operating cost increases, and it has no impact 
on the second component. Conversely, when the second component breaks, the first component’s failure 
rate increases. A periodic inspection is implemented on the first component, and the authors proposed a 
model to seek the optimal inspection schedule that keeps the total cost at minimum. Chiu et al. (2019a) 
explored the joint influences of backorder, random failures, scrap, and rework on the inventory 
replenishing decision. The authors first built a model to characterize the problem and then carried out 
formulations, analyses, and derivations of the model to attain the cost function. The differential calculus 
and a specific algorithm were utilized to confirm the convexity of the cost function and derive the optimal 
runtime. A numerical illustration was offered to show their result’s applicability. Additional studies 
(Köksal et al., 2013; Shakoor et al., 2017; Souha et al., 2018; Zahraee et al., 2018; Lin et al., 2019) 
examined the impact of random defective/scrap rate and different characteristics of unreliable equipment 
on the manufacturing and operations management. 
 
To smooth the manufacturing schedules and/or shorten manufacturing runtime, an effective option used 
by the production managers is to outsource a portion of a lot. Kamien and Li (1990) proposed a model 
to explore an aggregate planning strategy incorporating flexibility, subcontracting, production 
smoothing, and coordination. Different ways of subcontracting and their relevant expenses were 
discussed, with the aim of identifying potential feasible outsourcing mechanisms in coordinating in-
house fabrication and outside providers. Bryce and Useem (1998) evaluated the influence of outsourcing 
strategy on the corporation’s value, with the purpose of investigating the real influence of outsourcing 
strategy on the growing markets and what will be outsourcing’s long-term perspectives in the future. The 
authors also pointed out with evidence, the benefits of outsourcing when it is well designed and managed. 
Lee and Sung (2008) explored a scheduling problem incorporating an outsourcing option, wherein, any 
job is either processed in-house on a single machine or by the outside provider, with the purpose of 
minimizing total completion times under the outsourcing budget constraint. Due the NP-hard nature of 
the problem, the authors proposed heuristics and branch-and-bound algorithms to help characterize 
properties to the solution of the problem. Swenseth and Olson (2016) studied the trade-offs of lean 
systems versus outsourced strategies in supply chain environments. The authors evaluated lean systems’ 
cost impacts versus the advantage of purchasing cost in global supply-chain, the performance of the latter 
was measured through simulation that focused on the impact of inventory factors and potential profit. 
The results indicated that in certain conditions the lower procuring cost may override lean systems’ short-
term stock holding cost savings. Other studies (Çınar & Güllü, 2012; Chiu et al., 2017; Mohammadi, 
2017; Chiu et al., 2019b) also explored diverse features of outsourcing strategies effect on company’s 
fabrication systems and overall operations. 
 
Unlike a continuous stock issuing policy assumed by the conventional economical batch size model (Taft, 
1918), the end-product delivery policy in real-world supply chains is multiple shipments at fixed time 
intervals. Hill (1996) studied a finite-rate fabrication system with the raw material purchase, 
manufacturing, and shipment of fixed-quantity end-item at client requested time intervals. The author 
successfully decided the cost-minimization purchasing and manufacturing schedule. Siajadi et al. (2006) 
considered a multi-buyer single-vendor fabrication-transportation problem, with the aim of minimizing 
the joint total system related cost for both parties. The authors proposed a method to first examine a 
single-vendor two-buyer model, and then extended to consider the model with multiple buyers, the exact 
optimal solution and an approximate optimal solution were gained, respectively. Sarker (2013) developed 
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fabrication-inventory models to explore the probabilistic deterioration item in the two-echelon supply-
chain environments. Three distinct continuous probability distributions for deterioration were examined 
to jointly decide the optimal batch-size and frequency of shipments that minimize total costs. Numerical 
illustrations were offered to show the difference among three models and their applicability. Other studies 
(Kuhn and Liske, 2011; Stažnik et al., 2017; Díaz-Mateus et al., 2018; Morales et al., 2018; Rahimi and 
Fazlollahtabar, 2018; Al-Odeh and Altarazi, 2019; Mosca et al., 2019) also examined different features 
of multi-shipment effect on various fabrication-transportation and supply-chain systems. Few studies 
have investigated the joint influences of unreliable machine, scrap, outsourcing, and multiple shipments 
on the intra-supply-chain planning, this study aims to fill the gap. 
 
2. Problem description and modelling 

 
2.1. Nomenclature 

 
Q = replenishing lot-size, 
T'π = cycle time in the breakdown happening case of the proposed system, 
t1π = replenishing uptime in the proposed system – the decision variable, 
π = the outsourcing portion of a batch in each cycle (where 0 < π < 1), 
K = the in-house manufacturing setup cost, 
C = the in-house manufacturing unit cost, 
Kπ = the outsourcing setup cost (where Kπ = (1 + β1) K), 
Cπ = the outsourcing unit cost (assuming Cπ = (1 + β2) C), 
β1 = connecting parameter between Kπ and K (where -1 < β1 < 0), 
β2 = connecting parameter between Cπ and C (where β2 > 0), 
h = unit holding cost, 
h2 = unit holding cost at buyer end, 
CS = unit disposal cost, 
C1 = unit cost for safety item, 
h3 = unit holding cost for safety item, 
t = time to a breakdown happening – it obeys the Exponential distribution, 
f(t) = the density function of t (where f(t) = βe–βt), 
F(t) = the cumulative density function of t (where F(t) = (1 – e–βt)), 
M = repair cost per breakdown, 
β = the mean Poisson distributed breakdown rate (in a year), 
tr = the breakdown repair time, 
P1 = in-house annual fabrication rate (where d1 = P1x), 
x = random scrap portion a batch in each cycle (where 0 < x < 1), 
d1 = fabrication rate of scraps (where d1 = P1x), 
t'2π = distribution time of finished products, 
n = number of shipments in a cycle, 
t'nπ = time interval between shipments (where t'nπ = t'2π / n), 
CT = unit transportation cost, 
K1 = fixed transportation cost, 
H0 = finished stock level when a breakdown occurs, 
H1 = finished stock level when uptime ends, 
H = finished stock level when outsourced items are received, 
g = tr, 
D = quantity per shipment, 
I = the leftover products in each t'nπ, 
I(t) = finished stock level at time t, 
IF(t)= safety stock level at time t, 
Is(t)= scrapped stock level at time t, 
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Ic(t)= buyer stock level at time t, 
TC(t1π)1 = total system cost per cycle in the breakdown happening case, 
E[TC(t1π)1] = expected total system cost per cycle in the breakdown happening case, 
E[T'π] = the expected cycle time in the breakdown happening case, 
t2π = distribution time of finished products in the no breakdown case, 
tnπ = time interval between shipments in the case that no breakdown happens, 
Tπ = cycle time in the case that no breakdown happens, 
TC(t1π)2 = total system cost per cycle in the no breakdown case, 
E[TC(t1π)2] = the expected total system cost per cycle in the no breakdown case, 
E[TCU(t1π)] = expected annual system cost in the no breakdown case,, 
E[Tπ] = the expected cycle time in the no breakdown case, 
t1 = uptime of the proposed system without outsourcing, nor breakdown, 
t2 = distribution time of the proposed system without outsourcing, nor breakdown,  
T = cycle time of the proposed system without outsourcing, nor breakdown, 
Tπ = cycle time of the proposed system with or without breakdown happening, 

 

2.2. Problem description 

 
This study explores a vendor-buyer coordinated system featuring unreliable machine, random scrap, 
outsourcing, and multi-shipment distribution plan. Consider that a buyer routinely purchases λ units of a 
particular product per year from a vendor, and a batch fabrication along with a multi-shipment policy is 
used by the vendor to meet the requirements. The vendor’s annual fabrication rate is P1 and lot size is Q. 
However, to reduce the batch cycle/response time, a π portion of Q is provided by an external contractor, 
who guarantees the quality of outsourced items and promises its receipt schedule, which is on the 
beginning of vendor’s distribution time of finished items (i.e., t'2π). Thus, different setup and unit costs, 
Kπ and Cπ are associated with this specific outsourcing option (refer to Nomenclature for their 
relationships with in-house relevant costs). During the fabrication of remaining lot (i.e., (1 – π)Q), the 
machine is not reliable, it randomly produces x portion of scrap at a rate d1 (hence, d1 = xP1), and it is 
also subject to a Poisson distributed breakdown with mean rate β per year. All scraps are disposed at an 
extra unit cost CS. Once a breakdown takes place, machine is under repair at once, and the incomplete 
lot will be resumed immediately once the machine is restored. The cost for machine repair is M, and a 
constant repair time tr is assumed; in case that actual repair time shall exceed tr, a rental machine will be 
put in use to avoid further delay in fabrication. Upon completion of the uptime and receipt of outsourced 
stock, n equal-size fixed amount of the lot are distributed to the buyer at fixed time interval t'nπ, then, the 
next fabrication cycle starts. Shortage situation is not allowed in this study, so (P1 – d1 – λ) must be > 0. 
 
2.3. Modelling 

 
According to the Poisson distributed breakdown rate, two distinct conditions need to be separately 
studied, as follows: 
 
2.3.1. Condition 1: A Poisson breakdown happens during t1π 

 
In condition one, the time to a breakdown happening t < t1π. Fig. 1 illustrates the finished stock level in 
the proposed system considering random scrap, outsourcing, stochastic breakdown, and multi-shipment 
distribution plan. 
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Fig. 1. The finished stock level in the proposed system considering random scrap, outsourcing, 

stochastic breakdown, and multi-shipment distribution plan (in green) as compared to that of 
a batch system with scrap and multi-shipment plan (in black) 

 
Fig. 1 depicts that the finished stock arrives at H0 at the time a breakdown happens, and once the 
breakdown is repaired, the finished stock continues to pile up and reach H1 when replenishing uptime 
ends. Then, in the beginning of the distribution time t'2π, the outsourced products are received, and also 
due to a breakdown occurrence, the safety stock λtr is also required for meeting the demand in tr (see Fig. 
2). Hence, prior to the distribution time, total finished stocks go up to H (see Eqs. (1-3) for details).  
 

 0 1 1H P d t   (1) 

 1 1 1 1πH P d t   (2) 

1 rH H Q t     (3) 

 

   
Fig. 2. The safety stock level in condition 1 of the proposed system 

 

The following formulas can also be directly observed from Fig. 1: 
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Fig. 3 displays the scrap level in condition one of the proposed system. It shows that the level of scrap 
accumulates to d1t at the time a breakdown happens, and after the breakdown repair is completed, it goes 
on to pile up to d1t1π in the end of uptime t1π. 
 

   1 1 1 1π π1d t x Q xP t      (7) 

 

 
Fig. 3. The scrap level in condition 1 of the proposed system 

 
Fig. 4 illustrates the finished stock level during t'2π. Total holding stocks in t'2π can be calculated using 
Eq. (8) (Chiu et al., 2019c). 
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2 22
1

π π' '
1 1

2
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n n





            
  

(8) 

 
Fig. 4. The finished stock level during t'2π in condition 1 of the proposed system 

 
The buyer’s stock level is exhibited in Fig. 5, wherein t'nπ, D, and I are shown in Eqs. (9) to (11) and 
total holding stocks in cycle time T'π can be computed by the use of Eq. (12) (Chiu et al., 2019c). 

 

 
Fig. 5. The buyer stock level in the proposed system 
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Total cost per cycle in the condition 1 (i.e., a Poisson breakdown happening case), TC(t1π)1 comprises 
both the variable and fixed outsourcing and in-house fabrication costs, breakdown repairing cost, safety 
stock related costs (refer to Fig. 2), fixed and variable transportation costs, disposal costs, and total 
holding costs (including buyer’s stocks, in-house perfect and scrap items) during T'π, as shown in Eq. 
(13). 
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Substitute Eq. (1) to Eq. (12) in Eq. (13), and employ the expected value to cope with the randomness of 
x, the following E[TC(t1π)1] can be derived: 
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The following E[T'π] can be gained by employing E[x] to manage random scrap rate: 
 

  
1 1 1π1 1
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2.3.2. Condition 2: No breakdown happens during t1π 

 

In condition two, t  t1π. Fig. 6 displays the finished stock level in condition two of the proposed system. 
Fig. 6 explicitly indicates that the finished stock arrives at H1 in the end of uptime, prior to the beginning 
of distribution time t2π, the outsourced products are received, which bring the finished stock level to H. 
Hence, we directly observe the following formulas: 
 

 1 1 1 1πH P d t   (16) 
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1H H Q   (17) 

1 2π π πT t t   (18) 
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π
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t
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(19) 

 

 
Fig. 6. The finished stock level in condition two of the proposed system (in green) as compared to 

that of the proposed system without outsourcing plan (in black) 
 

Fig. 7 shows the safety stock level in condition two of the proposed system. Since there is no breakdown 
happening, it remains the same throughout Tπ. 

 
Fig. 7. The safety stock level in condition two of the proposed system 

 
Similar to that in condition one (see Fig. 3 to Fig. 5), the scrap, finished stock, and buyer stock levels in 
condition two of the proposed system is as follows (Chiu et al., 2019c): 
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Therefore, in condition two, the following TC(t1π)2 comprises both the variable and fixed outsourcing 
and in-house fabrication costs, holding cost for safety stock, variable and fixed transportation costs, 
disposal costs, and total holding costs (including buyer’s stocks, in-house perfect and scrap items) during 
Tπ: 
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Substitute Eq. (16) to Eq. (22) in Eq. (23), and employ the expected value to cope with the randomness 
of x, the following expected total system cost per cycle E[TC(t1π)2] can be obtained: 
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(24) 

The following E[Tπ] can be gained by employing E[x] to manage random scrap rate: 
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3. Solution procedure 

 
Due to the assumption of Poisson breakdown rate β per year, the time to breakdown obeys the 
Exponential distribution with f(t) = βe–βt and F(t) = (1 – e–βt). Also, the cycle time is not constant due to 
the random scrap rate. The renewal reward theorem is applied here to deal with the variable cycle time. 
So, the following E[TCU(t1π)] can be calculated: 
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Substitute formulas (14), (24), and (27) in formula (26), along with some efforts in derivations, 
E[TCU(t1π)] is derived as follows (please see Appendix A for details): 
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(28) 

 
The first- and second-derivatives of E[TCU(t1π)] are shown in Eqs. (B-1) and (B-2) in Appendix B. Sinc
e the first term on the right-hand side (RHS) of Eq. (B-2) is positive, it follows that the E[TCU(t1π)] is c
onvex if the second term on the RHS of Eq. (B-2) is also positive. That means if δ(t1π) > t1π > 0 holds (s
ee Eq. (B-3) for details). If Eq. (B-3) holds, t1π* can be solved by letting the first-derivative of E[TCU(t1

π)] = 0. Since the first term on the RHS of Eq. (B-1) is positive, we obtain the following: 
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Let γ0, γ1, and γ2 represent the following: 
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Then, we can rearrange Eq. (33) as follows: 
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Apply the square roots solution, tπ* can be found as follows: 
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3.1. Recursive algorithm for finding t1π* 

 
As F(t1π) = (1 – e–βt1π) is over the interval of [0.1], so does its complement e–βt1π. So, Eq. (31) can be 
rearranged as follows: 
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(33) 

The following recursive algorithm is proposed to find optimal t1π*: 
(i) Let e–βt1π = 0 and e–βt1π = 1, apply Eq. (31) to obtain the bounds for t1π* first (i.e., t1πU and t1πL). 
(ii) Use the current values of t1πU and t1πL to calculate the update values of e–βt1πU and e–βt1πL. 
(iii) Re-apply Eq. (31) using the current e–βt1πU and e–βt1πL to gain the update values of t1πU and t1πL. 
(iv) Test to see if t1πU = t1πL? If yes, then t1π* is derived, that is t1π* = t1πL = t1πU; otherwise, goes to 

step (ii). 
 
4.  Numerical illustration 

 
A numerical example is offered to demonstrate how our proposed solution procedure works and the 
assumption of relevant parameters is exhibited as follows (see Table 1): 

Table 1  
Assumption of relevant parameters 

CT K1 π K λ  C C1 2 P1 CS 

0.01 90 0.4 200 4000 1 2.0 2.0 0.4 10000 0.1 

h2 n Cπ Kπ M x h h3 1 g  

1.6 3 2.8 60 2500 20% 0.4 0.4 -0.70 0.018  
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The solution procedure starts with its prerequisite, that is to make sure E[TCU(t1π)] is convex. For e–βt1π 

falls within the range [0, 1], we start with setting e–βt1π = 0 and e–βt1π = 1, and apply Eq. (31) to gain the 

initial t1πL = 0.0940 and t1πU = 0.3012. Then, we use the obtained t1πL and t1πU to compute e–βt1πL and e–

βt1πU. Lastly, we apply Eq. (B-3) with the present values of e–βt1πL, e–βt1πU, t1πL, and t1πU to confirm that 

δ(t1πL) = 0.3139 > t1πL = 0.0940 > 0 and δ(t1πU) = 0.5480 > t1πU = 0.3012 > 0. Thus, for β = 1 we confirm 

the convexity of E[TCU(t1π)], so the optimal t1π* does exist. In addition, a broader range of β values are 

used for testing convexity of E[TCU(t1π)] to show the applicability of our proposed model, and the 

outcomes are displayed in Table C-1 (see Appendix C). For locating t1π*, we apply the proposed recursive 

algorithm which was mentioned in previous subsection. Table 2 illustrates the detailed iterative results 

of the t1π* searching algorithm. It indicates that in our example (i.e., β = 1) the optimal uptime t1π* = 

0.1283 and E[TCU(t1π*)] = $12,664.59. 

 
Table 2 

Detailed iterative results of the searching algorithm for t1π* 

Iteration 
number 

t1πU e–βt1πU
 t1πL e–βt1πL t1πU - t1πL  E[TCU(t1πU)] E[TCU(t1πL)] 

- - 0  - 1  - -  -  

1 0.3012  0.7399  0.0940  0.9103  0.2072 $13,476.19 $12,766.25 

2 0.1624  0.8501  0.1201  0.8868  0.0423 $12,722.17 $12,668.19 

3 0.1359  0.8729  0.1264  0.8812  0.0095 $12,667.08 $12,663.83 

4 0.1301  0.8780  0.1279  0.8799  0.0022 $12,663.78 $12,663.60 

5 0.1287  0.8792  0.1282  0.8796  0.0005 $12,663.60 $12,663.59 

6 0.1284  0.8795  0.1283  0.8796  0.0001 $12,663.59 $12,663.59 

7 0.1283 0.8796 0.1283 0.8796 0.0000 $12,663.59 $12,663.59 

 

Fig. 8 illustrates the initial bounds for t1π, convexity, and the effect of deviations in t1π on E[TCU(t1π)]. 
 

  
Fig. 8.  Initial bounds for t1π, the convexity, and 
the effect of deviations in t1π on E[TCU(t1π)] 

Fig. 9. Variations in random scrap rate x effect on 
different system cost contributors 

 

The variations in scrap rate x effect on different system cost contributors are explored and depicted in 
Fig. 9. It indicates that product quality relevant cost (including disposal cost and the expense for 
fabricating extra items to make up the scrap) upsurges drastically, as x increases. 
 

The impact of differences in mean-time-to-breakdown 1/β along with various values of x on 
E[TCU(t1π*)] is investigated as shown in Figure 10. It specifies that for 1/β = 1, x = 0.2, and n = 3, we 
have E[TCU(t1π*)] = $12,664; it also reveals that E[TCU(t1π*)] starts to drastically decline, when 1/β 
rises to and beyond 0.14. Moreover, once 1/β grows into very large (e.g., 1/β approaches 100), 
E[TCU(t1π*)] = $12,067 (i.e., the same result as that of a problem without considering breakdown 
happening). 
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Fig. 10.  The impact of differences in 1/β along 
with x on E[TCU(t1π*)] 

Fig. 11.  Effect of changes in n on t1π* 
 

 
The effect of changes in number of shipments in a cycle n on optimal uptime t1π* is exhibited in Fig. 11. 
It specifies that in our example n = 3, t1π* = 0.1283; and t1π* increases considerably, as n rises. The 
influence of variations in number of shipments in a cycle n on the delivery relevant costs is illustrated in 
Fig. 12. It indicates that as n increases, the fixed delivery cost upsurges severely and in-house holding 
cost goes up accordingly (the latter is due to a slow movement of goods from producer to customer as n 
increases); on the contrary, customer’s holding cost varies slightly, except for n =1. 
 

  
Fig. 12. Influence of variations in n on the 
delivery relevant costs 

Fig. 13. Impact of differences in π on utilization 
 

 
The impact of differences in outsourcing portion π on utilization is demonstrated in Fig. 13. It specifies 
that for π = 0.4 (our assumption in the example), utilization drops from 44.12% to 25.42%; and utilization 
declines significantly as π increases.  
 
The effect of variations in outsourcing portion π on diverse cost contributors of E[TCU(T1π*)] are 
investigated and exposed in Fig. 14. It shows that as π increases, in-house variable cost decreases 
severely, the quality and breakdown costs also declines noticeably; quite the reverse, variable outsourcing 
cost upsurges radically. Fig. 15 illustrates the combined influences of changes in extra fraction of unit 
outsourcing cost β2 and scrap rate x on E[TCU(t1π*)]. It reveals that x has more influence on the expected 
system cost than β2; for E[TCU(t1π*)] upsurges radically as x goes up; and it increases mildly as β2 rises. 
The joint effect of variations in outsourcing portion π and random scrap rate x on the optimal decision 
variable t1π* is analyzed and demonstrated in Figure 16. It exposes that π has more impact on the optimal 
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t1π* than x. The decision variable t1π* declines radically as π increases; and conversely when x increases, 
t1π* noticeable rises only when π is small (e.g., less than 0.4), otherwise, t1π* increases insignificantly, as 
x rises. 
 

  
Fig. 14. Effect of variations in π on diverse cost 
contributors of E[TCU(t1π*)] 

Fig. 15.  Combined influences of changes in β2 
and x on E[TCU(t1π*)] 

 

  
Fig. 16.  Joint effect of variations in π and x on 
t1π* 

Fig. 17. Combined impact of differences in x and 
π on the optimal E[TCU(t1π*)] 

 
Fig. 17 exhibits the combined impact of differences in scrap rate x and outsourcing portion π on optimal 
system cost E[TCU(t1π*)]. It reveals that x has more influence on E[TCU(t1π*)] than π, especially when 
π is less than 0.6 (i.e., E[TCU(t1π*)] upsurges drastically as x goes up); as π > 0.6, E[TCU(t1π*)] increases 
mildly as x rises. On the other hand, when x is small, as π rises, E[TCU(t1π*)] surges accordingly; and in 
contrast, when x is high, E[TCU(t1π*)] declines significantly, as π increases. 
 

5.  Conclusions 

 
The present work has explored a vendor-buyer coordinated system featuring an unreliable machine, 
scrap, outsourcing, and multi-shipment policy. A decision support type of model was built to clearly 
portray the characteristics of the problem to help vendor gain the competitive advantage by ensuring the 
timeliness and quality-product deliveries to buyer given unreliable machine and limited capacity. By the 
use of mathematical analyses, derivations, optimization processes, and a specific recursive algorithm, we 
are able to obtain the optimal expected system cost and fabrication uptime decision to the problem. The 
applicability of research result is demonstrated through numerical illustrations. Diverse hidden 
information of the problem that can facilitate managerial decision making is now revealed, it includes: 
(i) the influence of deviations in t1π on E[TCU(t1π)] (Fig. 8); (ii) the effect of differences in x on various 
cost contributors of the system (Fig. 9); (iii) the impact of changes in 1/β along with x on E[TCU(t1π*)] 
(Fig. 10); (iv) the influence of variations in n on t1π* and various delivery relevant costs (Figs. 11-12); 
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(v) the impact of differences in π on utilization (Fig. 13); (vi) the effect of changes in π on various cost 
contributors of E[TCU(t1π*)] (Fig. 14); and (vii) the joint impacts of variations in key system parameters 
on the optimal decision of the problem (Figs. 15-17). For future study, incorporating a stochastic demand 
in the same context of the problem will be an interesting direction. 
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Appendix – A 

 
Derivation of Eq. (28) is provided as follows: 
 
First, the results of integration for the denominator and numerator of Eq. (27) are exhibited in Eqs. (A-
1) and (A-2). 
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Then, with additional derivation, E[TCU(t1π)] is gained as follows: 
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Appendix – B 

 
The first- and second-derivatives of E[TCU(t1π)] are displayed in the following Eqs. (B-1) and (B-2): 
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(B-2) 

 
Since the first term on the right-hand side (RHS) of Eq. (B-2) is positive, it follows that the E[TCU(t1π)] 
is convex if the second term on the RHS of Eq. (B-2) is also positive. That means if the following δ(t1π) 
> t1π > 0 holds. 
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Appendix – C 

 
Table C-1  
Verification of convexity of E[TCU(t1π)] against different βs 

β δ(t1πL) t1πL δ(t1πU) t1πU 

11 0.0430 0.0199 1.0343 0.2979 
8 0.0576 0.0265 0.6727 0.2980 
5 0.0879 0.0393 0.4922 0.2983 
4 0.1067 0.0467 0.4616 0.2985 
3 0.1358 0.0570 0.4474 0.2988 
2 0.1872 0.0720 0.4592 0.2994 
1 0.3139 0.0940 0.5480 0.3012 

0.5 0.5266 0.1086 0.7435 0.3047 
0.01 5.6115 0.1256 6.0501 0.5528 

 
 



 

 

358 

  

© 2020 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 


