
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

November 2007

A Verifiable Language for Programming Real-Time A Verifiable Language for Programming Real-Time

Communication Schedules Communication Schedules

Sebastian Fischmeister
University of Pennsylvania, sfischme@seas.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_papers

Recommended Citation Recommended Citation

Sebastian Fischmeister, Oleg Sokolsky, and Insup Lee, "A Verifiable Language for Programming Real-Time

Communication Schedules", . November 2007.

Copyright 2007 IEEE. Reprinted from IEEE Transactions on Computers, Volume 56, Issue 11, November 2007, 15
pages.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply
IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing
to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/345
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers/345
mailto:repository@pobox.upenn.edu

A Verifiable Language for Programming Real-Time Communication Schedules A Verifiable Language for Programming Real-Time Communication Schedules

Abstract Abstract
Distributed hard real-time systems require predictable communication at the network level and verifiable
communication behavior at the application level. At the network level, communication between nodes
must be guaranteed to happen within bounded time and one common approach is to restrict the network
access by enforcing a time-division multiple access (TDMA) schedule. At the application level, the
application's communication behavior should be verified to ensure that the application uses the
predictable communication in the intended way. Network Code is a domain-specific programming
language to write a predictable verifiable distributed communication for distributed real-time applications.
In this paper, we present the syntax and semantics of Network Code, how we can implement different
scheduling policies, and how we can use tools such as model checking to formally verify the properties of
Network Code programs. We also present an implementation of a runtime system for executing Network
Code on top of RTLinux and measure the overhead incurred from the runtime system.

Keywords Keywords
real-time systems, scheduling, time division multiaccess, networks, software verification and validation.

Comments Comments
Copyright 2007 IEEE. Reprinted from IEEE Transactions on Computers, Volume 56, Issue 11, November
2007, 15 pages.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or
personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document,
you agree to all provisions of the copyright laws protecting it.

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/345

https://repository.upenn.edu/cis_papers/345

A Verifiable Language for Programming
Real-Time Communication Schedules

Sebastian Fischmeister, Member, IEEE, Oleg Sokolsky, Member, IEEE, and

Insup Lee, Fellow, IEEE

Abstract—Distributed hard real-time systems require predictable communication at the network level and verifiable communication

behavior at the application level. At the network level, communication between nodes must be guaranteed to happen within bounded

time and one common approach is to restrict the network access by enforcing a time-division multiple access (TDMA) schedule. At the

application level, the application’s communication behavior should be verified to ensure that the application uses the predictable

communication in the intended way. Network Code is a domain-specific programming language to write a predictable verifiable

distributed communication for distributed real-time applications. In this paper, we present the syntax and semantics of Network Code,

how we can implement different scheduling policies, and how we can use tools such as model checking to formally verify the properties

of Network Code programs. We also present an implementation of a runtime system for executing Network Code on top of RTLinux

and measure the overhead incurred from the runtime system.

Index Terms—Real-time systems, scheduling, time division multiaccess, networks, software verification and validation.

Ç

1 INTRODUCTION

DISTRIBUTED hard real-time systems such as industrial
process control, drive-by-wire systems, or hardware-

in-the-loop require two properties: predictability and
verifiability.

Predictability. Predictability means that an external ob-
server can predict the application’s behavior without know-
ing its internal state. Real-time applications require value and
timing control to be predictable in the value and time
domains. Failing in one of them could be as disastrous as
failing in the other, meaning that a wrong value at the right
time could be as bad as the right value at the wrong time.

Predictability for communication means communication
with guaranteed bounds on the delivery time. A common
approach to provide such bounds is by using time-division
multiple access (TDMA). TDMA restricts access to the
communication medium by dividing time into slots and
assigning slots to individual nodes. If the TDMA schedule is
correct and all nodes have synchronized clocks, then there
will be no collision in the medium and all communication
will happen in a bounded time.

Predictability for outputs means that the application’s
output is invariant between runs, that is, given the same
inputs at the same time, the application will always produce
the same outputs. Predictable outputs are also called value
determinism [1]. A value-deterministic application is not
affected by, for instance, scheduling decisions, communica-
tion peculiarities such as collisions, race conditions, or

operating system tasks such as memory allocation and disk
access.

Verification. Claiming predictability without evidence is
unsatisfactory for safety-critical applications such as che-
mical process control. Here, claims need to be verified and,
in some applications, verification may even be required by
regulatory agencies in the future. Verification assists the
evaluation of the system’s correctness and is useful in
detecting potential problems before they occur in an
implemented system.

In our work, we present a programming language to
write the communication part of predictable verifiable
distributed hard real-time applications. The basic idea is
to separate communication and computation code and put
communication behavior in a separate layer to which we
can apply formal verification techniques. Additionally, this
allows the developer to adapt the communication behavior
to the application demands and, for example, allow one task
to monopolize the communication medium without com-
promising message deadlines or system integrity.

The programming language, called Network Code, is an
executable abstraction for specifying a behavioral model for
1) medium access control (MAC) algorithms for real-time
communication, specifically dynamic TDMA, and 2) data
access for real-time application. This executable abstraction
will then run in an interpreter that executes the schedule as
programmed. We achieve the predictability and verifia-
bility of these programs through the construction of layered
abstractions, where each layer provides precise guarantees
which the higher layers can use to provide their own
guarantees.

Fig. 1 shows the layered architecture of our approach.
The dynamic TDMA layer provides a guaranteed commu-
nication within a bounded time and communicates via
queues with the upper layers. The data determinism layer
uses the lower dynamic TDMA layer and provides value
determinism for all data which passes through this layer.
On top of the layered architecture, the real-time application

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007 1

. The authors are with the School of Computer and Information Science,
University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104.
E-mail: sfischme@seas.upenn.edu, sokolsky@cis.upenn.edu,
lee@central.cis.upenn.edu.

Manuscript received 11 Apr. 2006; revised 12 Oct. 2006; accepted 2 Apr.
2007; published online 7 June 2007.
Recommended for acceptance by L. Welch.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0142-0406.
Digital Object Identifier no. 10.1109/TC.2007.70747.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

can either use the data determinism layer to have value-
deterministic data or directly access the dynamic TDMA
layer to send arbitrary data.

The remainder of this paper is structured as follows:
Section 2 provides an overview of the model and the
system. Section 3 presents the Network Code language.
Section 4 defines the concepts behind Network Code.
Section 5 shows how we can use our system to implement
different policies such as earliest deadline first (EDF),
round-robin, or token-based ones. Section 6 elucidates
how we use VERSA to verify the code’s properties. Section 7
outlines our implementation of the runtime system in
RTLinux and shows its performance measurements. Finally,
Section 9 presents the conclusions of this work.

2 OVERVIEW

Our goal is to create an interpreted language and its
runtime system to facilitate the design and implementation
of predictable and verifiable communication for distributed
real-time applications. To facilitate this, the programming
language and the runtime system have to provide control of
timing, control of values, control of resources (that is, the
shared communication medium), control of dynamic
behavior (that is, on-the-fly scheduling decisions), and
support for the verification of schedulability.

2.1 Assumptions and the Basic Model

A distributed real-time program consists of a set of periodic
preemptible tasks. Tasks communicate with other tasks via
channels, which have logical identifiers. Channels logically
separate independent message streams. All channels are
mapped onto one shared communication medium. A
channel must be used by at most one sender for a specified
amount of time. The communication medium is accessed in
a slotted fashion. Each slot has a defined start time and
duration. Tasks use predictable values (hard values) and
unpredictable values (soft values). Hard values are accessed
through the data determinism layer and we assume that the
access behavior follows repetitive temporal patterns, which
are specified in an external document and remain static
over the course of the program. Delivery of hard values in
the distributed application is guaranteed to happen within
bounded time. Access to soft values is arbitrary and
bypasses the data determinism layer. Delivery of soft
values is not guaranteed within a bounded time. Typically,
hard values are used for computation results from tasks,
whereas soft values are used for event notification.

Tasks run on processors, which are connected by a shared
communicationmedium. Processors communicatewith each
other exclusively via the medium that is controlled by the
Network Code during runtime; particularly, we assume that
there is no shared memory. We assume that time is given in
discrete units. Further, we assume the presence of a global

clock and that all times are measured on this clock. The
communicationmediumprovidesa reliable atomicbroadcast
service; therefore, either all processors receive a message or
none of them do. This is a common assumption for our target
domain of embedded systems, which often use single
segmented bus networks.

The Network Code program and all auxiliary data
structures are generated offline and all necessary commu-
nication messages are known in advance. We allow
dynamic creation of tasks, but such tasks are limited to
accessing soft values only.

The scope of Network Code is to provide language
constructs for controlling timing, messaging (sending and
receiving), and control flow. Its scope does not include
encoding of branching conditions and coordination with
the software layer. It also does not include operations on
the physical layer; instead, it communicates via queues
with a transceiver.

We note that our approach is not necessarily to provide
better throughput than specific protocols but to make them
verifiable and predictable. It is our aim to provide an
effective abstraction for real-time communication which can
then act as input for the runtime and the verification
system. However, it has been shown in [2] that it can
achieve better throughput than protocols with a round-
robin allocation.

2.2 System Overview

Fig. 2 shows the concrete system architecture and how we
implement and coordinate the different layers shown in
Fig. 1. The real-time task sits on top of the architecture. It
accesses hard values via a set/get interface from the variable
space and it accesses soft values via a queue interface directly
from the input/output soft queue. The variable space
implements the data determinism layer. It manages a list of
timestamped data values id ¼ hts; valii, where ts and val

define the release time and the value, respectively, of the ith
entry in this list. The variable spaceprovides control of values
as it always releases the most recent value (that is,
getðid; tÞ ¼ hts; valij, where tsj � t ^ 8i 6¼ j : tsi < tsj). The
soft queues, the hard queues, and the message transceiver
implement the dynamic TDMA layer. The soft queue stores
messages containing soft values. It consists of an input
queue and an output queue, where the input queue
contains the received messages of soft values and the
output queue contains soft value messages to be trans-
mitted. The hard queues store messages containing hard
messages and the system also has an input and output hard
queue. The message transceiver provides a coordination

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 1. Overview of the layered architecture used for the runtime system

to execute Network Code.

Fig. 2. Overview of the runtime system components, with the interfaces

between them for all three layers.

interface which provides control of 1) when it is allowed to
transmit data and 2) whether it should transmit packets
from the soft queue or the hard queue.

The Network Code machine provides timing control and
realizes a dynamic behavior of communication schedules by
executing a Network Code program. The machine applies
timing control onto the variable space and the message
transceiver while interpreting the program. It exerts timing
control on the message transceiver by calling its coordina-
tion interfaces at specific times and it exerts timing control
on the variable space by enqueuing and dequeuing
messages from the hard queues at specific times. The
Network Code machine implements on-the-fly scheduling
decisions via guard functions and thereby allows imple-
menting a dynamic behavior in Network Code programs. A
guard is similar to the expression of an if clause in
traditional programming languages: It decides whether or
not the if clause will be taken. Finally, the Network Code
program is an abstraction of the communication behavior,
which is also amenable to a formal verification and analysis.

2.3 Temporal End-to-End Behavior

Fig. 3 shows the temporal end-to-end behavior of hard values
in our system. Node n1 hosts task �1. Task �1 produces an
output labeled�and stores this value in thevariable spacevia
the set interface of the Network Code runtime system. The
value becomes valid after time tx. The Network Code
machine reads this new value, creates a message, and stores
it in the output hard queue. The message eventually gets
transmitted and node n2 receives it and stores it in its input
hardqueue.At some time, node n2’s Network Code machine
dequeues the message and updates the variable space. The
receiving task �2 will read �’s new value 3.33 if its query
time ty is greater than tx since �’s new value is to be
released at time tx.

We use the above-described mechanism to transparently
distribute taskoutputvalues.As the recipient always receives
a valid value from the get operation, the developer does not
need to take special precautions for this. The communication
schedule is generated in such a way that it can transmit
updated values before they are accessed at a remote node.
Note, as stated in Section 2.1, that we assume access to hard
values to follow a repetitive known temporal pattern.

3 NETWORK CODE

Network Code is quite similar to the assembly language
and it consists of a series of instructions with a fixed
number of parameters. In this section, we present the
instruction set and provide an example that demonstrates
the potential of the concept and the language.

3.1 Basic Instruction Set

The basic instruction set contains the minimal set of
primitives to code precomputed communication schedules.
All instructions affect only the local node (for example,
destroy frees the message’s memory locally only, whereas
handle handles an error locally).

Dynamic TDMA Layer. There are four operations that
handle timing and MAC:

. Future. The instruction future(dl, jmp) schedules a
wake-up call for the interpreter. The parameter dl
specifies a relative time span for which the inter-
preter suspends and the parameter jmp specifies
where it resumes in the program.

. Halt. The instruction halt() halts execution until it
resumes.

. If. The instruction if(g, jmp) implements a condi-
tional jump. If the guard g evaluates to true, the
execution will continue at address jmp. Otherwise,
the program counter will increase by one.

. Mode. The instruction mode(m) switches between
operational modes. Currently, the supported modes
are sched, usched, and init. In the sched mode, the
transceiver uses the hard queues (input and output
queue) and, in the uschedmode, it uses the soft queues.
The intention of these two modes, besides the queue
selection, is that, whenever hard values are trans-
mitted, the sched mode must be used and, for soft
values, it is the usched mode. We will show in a later
example thatwe can switch from the schedmode to the
uschedmode to utilize otherwise unused slots for soft
values. The init mode invokes the routines to
synchronize with other nodes at start time.

Data determinism layer. There are four operations to
handle value control. The value layer also uses instructions
from the previous layer. Network Code only controls access
to the hard queues, whereas the soft queue can be directly
accessed by the tasks:

. Create. The instruction create(msgid,loc) creates a
message from a memory location. The parameter
msgid identifies the message to be created. The
parameter loc identifies the memory location from
which the message’s values will be taken.

. Destroy. The instruction destroy(msgid) destroys a
message. The parameter msgid identifies the mes-
sage to be destroyed. The message msgid is only
accessible at the local node after being created and
before being destroyed.

. Send. The instruction send(ch, msgid, lifetime)
enqueues a message in the hard output queue. The
parameter ch specifies the channel on which
messages are to be sent and received. The parameter
msgid identifies the message to be communicated.
The parameter lifetime specifies the message’s
relative lifetime. The lifetime is the time span during
which the message’s packets are alive and valid.
After expiry of that value, the message can be

FISCHMEISTER ET AL.: A VERIFIABLE LANGUAGE FOR PROGRAMMING REAL-TIME COMMUNICATION SCHEDULES 3

Fig. 3. An example showing the behavior of the runtime system when

task �1 at node n1 communicates a value to task �2 at node n2.

cleared from the input buffers. In the normal case,
the lifetime of a message is the TDMA slot length.
Note that the send instruction needs no parameter
for message length or its deadline because we check
offline whether these parameters are satisfied and,
thus, at runtime, they are no longer needed.

. Receive. The instruction receive(ch, loc) retrieves a
message from the message queue. The parameter ch
specifies the channel from which a message is to be
retrieved. The location loc specifies the memory
address in the input/output layer to be written to.

Error handling. Our failure model includes integrity errors
(for example, errors in the code or the system’s software) and
network errors (for example, errors while sending and
receiving values). Errors are limited to those that are
detectable by the runtime system, specifically either while
executing an instruction (for example, it tries to receive a
message, but the input queue is empty because the sender
failed) orwhile communicating (for example, it tries to send a
packet, but the network card reports an error). The model
excludes hardware errors that do not manifest as the above
ones (for example, memory bit flips or power failures):

. Handle. The instruction handle(err, jmp) registers an
error handler. The parameter err specifies the error
to be handled. The parameter jmp specifies the
address at which the execution should immediately
continue if an exception occurs. Available errors that
can be observed at runtime fall into the categories of
integrity, sending, and receiving errors.

If an error occurs, all queues are flushed and the
execution continues at address jmp. If no handler for
error err is present, then the execution at the local
node stops. Flushing the queues is necessary
because, in the event of a failure, nothing meaningful
can be assumed about the state. This allows the
developer to return to a well-defined state in the
local node, which can then be used to return to a
well-defined consistent state in the distributed
application.

Annotations. The verification framework requires more
information than what the Network Code program con-
tains. This additional information is provided via annota-
tion of the programs. Annotations are encoded in comments
by using the token “//@ann:”. Example annotations are
message transmission times or, as described in [2], guard
function execution times and labeling of messages for
overhead analysis.

3.2 Composite Instructions

The basic instructions can be composed to provide high-level
operations. This section presents the ones required for the
example in Section 3.3 and an extended list is available in [3]:

. Goto. The instruction goto(jmp) implements an
unconditional jump. It is emulated by the instruction
if and a guard, which always returns true. In the code,
the guard alwaystrue refers to a function that always
returns true and which is part of a library of standard
guard functions implemented for the language.

goto (jmp) =

if (alwaystrue, jmp)

. Wait. The instruction wait(dl) pauses the execution
for some time. It is simulated by a future instruction
with a trigger deadline dl and, subsequently, a halt
instruction. The wait instruction augments the
schedule’s readability. In our source examples,
labels for conditional and unconditional jumps are
written by a letter followed by a numeral and a colon
(for example, “L0:”).

wait (dl) =

future (dl, L0)

halt ()

L0: nop ()

. XSend. The instruction xsend(ch, msgid, loc, life-
time) creates a message, schedules it for transmis-
sion, and then destroys it.

xsend (ch, msgid, loc, lifetime) =
create (msgid, loc)

send (ch, msgid, lifetime)

destroy (msgid)

. Backup_send. The instruction backup_send
(primaryCh, backupCh, msgid, lifetime, duration) is
a composite instruction for sending a value if the
primary send failed. The parameter primaryCh
identifies the channel in which a message should
be present. The parameter duration specifies the
duration for which the node switches into the
unscheduled mode. The guard checks whether this
message has been transmitted. If it has not, then the
instruction will send the message msgid with
lifetime lifetime on channel backupCh. If the message
has been sent, then the instruction will switch into
the usched mode.

backup_send (primaryCh, backupCh, msgid,

lifetime, duration) =

if (primaryCh_NotEmpty, L0)

send (backupCh, msgid, lifetime)

goto (L2)
L0: mode (usched)

future (duration, L1)

goto (L2)

L1: mode (sched)

halt ()

L2: nop ()

. Backup_receive. The instruction backup_receive
(primaryCh, backupCh, loc, duration) performs one
of these behaviors: It will switch into the usched
mode for the duration duration or receive a message
from channel backupCh and store its value in the
location loc of the input/output layer. It will do the
first if a message is present in channel primaryCh
and will do the second otherwise.

backup_receive (primaryCh, backupCh, loc,

duration) =

if (primaryCh_NotEmpty, L0)

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

future (duration, L1)

goto (L3)

L0: mode (usched)
future (duration, L2)

goto (L3)

L1: receive (backupCh, loc)

halt ()

L2: mode (sched)

halt ()

L3: nop ()

3.3 Example

Network Code programs essentially encode an assignment
of slots to particular messages. The program addresses slots
the following way: Consider the slot with start time 2
(which is relative to the start of the round) and a duration of
1 time unit. The instructions future and halt are used to
suspend the Network Code machine until the start of the
slot. The start time is the current time when the last halt has
been executed plus the duration specified by future’s
parameter dl. Assuming that the last halt has been executed
at the beginning of the round, the value for dlwould be 2 for
our example. The slot’s duration is encoded in the lifetime
of the messages transmitted in the slot. In this example, the
instruction send would have the value of 1 for the
message’s lifetime parameter.

Network Code schedules are more expressive than table-
driven ones, where each row represents one communication
and this table-driven schedule is executed row by row (c.f.,
[4]). This additional expressiveness can be utilized to
conserve resources [2]. Consider the following scenario: A
control system bases its decision on inputs from two nodes.
The slot size is 10 time units and, in this example, one
communication needs one slot. The application’s period is
four slots. The two nodes n1 and n2 transmit their data. For
dependability reasons, each node has a backup node: n0

1 for
the first node and n0

2 for the second. They transmit data if
the original node fails to transmit its data. Fig. 4 shows a
table-driven schedule that implements this example. Each
box represents a communication slot and the label inside
identifies the message that the node sends in that specific
slot. The table structure prevents on-the-fly decisions, so all
four slots are used in each round.

In such a scenario, a table-driven schedule may waste
resources. Whenever the original node successfully trans-
mits its message, the backup can remain silent. A schedule
with on-the-fly decisions can implement such behavior, as
shown in Fig. 5. After each original node’s transmission, all
nodes determine whether the backup node needs its slot. If
not, the slot is available for other traffic. A system that
implements such a policy must maintain state information,
such as a list of transmitted packets.

Listings 1 and 2 implement Fig. 5’s schedule by using
Network Code. The symbol “_” masks parameters that are

irrelevant for this example. In Listing 1, node n0
1 waits for its

slot, that is, at time 10, and sends the data, if necessary.
Node nr implements the receiver and follows a similar
scheme, as shown in Listing 2. This node receives all
transmissions and uses the composite instruction ft_receive
to enable an unscheduled communication if the original
transmission arrived.

Listing 1: communication schedule for node n0
1.

L0: wait (10)

create (msg01, _)

ft_send (ch1, ch
0
1, msg01, 10, 10)

destroy ðmsg01Þ

5 wait (30)

goto (L0)

Listing 2: communication schedule for node nr.

L0: wait (10)

receive (ch1, _)

ft_receive (ch1, ch
0
1, _, 10)

wait (10)

5 receive (ch2, _)

ft_receive (ch2, ch
0
2, _, 10)

wait (10)

goto (L0)

Note that, in this example, we use redundant nodes and
have a fail-over scheme that reacts in the same round.
Another scheme could be to store the state across rounds
and make a scheduling decision based on which nodes
failed to communicate in the last round. Each scheme has
different advantages and requires a different level of
complexity. The example at hand is intentionally kept
simple to show one of the main advantages of Network
Code, which is to make scheduling decisions within the
communication round.

4 SEMANTICS

In this section, we define an abstract model for TDMA
communication schedules with on-the-fly decisions. We call
this abstraction a tree schedule. It allows us to show how we
use Network Code to implement arbitrary time-triggered
schedules and provides the formal semantics that are
necessary for the verification of such schedules.

4.1 Abstract Model for TDMA Communication
Schedules

A TDMA system consists of a set of connected nodes that
communicate via a broadcast medium. The set N includes
all of the system’s computation nodes n that use the

FISCHMEISTER ET AL.: A VERIFIABLE LANGUAGE FOR PROGRAMMING REAL-TIME COMMUNICATION SCHEDULES 5

Fig. 4. An example schedule without on-the-fly decisions. Both primary

and backup must always communicate their data in each round (for

example, both n1 and n0
1). Fig. 5. An example schedule with on-the-fly decisions. If the primary (n1

or n2) successfully communicated its data, then the slot assigned to the

backups (n0
1 and n0

2) may be used differently (represented by the

hatched box).

medium. The set of messages M consists of messages m,
where m is a tuple m ¼ hsrc; v;Dsti, with the sender src, a
variable v in the variable space, and the set of recipients Dst.

Example 1. Given the schedule shown in Fig. 4, we have
N ¼ fn1; n

0
1; n2; n

0
2; nrg and

M ¼ fm1 ¼ hn1; ; fn0
1; nrgi;m2 ¼ hn0

1; ; fnrgi;

m3 ¼ hn2; ; fn0
2; nrgi;m4 ¼ hn0

2; ; fnrgig:

The symbol “_” masks unimportant parameters for this
example.

A TDMA schedule restricts access to the network to
individual nodes by using time division and slots. Such a
schedule requires a definition of timestamps and slots. A
timestamp t specifies a point in time. A slot sl ¼ ½tst; tendÞ is
a time interval and consists of the start time tst and the end
time tend, with tst < tend. The set SL contains all slots sl.

Example 2. Fig. 4’s schedule consists of four
slots: sl1 ¼ ½0; 10Þ, sl2 ¼ ½10; 20Þ, sl3 ¼ ½20; 30Þ, and
sl4 ¼ ½30; 40Þ.

A linear schedule sched ¼ hSL; assigni consists of a set of
slots SL available for scheduling and an injective function
assign : SL ! M [f�g, with assignðslÞ relating a slot to a
specific message or leaving it empty. We use the symbol � to
denote such an empty slot. A schedule is nonoverlapping if

8sl 2 SL :6 9x 2 SL :

ðsl:tst < x:tst < sl:tendÞ _ ðsl:tst < x:tend < sl:tendÞ:

A nonoverlapping schedule is collision free because each slot
is assigned to at most one node by construction.

Example 3. Given the previous examples, Fig. 4’s schedule,
defined as sched1, is ðSL1 ¼ fsl1; sl2; sl3; sl4g; assign1Þ,
with

assign1ðsl1Þ ¼ m1; assign1ðsl2Þ ¼ m2; assign1ðsl3Þ ¼ m3;

and assignðsl4Þ ¼ m4.

The mapping assign relates at most one broadcast
message with a single slot (injective function). We now
define tree schedules, which implement on-the-fly deci-
sions while scheduling. A tree schedule is the tuple
tsched ¼ hSL;massign;�; statei, where SL is the set of
available slots, the noninjective function massign, defined
as massign : SL ! M [f�g, relates multiple broadcasts with
a single slot, � : SL� state ! sl implements a selector
function, and state consists of counters and history variables
(see Section 4.2). Since, massign is a noninjective function,
multiple messages can be assigned to a single slot. The
function �ðB; stateÞ takes this set of messages and selects
one of them. A tree schedule tsched is collision free if
8sl 2 SL : j�ðmassignðslÞ; stateÞj � 1. The tree schedule
tsched is also a linear schedule if each slot has at most
one assigned communication ð8sl 2 SL : jmassignðslÞj � 1Þ.
The structure and properties of a tree schedule, as well as
probabilistic tree schedules, are described in [2].

Example 4. An example of the function massign1 for Fig. 5 is

massign1ðsl1Þ ¼ fm1g;massign1ðsl2Þ ¼ fm2; �g;

massign1ðsl3Þ ¼ fm3g; and massignðsl4Þ ¼ fm4; �g:

4.2 Network Code as Tree Schedules

In this section, we show that we can map Network Code
programs to tree schedules, as defined in Section 4.1. As
described in Section 3.3, Network Code addresses slots by
using the instructions future and halt. What happens in this
slot is then defined between two halt instructions, now called
a block. The conversion of a Network Code program to a tree
schedule is then straightforward. For a given block, the time
at which the Network Code machine enters the block
represents the start time of the slot. Themessages transmitted
in this block represent the messages associated with this slot.
The value of the parameter dl of the future instruction inside
this block represents the duration of the slot.

Example 5. Considering Fig. 5, we now specify the message
m1 ¼ hn1; x1; fn

0
1; nrgi to be communicated in slot sl1 ¼

½0; 10Þ by using channel 4. Since the broadcast involves
three nodes, we need three network programs. Node n1

runs the program create(1,x1); send (4,1,10); destroy(1);.
Nodes n0

1 and nr run the program wait(10), receive(4,x1).

To implement a linear schedule sched ¼ ðSL; assignÞ with
Network Code, we first need to define all slots SL and then
generate a code for the mapping assign. We can define slots
by using the instructions future and halt, as shown above.
To realize the mapping assign, we apply a total order to the
mapping’s domain (that is, slots) and iterate through the
ordering. Slots are totally ordered by their start time and
sl1 < sl2 if and only if tstðsl1Þ < tstðsl2Þ. Remember that slots
in a linear collision-free schedule are nonoverlapping. As
we iterate, we generate the code for the slot (the future and
halt instructions) and the code for the defined message (the
create, send, destroy, and receive instructions). Finally, we
connect all the slots by concatenating them, starting with
the first and ending with the last slot.

If assignðxÞ ¼ � for a slot x 2 SL, then we use the
instruction mode to switch from the scheduled into the
unscheduled modes. At the slot’s end, we switch back into
scheduled mode.

To implement a tree schedule

tsched ¼ ðSL;massign;�; stateÞ

with Network Code, we need to define slots SL, generate
code for the multislot mapping massign, and implement �.
state is defined in the runtime. Regarding slots and the
mapping massign, we use the same technique described for
linear schedules. However, instead of a simple concatena-
tion, in tree schedules, successors for each slot are defined
by �. We realize � by using the conditional instruction if. if
executes an arbitrary function whose output is true or false.
The guard functions used in the if instruction are part of �.
They use the state information state, which consists of
counters (for example, instruction counters, message coun-
ters, and transmission counters) and history variables (for
example, values in the variable space and queue states). To
realize �, we create a chain of if instructions similar to a
switch statement and concatenate one slot with all successor
slots by using this construct. In [4], we provide more details
about this construct.

Example 6. Listing 1 shows the implemented tree schedule
for Fig. 5. The instruction ft_send is the composite
instruction, as explained in Section 3.2. The tree structure
is implemented in the ft_send instruction which includes

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

a conditional branch that depends on whether the
message should be sent or not.

5 PROGRAMMING MAC POLICIES

Network Code can model the arbitrary behavior of time-
triggered communication schedules as a MAC policy. In
this section, we present several different MAC policies and
show the Network Code program that implements them.
For the sake of brevity, we show the examples without the
start-up code, which basically consists of a mode switch
from the init to the sched modes. The client nodes start up in
the init mode and, when the controller sends the initializa-
tion signal, they switch to the sched mode.

5.1 Round-Robin Policy

The round-robin scheduling policy assigns communication
slots to all nodes in equal portions and in order. For
instance, we consider a distributed system with three
nodes. In this system, the round starts with node 1 by
using one slot, then node 2, then node 3. After this, the
round starts from the beginning again.

Listing 3: a round-robin scheduling policy implemented in

Network Code.

L0: if (isMeNext, L3)

2 wait (100)

receive (1, DATA)

goto (L0)

L3: xsend (1, 1, DATA, 100)

wait (100)
7 goto (L0)

Listing 3 shows the Network Code program that
implements the round-robin scheduling policy, with a fixed
slot size of 100 time units. The guard in line 1 decides
whether it is the local node’s turn to communicate. It is a
function that guarantees to only return true at exactly one
node. Thus, if the guard evaluates to true, the node will
transmit the data (and jump to label L3); otherwise, it will
receive the data.

The guard isMeNext can be implemented in different
ways. One simple way is to add a counter to the function
that implements isMeNext and this function returns true if
ðk mod nÞ ¼ m, with k being a round counter, n being the
number of nodes in the network, and m being the identifier
of the current node, which is unique for each node.

5.2 EDF Policy

The EDF scheduling policy assigns the next slot based on its
priority queue. The tasks get the priority according to the
time until their deadline. The lowest value is the highest
priority. The priority queue’s dequeue operation returns the
element with the highest priority. The EDF scheduling
policy usually requires preemption. To implement this
policy in our system, we restrict preemptions between
fixed-sized slots, whose duration we call quantum.

Listing 4: EDF scheduling policy for node n1.
// ** Distribute priorities

L0: xsend (0, 1, MY_DEADLINE, 10)

3 wait (20)

receive (1, N2_DEADLINE)

// ** RX/TX data

if (isMineHighest, L1)
wait (100)

8 receive (1, 1)

goto (L0)

L1: xsend (3, 1, DATA, 100)

wait (100)

goto (L0)

Listing 5: EDF scheduling policy for node n2.

// ** Distribute priorities

L0: wait (10)

3 receive (0, N1_DEADLINE)

xsend (0, 1, MY_DEADLINE, 10)

wait (10)

// ** RX/TX data

if (isMineHighest, L1)
8 wait (100)

receive (1, 1)

goto (L0)

L1: xsend (3, 1, DATA, 100)

wait (100)

13 goto (L0)

Listings 4 and 5 implement the EDF scheduling policy
for a distributed system with two nodes, where the
application tasks update the variables that are used to
communicate the priorities. Priorities are communicated in
slots with a fixed length of 10 time units and the final data is
then transmitted in a fixed length slot of 100 time units.

The priority queue is implemented as an array and
contains the variables N1_DEADLINE and N2_DEADLINE.
The guard isMineHighest compares these two values and
returns true if the evaluating host has the highest priority.
Consider Listing 4. Above line 6, it communicates its priority
and receives the other node’s priority by using a standard
round-robin TDMApolicy. In line 6, it determines whether it
will communicate in this round. This example can be easily
extended for multiple nodes by increasing the number of
transmitted deadlines and adapting the guard function.

5.3 Token-Based Policy

Token-based policies use a token to arbitrate access. This
virtual token is passed from one node to another and only
the node that currently owns the token may communicate.
Generally, the algorithm computing the token owner’s
successor is arbitrary. A well-known algorithm is the token-
ring policy for local area networks [5]. It passes the token in
a round-robin-like way from one node to the next one. In
the domain of real-time communication, the Real-Time
Ethernet (RETHER) Project [6] uses token-based arbitration
service on top of Ethernet to avoid collisions on the bus and
provide a bounded communication time.

Listing 6: a simple token-based policy implemented in

Network Code.

L0: if (haveToken, L1)

2 // code for the recipients

wait (100)

if (dataInInputQueue, L4)

receive (1, TOKEN)

goto (L0)

7L4: receive (1, DATA)

FISCHMEISTER ET AL.: A VERIFIABLE LANGUAGE FOR PROGRAMMING REAL-TIME COMMUNICATION SCHEDULES 7

goto (L0)
// code for the sender (token owner)

L1: if (passToken, L2)

xsend (0, 1, DATA, 100)

12 goto (L3)

L2: xsend (0, 1, TOKEN, 100)

L3: wait (100)

goto (L0)

Listing 6 implements a simple token-based scheduling
policy with Network Code. The token is encoded in a
variable TOKEN. A node owns the token if the variable’s
value equals the node’s identifier. In line 1, each node
checks whether it owns the token. If the node owns the
token, then it can decide to communicate the data or pass on
the token (at label L1). If it communicates the data and
keeps the token, then it executes the xsend with DATA;
otherwise, it executes the xsend with TOKEN.

Nodes that do not hold the token receive the data or the
updated token value in the receive instruction. The function
dataInInputQueue decides whether they received the data or
the token and, so, each node executes the receive instruction
with the correct parameters.

6 VERIFICATION

The abstract view of real-time communication provided by
Network Code is amenable to formal verification. Given a
Network Code program and a message scheduler for each
node, we can verify a number of important properties of the
schedule. In this section, we present an approach to
verification by means of an automatic translation of
Network Code into the input for the model-checking tool
VERSA [7]. We begin with a brief introduction to VERSA.
Then, we discuss our approach for modeling Network Code
programs in VERSA and describe the translation algorithm.
Then, we discuss what correctness criteria can be checked
using VERSA. We construct a formal model that is
concerned only with the communication behavior of the
system as captured in the Network Code. In this work, we
do not model application tasks. Modeling application tasks
would allow us to verify additional properties of the
communication layer, for example, that no stale values are
ever transmitted. At the same time, this would increase the
complexity of the model and limit the size of the systems
that can be verified.

6.1 Introduction to VERSA

VERSA [7] is a tool for the modeling and analysis of systems
with resource and timing constraints. It is based on the real-
time process algebra ACSR [8], which allows us to specify
the resource requirements of a process and assign timing
constraints to its executions. ACSR has been applied to the
formal schedulability analysis of complicated task models,
as well as to the analysis of safety properties of real-time
systems [9]. Below, we present a brief overview of the ACSR
language constructs and their informal semantics. For a
detailed exposition on ACSR and VERSA, including the
specification examples, we refer readers to the earlier
published work [8], [9].

The modeling approach of ACSR is to represent a real-
time system as a parallel composition of concurrent
processes P1kP2k . . . kPn. The parallel composition is hier-
archical in that some of the processes Pi can also contain

concurrent processes. Each sequential ACSR process which
does not contain the parallel composition within itself is a
state machine that can perform two kinds of steps:
instantaneous sending or receiving of an event or time-
consuming resource access. For readability, we use names
starting with a capital letter to denote process names,
whereas events and resources have names starting with a
lowercase letter. For example, the process P , defined as
e1?:e2!:fr1; r2g:IDLE, receives an event e1, then sends an
event e2, then takes a computation step requiring resources
r1 and r2, and, finally, becomes an idle process that does not
take any steps. As concurrent processes execute, they
interact with each other by exchanging events and con-
tending for access to shared resources. For example, two
concurrent processes e?:P1ke!:P2 perform a handshake, with
the first one receiving the event that the second one sends.
Similarly, processes fr1g:P1kfr2g:P2 can proceed together
because their computation steps require access to different
resources. The handshake that is involved in the synchro-
nous exchange of events is assumed to happen instanta-
neously, whereas resource access takes time. Conflicts in
resource access manifest themselves in models such as
deadlocks, which can be detected by exploring the state
space of the model. For example, processes fr1g:P1kfr1g:P2

are deadlocked since they both require access to the same
resource, and neither provides for an alternative behavior.
By contrast, fr1g:P1kfr1g:P2 þ fr2g:P2 is not deadlocked
since the second process has an alternative step that uses a
different resource.

In modeling Network Code programs, we use ACSR
processes in several different ways. There are processes to
represent executable entities, such as network instructions
and guard bodies, processes that represent system state,
such as the message scheduler, and processes for transient
entities, such as a message in transit. We use ACSR events
to capture the execution of network instructions such as
testing guard outcomes, creating messages, and entering
them into send queues. These occurrences are instantaneous
and fit ACSR events well. We model the bus as the only
resource in the model which is shared by all nodes in the
network (more complicated bus architectures can be
modeled by introducing a separate resource for each bus).

Timing information is associated with ACSR processes in
two ways. On one hand, time passage during execution is
recorded in resource access steps, specifying how much
time an execution fragment takes. Ranges of possible
execution times can be specified with the nondeterministic
choice of a duration from the given range. On the other
hand, time-outs can be associated with execution fragments
by specifying a process that serves as a continuation of the
execution once the time elapses. ACSR uses the discrete-
time approach in which time is represented by integers.
Each resource access step takes one unit of time.

An important feature of VERSA, which is used in the
modeling of Network Code, is the ability to add and
remove processes dynamically. As an example of dynamic
process creation, consider the definition Ps ¼ req?:ðPskPhÞ.
Intuitively, Ps is a server process that accepts an event req,
representing the arrival of some request. When a request
arrives, Ps spawns a handler process Ph which asynchro-
nously handles the request, while Ps is free to accept new
requests. When Ph completes the processing of a request, it
becomes idle. Idle processes are “garbage collected” by the
state-space exploration engine.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

ACSR modeling is particularly suitable to validate
distributed systems that share a communication medium.
We utilize the treatment of resources built into the ACSR
semantics to arrive at a model that is more concise and more
transparent and thus easier to understand and maintain.
Network nodes are modeled as processes that access the
communication medium as a shared resource when a
message is broadcast. If messages overlap, for instance,
two nodes are broadcasting messages simultaneously, then
VERSA will detect a resource conflict. Here, we take a
particular modeling approach that captures the Network
Code machine abstraction.

We note that, although ACSR and VERSA are good
choices for modeling the framework because of the feature
set that they natively support and because of the expertise
that we have in using the tool, they are, by no means, the
only possible approaches. Many other formal modeling
tools can be used, notably the IF model checker [10].

6.2 Modeling Network Code Programs

To encode a faithful representation of Network Code
program execution in ACSR, we use the following
information: First, for every node in the network, the
Network Code that runs on the node needs to be specified.
In addition, we need an ACSR process for every guard in
the Network Code. Just as guard evaluation is external to
the semantics of Network Code, the ACSR representation of
a guard is external to the translation process. Finally, we
have to consider the time required to transmit the message
across the network and we specify this value with an
integer value statically.

The overall approach to the translation of Network Code
programs into the ACSR process is explained as follows:
Suppose that a network consists of n nodes that use m

channels to communicate and have k guards that are used
in the Network Code. The model of such a network is a
parallel composition of processes that represent network
nodes: Node1kNode2k . . . kNoden. Each process Nodei is, in
turn, composed of the following processes:

Nodei ¼ NPikSchikGuardi;1k . . . kGuardi;kkFikSikDi:

The processNPi represents the network instruction currently
executing at node i. Its evolution is described in detail below.
The process Schi is the scheduler for the output hard queue.
In our current modeling approach, if more than one message
is produced simultaneously by the Network Code, one of
them is chosen for transmission nondeterministically. How-
ever, bymaking the runtime state of themodelmore complex,
we can experimentwith variousmessage-schedulingpolicies
without changing the rest of the model. The guard processes
represent the evaluation of guards within the Network Code
and are discussed as we consider the representation of the
if instruction. The process Fi is a parallel composition of
Network Code fragments scheduled for future execution by
the future instruction. The processSi is a parallel composition
of processes that represent messages that are scheduled for
transmission. Finally, the processDi is a parallel composition
ofmessages, delivered to the node but not yet processed, that
is, it represents the inputhardqueueof thenode.ProcessesFi,
Si, andDi initially do not contain any processes.1

We view aNetwork Code program as a linear sequence of
instructions. The position of an instruction is its address. An
instruction instr at address a in the node i is represented as a
process Runi;a. The process NPi at node i is always a process
Runi;a for some address a. Processes in this category are
instantaneous, that is, they do not contain time-consuming
steps. Table 1 shows the ACSR representation for every
instruction in the basic network instruction. The process for
the halt() instruction is the idle process, which is removed
from further consideration. Processes for other instructions
performanevent that corresponds to the executed instruction
and becomes the process for the subsequent instruction. For
example, inListing2 line 2, the instruction receive (c1, _) in the
node nr is represented by using an input event as
Runr;1 ¼ receiver;c1?:Runr;2. This processwill block if no other
process can perform thematching output event, that is to say,
when the input hard queue of the channel n1 in the node nr is
empty. If, in the runtime state of themodel,NPr ¼ Runr;1, the
model can take a step such that NPr becomes Runr;2. In this
step, we remove one of the messages from the set Dr, as
explained below.

To represent conditional instructions, we introduce an
auxiliary process that captures each guard’s status. The
guard process representing the guard g can send two
events, gtrue and gfalse, depending on the state of the guard.
To execute a conditional instruction, the network-node
process has a nondeterministic choice between receiving the
two guard events. The choice is resolved by the guard
process. Representing guards this way, we significantly
simplify the model by making the translation modular.

Two kinds of instructions spawn new concurrent
processes. An instruction future(dl,jmp) at address a is
represented as Runi;a ¼ Runi;aþ1kDelaydli;jmp. The new pro-
cess Delaydli;jmp is added to the set Fi. This process idles for
dl time units and then behaves as Runi;jmp. The send
instruction send(c,msgid,lifetime) adds a new concurrent
process Sendc;l;lifetime to the set Si. The process represents a
message in the output hard queue of node i. The process
Sendc;l;lifetime is trying to gain access to the communication
medium by interacting with the scheduler process. Once
Sendc;l;lifetime gains access to the communication medium,
the transmission phase begins. The process performs
l resource access steps by using the resource medium. The
number of these steps is determined by the message
transmission time. If another ACSR process enters the
transmission phase, then the attempt to use the same
resource will lead to a deadlock that signals a scheduling

FISCHMEISTER ET AL.: A VERIFIABLE LANGUAGE FOR PROGRAMMING REAL-TIME COMMUNICATION SCHEDULES 9

TABLE 1
ACSR Representation of Network Instructions

1. A parallel composition of an empty set of processes is equivalent to the
idle process.

problem. Once the transmission phase has completed, the
message is delivered to the nodes in the network. This is
represented by spawning a new process Delc;j for each
node nj in the network ðj 6¼ iÞ, which is added to the set Dj.
The process Sendc;l;lifetime then becomes idle and is removed
from Si. The process Delc;j sends the event receivej;c, which
synchronizes with the receive instruction in the Network
Code program of node nj (see above). After sending the
event, the process becomes idle and is removed from Dj. If
the Network Code program does not execute the receive
instruction within the message lifetime given by the lifetime
parameter, a time-out occurs and the process becomes idle,
removing itself from Dj.

6.3 Example

The translation of the Network Code into the collection of
ACSR processes is automatically performed by traversing
the parse tree of the Network Code in the depth-first
manner. We do not present the translation procedure here
to save space. Instead, we illustrate the translation by using
a simple example.

We run two network nodes. The top part of Fig. 6 shows
the Network Code program of both. The lower part of Fig. 6
shows how VERSA interprets the translated program.
Horizontal lines represent the evolution of active ACSR
processes. Shaded areas represent instantaneous execu-
tions. Arrows illustrate how new processes are spawned,
whereas a cross denotes that the process has been removed.

The execution proceeds as follows: Node 0 sends two
messages simultaneously, each with a transmission length
of one time unit. The messages are set to expire after two
and three time units, respectively. The transmission
scheduler (not shown) releases the first message immedi-
ately and the second one is released after the first one is
delivered. At time 1, the first broadcast is completed and
the other one begins. Node 1 initially schedules two receive
instructions: one after 2 time units and the other after 4. The
first instruction, executed at time 2, receives the message,
but the second fails. At time 4, when the second receive
instruction is executed, the second message has already
expired. The process Run8 is blocked and VERSA detects
the violation.

6.4 Safety Checks for Network Code

Assumptions and integrity checks. The translation sketched
above assumes that the Network Code program in each
node is syntactically correct and well structured. Indeed, we
can expect that every reasonable Network Code program

will satisfy these assumptions. The checks for these
assumptions are performed by a parser for the Network
Code programs in a straightforward manner. In particular,
we assume the following:

1. Every guard referenced in a conditional instruction
is defined in the guards section of the program.

2. Every address listed in a conditional or future
instruction corresponds to a legal instruction.

3. For every instruction except halt and a conditional
instruction with guard true, the subsequent address
contains a legal instruction.

4. The delay parameter of every future instruction is a
positive integer.

We also assume that each execution of a Network Code
program reaches a halt instruction in a finite number of
steps. This assumption ensures that the model is non-Zeno,
that is, it cannot perform an infinite number of instanta-
neous steps in a zero time. This important check is
performed by a depth-first search of the graph of
dependencies between the Runa;i processes representing
instructions in the Network Code. There is an immediate
dependency from Runa;i to Runa;j if Runa;j is used in the
definition ofRuna;i. Immediate dependencies should form an
acyclic graph; otherwise, thenode is capableofZenobehavior
and should be rejected as invalid. There is a delayed
dependency from Runa;i to Runa;j if Delaydlj;jmp is used in the
definition of Runa;i. The graph of immediate and delayed
dependencies is allowed to have cycles as delay instructions
enforce timeprogress and rule outZenobehaviors. Thegraph
should be connected since connectivity ensures that the
Network Code program does not contain a dead code.

Since VERSA uses the discrete-time modeling approach,
we also need to determine the granularity of the time step
used in theNetworkCodemodel. The step size is determined
as thegreatest commondivisorof all time intervalsused in the
Network Code program, namely, 1) the parameter dl of the
future instructions, 2) the parameter lifetime of the send
instructions, and 3) message transmission times.

The VERSA model of a Network Code program assumes
that all network instructions are executed instantaneously
and only message transmission takes time. This assumption
is conceptually similar to the synchrony hypothesis used in the
synchronous languages [11]. This assumption allows us to
have amodel that is simple to construct and is amenable to an
efficient analysis. At the same time, we need to demonstrate
that this assumption is justified. This check is also performed
by using the graph of immediate dependencies described

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Fig. 6. The execution trace of the VERSA model running the two Network Code programs for Node 0 and Node 1.

above. We associate the actual runtime of the instruction
with every node in the graph. For each connected
component in the graph, we determine the value of the
longest path. This value represents the maximum execu-
tion time for a block of network instructions and should
be negligibly small compared to the time step of the
VERSA model.

Behavioral checks. This group of checks ensures that the
Network Code program in each node handles messages in a
sensible manner. Considering a node in isolation permits
these checks. Particularly, we check that every message
identifier introduced by a create instruction is eventually
sent on some channel and then destroyed so that the
identifier can be reused. For each message identifier used in
the program, we introduce an auxiliary ACSR process that
receives the events corresponding to create, send, and
destroy instructions and blocks if the events do not come in
the expected order. The induced deadlock is detected
during the state-space exploration.

Distributed checks. This last group checks whether a
collection of nodes can be composed together. The main
check in this category is the absence of collisions during
transmission. As discussed above, collisions are detected as
resource conflicts in the VERSA model which induce a
deadlock in a model execution. Two other important
distributed checks ensure that an attempt at receiving
corresponds to a prior send and that sent messages are
received by some node. The first check was also mentioned
in the discussion of translation: The Run process for a
receive instruction will block if there are no messages to
read. For the second check, we introduce an auxiliary
process Rc that is spawned when a message on the channel
c is sent. The process Rc monitors the receive events sent by
the processes Delc;i. If a receive event is observed, Rc

becomes idle and disappears. Otherwise, Rc blocks when
the validity interval of the message expires.

7 NETWORK CODE RUNTIME SYSTEM

We implemented a runtime system for Network Code on
top of the real-time system RTLinuxPro 2.2. RTLinuxPro
(see www.fsmlabs.com) is a hard real-time Posix-compa-
tible operating system. Fig. 7 shows the overall structure of
the runtime system.

7.1 Overview

A Linux real-time thread accesses hard values via get() and
set() functions from the variable space. The thread accesses
soft values by directly sending and receiving messages from
the soft queue by using the send_msg() and the rec_msg()
interface.

The variable space manages data by storing timestamped
variable values. Each variable is a tuple consisting of the
point in time when the value becomes valid, its numerical
value, and an optional default value which is used if the
value is not yet valid. One variable stores several data
entries with different values and validity times. For
example, the variable space can contain the value tuples
fx1 ¼ h5; 1; 0i; x2 ¼ h7; 2; 0ig for variable x. Variable x’s
default value is 0, which is returned by the get() function
if no valid value is available (for example, in the start-up
phase of the system). At time 5, get(x)will return 1 ðx1Þ and,
at time 7, get(x) will return 2 ðx2Þ.

The Network Code machine acts as a bridge between the
hard queue and the variable space. It dequeues messages
from the input hard queue via rec_msg() and updates
values in the variable space via set(). It also creates new
messages from values via get() and enqueues these
messages via send_msg(). Additionally, the Network Code
machine controls the message transceiver by setting its
communication mode. The Network Code machine uses a
library that stores the guard functions. This library contains
all functions which are called in if instructions.

The message transceiver processes the soft and hard
queues and receives incoming messages. When the message
transceiver is allowed to transmit, it takes one message at a
time from the specified queue and passes it to the network
driver. The hard and soft queues use a FIFO policy to send
messages. The Network Code program is responsible for
putting the send into the right order.

To transmit and receive messages on the Ethernet
medium, we use the LNet driver provided by FSMLabs.
This driver tries to minimize communication input/output
jitter and, for example, disables the packet framing
mechanism on the network card.

The implementation of the Network Code machine, the
variable space, the queues, and the transceiver has about
3,000 lines of code. The application-specific guard functions
and the Network Code program add extra lines.

7.2 Performance Measurements

The runtime system introduces overhead to the running
system. To quantify this, we measured the instructions’
execution times and compute our maximum throughput.
The tests were performed on a 100 Mbit network of Intel
Pentium 4 with 1.5 GHz, 512 Mbyte RAM, RTLinuxPro 2.2,
and a 3c905C-TX/TX-M [Tornado] (rev 78) with exclusive
interrupt access. The measurements specify the temporal
bounds, with a guarantee of 99 percent and 99.999 percent.
If the runtime system violates the temporal bound, then a
collision might occur on the network. In case of a collision,
the runtime executes the handler registered with the handle
instruction and the system continues operating.

Table 2 shows the instruction’s execution times in
nanoseconds. The upper part of the table shows the
execution times of individual instructions plus the timing
overhead. The timing overhead cannot be excluded because
of the variance, as shown in the instruction nop. Instructions

FISCHMEISTER ET AL.: A VERIFIABLE LANGUAGE FOR PROGRAMMING REAL-TIME COMMUNICATION SCHEDULES 11

Fig. 7. Overview of the implemented runtime system for executing

Network Code on top of RTLinuxPro.

not listed in the table have execution times similar to those
listed (for example, the mode instruction is similar to the
handle instruction). The nop instruction shows the overhead
introduced by the timing measurements. The columns show
the following data from right to left: count shows the sample
size, min shows the observed minimum value, mode shows
the most frequent value, (% obs) shows the mode’s
frequency in percent, 99 percent obs shows the value range
for 99 percent of the observations, 99.999 percent obs shows
the same for a larger interval, and, finally, max shows the
maximum observed value.

The lower part of Table 2 shows the execution times of the
runtime system besides executing instructions. The row ISR
shows the interrupt service routine’s (ISR) execution time.
Whenever the network card receives a packet, this routine
executes andstores thenewlyarrivedpacket ina correct input
queue. As the statistic shows, this routing usually takes a few
microseconds. However, other programs can preempt the
ISR, resulting in the ISR’s large range. Finally, the row LNet
shows the execution time of sending a data packet. From
similar measurements done for this hardware in [12], we
know that the worst-case communication delay is described
by the equation latency ¼ 0:18979 � datasizeþ 165, which is
in microseconds. This formula has been identified by an
empirical latency test of about one million interchanges for
data lengths of the Ethernet frame starting at size 30 up to the
maximum of 1,500 bytes. The execution times of sending a
packet vary according to this equation.

Listing 7: minimal program for sending data (the values

for I1 and I2 can be taken from Table 3).

Node n1:

L0: destroy (0)

create (0, 0)
send (1, 0, I1þ I2)

future (I1þ I2, L0)

halt ()

Listing 8: minimal program for receiving data (the values

for I1 and I2 can be taken from Table 3).

Node n2:
L0: future (I1, L1)

halt ()

L1: receive (1, 0)

future (I1þ I2, L0)

halt ()

We will now use the results to calculate the maximum
throughput of our runtime system. Listings 7 and 8 show
a simple sender and receiver. Table 3 shows the WCET of
the code, with the second column displaying the values
for a 99 percent guarantee and the third column for a
99.999 percent guarantee. The Intermediate 1 row shows
how long it would take until the packet is delivered to the
receiver (node n2). The Intermediate 2 row in the table shows
how long it would take for the receiver to process the
packet. The total cycle time is 493,403 ns with a guarantee of
99 percent and 537,607 ns with a guarantee of 99.999 percent.
Thus, the maximum throughput of 1,500 billion packets per
second without clock synchronization is 2,025 packets or
2.89 Mbyte/s with a 99 percent guarantee and 1,858 packets
or 2.66 Mbyte/s with a 99.999 percent guarantee, which is
about 4.23 times slower than the medium’s theoretic
maximum itself and 3.52 times slower than our empirical
average throughput on the same hardware. This calculation
shows that the interpretation of Network Code takes about
1.2 percent of the total time for the 99 percent guarantee
scenario.

Since we cannot assume a global clock, we implemented a
clock synchronizationmechanism, as described in [13]. More
sophisticated algorithms can be found in [14] and [15]. We
measured the precision of our clock synchronization algo-
rithmbyusing a cross-link connection anda switch.Whenwe
tested using a cross-link connection, we could synchronize
the clocks of the twomachines towithin 14 �s.Whenwe used
an off-the-shelve D-Link switch between the machines, we
could synchronize the clocks to about 24 �s. The difference of
about 10 �s comes from the additional jitter of the switch.
Comparing these results to the Network Code machine’s
performance measurements in [3], our algorithm implemen-
tation’s precision is sufficient to run a Network Code
program in a distributed real-time system. Using the clock
synchronization, we have to add the worst-case clock jitter to
the final value of I1þ I2 and see that the synchronization is
good enough that the jitter does not seriously affect the

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

TABLE 2
Measurements of the Instruction’s Execution Times

(in Nanoseconds) for the Implemented Runtime System

TABLE 3
Example Code for Calculating the Maximum Throughput

and Its Analysis of the Worst-Case Execution Time

throughput. Using clock synchronization and the cross-link
connection, the throughput is slowed down by about two-
tenths of a percent for the 99 percent guarantee and by one-
tenth of a percent for the 99.999 percent.

7.3 Raw TDMA Network

Conventional TDMA is agnostic of the data sent in the slots.
It is just concerned with restricting access to a single node
for a certain time period. Network Code also supports this
type of raw access to the network. The mode usched lets
anyone access the network. Using this functionality, a task
has raw access to the communication medium. In the
standard setup, we allow multiple nodes to be in this mode
simultaneously to reuse some otherwise unused slots or to
specify a slot used for flexible communication (see Fig. 5).
However, to provide a collision-free raw access, at most one
node must be in this state simultaneously.

The following program shows how we can code raw
TDMA without clock synchronization (note that, for a
working implementation, clock synchronization packets
would need to be sent on a regular basis and both nodes
synchronize to start executing at the same time by using the
initialization mode). Nodes n1 and n2 split up the
bandwidth evenly. First, n2 is allowed to use the medium
for 50 time units. Then, n1 has an exclusive access also for
50 time units. After each TDMA access, we programmed a
safety delay of five time units.

Listing 9: node n1’s program for realizing a conventional

TDMA schedule only with the soft queue

L0: wait (55)

mode (usched)

wait (50)

mode (sched)

wait (5)

goto (L0)

Listing 10: node n2’s program for the conventional TDMA.

L0: mode (usched)

wait (50)

mode (sched)

wait (60)

goto (L0)

This type of access control is also the best choice if the set
of active tasks may change at runtime, especially in
scenarios with tasks arrivals or with sporadic tasks. The
schedule will provide a collision-free raw access and all
existing tasks enqueue their messages in the soft queue.
However, using this approach, we can only verify the
collision-free nature of the schedule and are unable to verify
more sophisticated properties, as described in Section 6.

8 RELATED WORK

A number of network protocols and their MAC methods
have been published in the literature, each one with
different assumptions and for different environments.
However, the coding schemes for schedules have been
ignored so far. The underlying data structure that is used to
represent the TDMA schedule is typically a table. In such a
table, one row specifies one communication (that is, one

TDMA slot). The table’s columns typically identify the
sender, the receivers, and the data attributes.

TDMA can be implemented with an immutable commu-
nication schedule or with a mutable one. An implementa-
tion with an immutable communication schedule is usually
referred to as a static TDMA. The communication schedule
is precomputed and changes at runtime are impossible.
This is particularly useful for small-footprint safety-critical
systems because it allows static verification and has low
computational overhead and generally low complexity. For
real-time systems, a number of approaches have been
implemented (c.f., [16], [17], [18], and [19]). However, a
static TDMA is inflexible: It introduces communication
overhead as allocated slots are wasted when a node does
not need to send data. The immutable schedule prevents
nodes from joining the network once the application is
running. Also, it is impractical to compute a static TDMA
communication schedule for applications such as real-time
video whose exact communication behavior is impossible to
predict. Thus, the communication schedule may be mutable
and may be cyclically modified to fit new requirements.
Such systems are referred to as a dynamic TDMA. For real-
time systems, a number of approaches have been imple-
mented (c.f., [20], [21], [22], [23], and [24]). A common
implementation is that, at the end of one communication
round (that is, after the table’s last row), a dedicated node
computes the new table and broadcasts it across the
network. This marks the start of a new round and each
node uses the updated communication schedule. Such a
system overcomes the limitations described before; how-
ever, it adds computational overhead to the node comput-
ing the new schedule.

In our approach, we extend the capabilities of immutable
schedules to allow on-the-fly changes at runtime. These
schedules will be more complex and computationally
intensive than the table-driven approach. However, in our
design, we can still apply static verification to check the
communication behavior.

In [4] and [25], the authors have presented a prior
version of Network Code. In contrast to the current version,
the previous version included a full-fledged tool chain with
a high-level task specification from which a high-level
compiler generates Network Code (see [25]). The current
version extends this work as

1. its semantics are now formally specified, and the
program’s behavior can be verified using VERSA,

2. the instruction set is more precise, requires fewer
parameters, and consists of solely atomic unambig-
uous actions,

3. it includes error handling, and
4. splitting the original instruction for sending into the

instructions createðÞ and sendðÞ provides the devel-
oper with more precise control over which values he
wants to use in the message.

Several other tools, such as in [26], [27], can be used to
formally model Network Code programs and verify sche-
dules. An interesting direction of future work is to try the C
interpreter of [26] or the code generation capability of [27] to
generate Network Code machine interpreters. The IF toolset
[10], which, like VERSA, allows us to associate priorities with
processes, would also be effective in representing media
access by network nodes. However, we chose VERSA as the

FISCHMEISTER ET AL.: A VERIFIABLE LANGUAGE FOR PROGRAMMING REAL-TIME COMMUNICATION SCHEDULES 13

verification platform for several reasons. On one hand,
dynamic process creation allowed us to capture, in a
straightforward way, messages that are pending transmis-
sion, alongwith their deadlines. Since the number of pending
messages depends on the state of the schedule, using other
means to represent messages leads to a more cumbersome
translation. On the other hand, substantial expertise in using
VERSA allowed us to implement the Network Code inter-
preter quickly and efficiently.

9 CONCLUSION

The goal of our work is to facilitate the design and
implementation of predictable and verifiable communica-
tion for distributed real-time applications. To meet this goal,
we propose Network Code, which is a domain-specific
programming language for writing an executable behavior-
al model for scheduling policies and communication
schedules for real-time communication. The programming
language is powerful and allows implementing tree
schedules, which are more expressive than traditional
table-driven communication schedules.

In this paper, we presented the syntax and semantics of
Network Code and described a few examples that show
different scheduling policies, such as EDF, round-robin, and
token-ring, which can be programmed. We also showed
that Network Code programs can be verified and elabo-
rated on how we use VERSA to verify safety properties
such as collision-free communication, schedulability, and
guaranteed message reception. To support the language, we
implemented a runtime system for network code on top of a
real-time operating system. In this work, we present and
discuss the implementation and show that Network Code
can be realized with a low system overhead.

For future work, we plan to extend the concept of tree
schedules to nonisochronous schedules and to fault-tolerant
and multisegmented networks.

ACKNOWLEDGMENTS

This research was supported in part by US National Science
Foundation Grants CNS-0410662, CNS-0509327, and CNS-
0509143, US Army Research Office Grant W911NF-05-1-
0182, and OEAW APART-11059.

REFERENCES

[1] T.A. Henzinger and C.M. Kirsch, “The Embedded Machine:
Predictable, Portable Real-Time Code,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI), pp. 315-
326, 2002.

[2] M. Anand, S. Fischmeister, and I. Lee, “An Analysis Framework
for Network-Code Programs,” Proc. Sixth Ann. ACM Conf.
Embedded Software (EmSoft ’06), 2006.

[3] S. Fischmeister, O. Sokolsky, and I. Lee, “Appendix: Program-
mable Real-Time Communication Schedules,” technical report,
Univ. of Pennsylvania, 2005.

[4] S. Fischmeister, “Multi-Dimensional Schedules for Media-Access
Control in Time-Triggered Communication,” Proc. 10th IEEE
Symp. Computers and Comm. (ISCC ’05), 2005.

[5] D. Clark, K. Pogran, and D. Reed, “An Introduction to Local Area
Networks,” Proc. IEEE, vol. 66, pp. 1497-1517, Nov. 1978.

[6] C. Venkatramani and T. Chiueh, “Design, Implementation, and
Evaluation of a Software-Based Real-Time Ethernet Protocol,”
Proc. Conf. Applications, Technologies, Architectures, and Protocols for
Computer Comm. (SIGCOMM ’95), pp. 27-37, 1995.

[7] D. Clarke, I. Lee, and H.-L. Xie, “VERSA: A Tool for the
Specification and Analysis of Resource-Bound Real-Time Sys-
tems,” J. Computer and Software Eng., vol. 3, pp. 185-215, Apr. 1995.

[8] I. Lee, P. Brémond-Grégoire, and R. Gerber, “A Process Algebraic
Approach to the Specification and Analysis of Resource-Bound
Real-Time Systems,” Proc. IEEE, pp. 158-171, Jan. 1994.

[9] J.-Y. Choi, I. Lee, and H.-L. Xie, “The Specification and
Schedulability Analysis of Real-Time Systems Using ACSR,” Proc.
16th IEEE Real-Time Systems Symp. (RTSS ’95), Dec. 1995.

[10] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis, “Tools and
Applications: The IF Toolset,” Proc. Fourth Int’l School on Formal
Methods for the Design of Computer, Comm., and Software Systems:
Real Time (SFM-04:RT), M. Bernanrdo and F. Corradini, eds., 2004.

[11] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P.L. Guernic,
and R. de Simone, “The Synchronous Languages Twelve Years
Later,” Proc. IEEE, special issue on embedded systems, vol. 91,
pp. 64-83, Jan. 2003.

[12] M. Anand, S. Fischmeister, and J. Kim, “Distributed Code
Generation from Hybrid Systems Models for Time-Delayed
Multirate Systems,” Proc. Fifth ACM Conf. Embedded Software
(EmSoft ’05), 2005.

[13] H. Kopetz, “TTP/A The Fireworks Protocol,” Proc. SAE Int’l
Congress and Exposition, Feb. 1995.

[14] J. Elson, L. Girod, D. Estrin, B. Simons, J. Welch, and N. Lynch,
“An Overview of Clock Synchronization,” Fault-Tolerant Distrib-
uted Computing, B. Simons and A. Spector, eds., pp. 84-96,
Springer, 1990.

[15] E. Anceaume and I. Puaut, “Performance Evaluation of Clock
Synchronization Algorithms, ” technical report, INRIA, Oct. 1998.

[16] H. Kopetz, Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic, 1997.

[17] S. Eberle, C. Ebner, W. Elmenreich, G. Färber, P. Göhner, W.
Haidinger, M. Holzmann, R. Huber, R. Schlatterbeck, H. Kopetz,
and A. Stothert, Specification of the TTP/A Protocol v2.00, Research
Report 61/2001, Institut für Technische Informatik, Technische
Universität Wien, pp. 1-3/182-1, 2001.

[18] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, and M.
Walther, “Time Triggered Communications on CAN (Time
Triggered CAN-TTCAN),” Proc. Seventh Int’l CAN Conf., 2000.

[19] F. Consortium, FlexRay Communications System—Protocol Specifica-
tion, version 2.0, June 2004.

[20] J. Ferreira, P. Pedreiras, L. Almeida, and J. Fonseca, “The FTT-
CAN Protocol for Flexibility in Safety-Critical Systems,” IEEE
Micro, vol. 22, no. 4, pp. 46-55, July-Aug. 2002.

[21] P. Pedreiras, L. Almeida, and P. Gai, “The FTT-Ethernet Protocol:
Merging Flexibility, Timeliness and Efficiency,” Proc. 14th Euro-
micro Conf. Real-Time Systems (ECRTS ’02), pp. 134-142, June 2002.

[22] “Ethernet Powerlink: Data Transport Services,”white paper,
Bernecker + Rainer Industrie Elektronik, fifth ed., Sept. 2002.

[23] F. Hanssen and P. Jansen, “Real-Time Communication Protocols:
An Overview,” technical report, Centre for Telematics and
Information Technology, 2003.

[24] J. Kiszka, B. Wagner, Y. Zhang, and J. Broenink, “RTnet—A
Flexible Hard Real-Time Networking Framework,” Proc. 10th
IEEE Int’l Conf. Emerging Technologies and Factory Automation
(ETFA ’05), 2005.

[25] G. König, “Using Interpreters for Scheduling Network Commu-
nication in Distributed Real-Time Systems,” master’s thesis,
Salzburg Univ., Mar. 2005.

[26] P.C. Ölveczky and J. Meseguer, “Specification and Analysis of
Real-Time Systems Using Real-Time Maude,” Proc. Fundamental
Aspects of Software Eng. (FASE ’04), 2004.

[27] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi,
“Times: A Tool for Schedulability Analysis and Code Generation
of Real-Time Systems,” Proc. First Int’l Workshop Formal Modeling
and Analysis of Timed Systems (FORMATS ’03), P. Niebert and
K.G. Larsen, eds., pp. 60-72, 2004.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 11, NOVEMBER 2007

Sebastian Fischmeister received the Dipl-Ing
degree in computer science from the Vienna
University of Technology, Vienna, Austria, in
2000 and the PhD degree in computer science
from the University of Salzburg, Austria, in
December 2002. He is a research associate in
the Department of Computer and Information
Science at the University of Pennsylvania. His
primary research interests include software
technology and distributed systems for real-time

embedded systems. He is a member of the IEEE and the IEEE
Somputer Society.

Oleg Sokolsky received the MSc degree in
computer science from St. Petersburg Technical
University, Russia, in 1988 and the PhD degree
in computer science from the State University of
New York at Stony Brook, in 1996. He is a
research assistant professor in the Department
of Computer and Information Science at the
University of Pennsylvania, where he has occu-
pied various research staff positions since 1998.
His primary research interests include formal

methods for the analysis of real-time and hybrid systems, architectural
modeling for embedded systems, and runtime verification. He is a
member of the IEEE, the IEEE Computer Society, and the Technical
Committee on Real-Time Systems of the IEEE Computer Society.

Insup Lee received the BS degree in mathe-
matics from the University of North Carolina,
Chapel Hill, in 1977 and the PhD degree in
computer science from the University of Wis-
consin, Madison, in 1983. He is the Cecilia Fitler
Moore Professor of Computer and Information
Science. He joined the faculty of the Department
of Computer and Information Science at Penn-
sylvania State University in 1983 and was the
CSE Undergraduate Curriculum Chair from

1994 to 1997. He holds a secondary appointment in the Department
of Electrical and Systems Engineering. He was the chair of the IEEE
Computer Society Technical Committee on Real-Time Systems and an
IEEE CS Distinguished Visitor Speaker. He is a member of the
Technical Advisory Group, President’s Council of Advisors on Science
and Technology, Networking and Information Technology. He has
served on many program committees and chaired several international
conferences and workshops, including RTSS, RTCSA, ISORC, CON-
CUR, EMSOFT, and HCMDSS/MD PnP Interoperability. He has also
served on various steering and advisory committees of technical
societies, including the Steering Committee of ACM SIGBED and was
a cochair of the IEEE CS Technical Steering Committee on Embedded
Systems. He has served on the editorial boards of several scientific
journals, including the IEEE Transactions on Computers, Formal
Methods in System Design, and Real-Time Systems Journal. His
research interests include real-time systems, embedded and hybrid
systems, formal methods and tools, medical device systems, wireless
sensor networks, and software engineering. The major theme of his
research activities has been to assure and improve the correctness,
safety, and timeliness of embedded real-time systems. He has been
transitioning research results to practice by applying them to safety-
critical real-time systems and high-confidence medical devices. He has
published widely and received the Best Paper Award from RTSS 2003.
He is a fellow of the IEEE and a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FISCHMEISTER ET AL.: A VERIFIABLE LANGUAGE FOR PROGRAMMING REAL-TIME COMMUNICATION SCHEDULES 15

	A Verifiable Language for Programming Real-Time Communication Schedules
	Recommended Citation

	A Verifiable Language for Programming Real-Time Communication Schedules
	Abstract
	Keywords
	Comments

	untitled

