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Abst rac t .  Verification of many properties can be done without regard 
to the speed of the components of a finite-state system. However, some 
of the properties can be verified only under certain timing constraints. 
We propose a new verification strategy for timing constrained finite-state 
systems. The strategy can avoid the state space explosion problem for 
a class of systems. A model of such systems, called timed L-process, 
compatible with the strategy, is also developed. 

1 Introduction 

Recently, Dill [Di189] and Alur and Dill [AD90] proposed a method for incor- 
porating timing restriction into a model of communicating finite-state systems 
by introducing the notion of a timed automaton,  containing fictitious time- 
measuring elements called clocks [AD90] or timers [Dil89]. The verification prob- 
lem is shown to be equivalent to the speed-independent verification problem on 
an appropriate automaton.  The fundamental problem with both approaches is 
state space explosion, i.e. state space growing exponentially in the number of 
timers (clocks). 

Kurshan [Kur91] suggested to carry out the verification process on timed 
systems with COSPAN [HK88], a verification system for untimed processes, by 
relaxing the time constraints, verifying the relaxed system and if the verification 
is unsuccessful check whether the run that violates the property to be verified 
is infeasible under the timing constraints. If this is so, Kurshan removes the run 
and repeats the process. This strategy is appealing but heuristic in nature. There 
was no proof that the process would eventually converge to provably the correct 
answer. 

In this paper, we introduce the notion of pauses, and construct an equiv- 
alent (non-pausing) automaton.  In contrast to previous approaches, we build 
an equivalent automaton as a composition of the speed-independent (or unre- 
stricted) automaton and many small automata.  This decomposition of timing 
constraints enable us to perform the verification on a smaller, abstracted au- 
tomaton which includes only some aspects of timing constraints. This leads to 
an iterative verification strategy similar to the heuristic proposed by Kurshan, 
where a verification process is started with the unrestricted automaton,  which 
is then composed with simple automata  imposing timing constraints, but only 
after the verification has failed, and imposing only those constraints which are 
violated in the failure report. 
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The rest of this paper is organized as follows. In section 2, we introduce the 
notion of t imed L-process, and then we construct the equivalent (not timed) 
L-process in section 3. In section 4 two main steps of the proposed verification 
strategy are described: extracting timing violations from the failure report, and 
imposing that  subset of timing constraints to the model of the system. Final 
remarks are provided in section 5. 

2 T i m e d  L - P r o c e s s e s  

An L-process [Kur90] is an automaton over infinite sequences, distinguished from 
others by its alphabet and its acceptance conditions. 

An alphabet of L-processes is a set of atoms of Boolean algebra L. It is 
convenient to think of atoms of L as distinct assignments to several variables 
taking values in finite domains. A boolean algebra L can be than thought of 
as a power set of a set of atoms, which is obviously closed under intersection 
(or p r o d u c t ) . ,  union (or sum) + and complement ,~. A partial order _< can be 
thought of as a set inclusion, multiplicative identity 1, as a set of all atoms, and 
additive identity 0 as an empty set. 

Although ideas presented here are applicable to other automata ,  we have cho- 
sen to develop them in the framework of L-processes, because algebraic structure 
on the alphabet enables us to describe easily manipulations we use, like adding 
additional variables, or changing the transition structure 

Acceptance conditions of L-processes (called cycle sets and recur edges) are 
particular because of their negative nature, i.e. a run is accepted unless it is 
excepted by cycle sets or recur edges. Hence, if no acceptance conditions are given 
a language of the L-process contains all sequences that  have a run from some 
of the initial states. A product | (or "composition") of L-processes satisfying: 
/~(P1 | P2) = s  13/~(P2), has been defined in [Uur90]. 

It can be verified automatically whether the language of an L-process is 
contained in the language describing some properties (e.g. [HK88]). If this is 
not the case, there exists at least one loop of states reachable from the initial 
states, that  is an accepting run of some sequence not in the language of the task. 
Usually, one such a loop is included in the failure report produced by automatic  

tools. 
We extend L-processes by allowing them to remain in designated "pause" 

states a limited amount  of time. This extension is called a simple timed L- 
process. Intuitively, we describe one pause by a pair of states {v~, v/d}, as shown 
in Figure 1. When a system enters a state v/~, a pause begins. A symbol Pl, 
uniquely associated with that  state indicates that  a pause is in progress. A pause 
finishes when a system exits a state v/d. The time spent in these two states must 
satisfy the lower bound li and the upper bound ui. To be able to treat  uniformly 
both constraints of type x < c and of type x < c we adopt the concept of 
bounds introduced in [AIKY92]. The set of bounds is an extension of the set of 
integers with expression of the form n -  which can be thought of as a number 
infinitesimally smaller than the integer n. Addition and comparison are then 
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na tu ra l ly  extended.  
Formally,  a s imple  t imed  L-process T is a pair  (P, d), where P is an L-process  

(called unrestricled process of T)  and d is a set of  pauses. A pause i E d is a 
5-tuple (v~,  v d, pi, li, ui) sat isfying the following: 

- li and ui are bounds  sat isfying - c o  < li < 0,1 0 < ui <_ co and of course 

--li < Ui, 
- V/~ and v~ are s ta tes  of  P and Pi E L is such tha t  M p ( v ~ ,  v~)  = M p ( v ~ ,  v~) = 

Pi, no other  t rans i t ions  depend on Pi, v/~ has no o ther  fanouts  and v d has 
no o ther  fanins, 

- V * (a set of  all v~) ,  V d (a set of  al l  vi a) and the set of  initial  s ta tes  of  P are 
mu tua l l y  disjoint. 

. . . .  i - -  p i - ~  . . . . . .  li<----~ i<--u] : . . . .  
~ pi / ~ - ~ ,  ' 

Fig.  1. A pair of states representing one pause 

Figure 2a shows three examples  of  s imple  t imed L-processes,  Each process 
contains  one pause,  with associated bounds  - 2 - ,  co; - 1 ,  2 -  and - 1 ,  3, respec- 
tively. 

(I)pl 
I pl 

~bl 

~ a 2 * b  1 a2*~bl T2 
. . . . .  

, 2  ' 

a3 T3 

i t 3 ~  r . . . . . . . . . . . . . . .  p3 

I <= x3<=3 J 

~l 
a2*~b l*~t*-f2 
*-12 U2 

p2*~f2 
*'f'2 

t'f2 

b2*~f2 

a) b) 

Fig.  2. Examples of simple timed L-processes (a) and corresponding unrestricted A 
L-process (b) 

A limed sequence(a , t )  consists of  a sequence a and a t iming  funct ion t 
assigning a real posi t ive t ime  tk to every ak in a. A t iming  is na tura l ly  extended 

1 It is convenient to represent lower bound constraint of type x > n as - x  < - n ,  and 
of t y p e x > n a s - x  < n - .  
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to some run v of a by: t(vk) = t(ak) = tk. If pause i is active, the elapsed time of 
pause i at vk, (r~)k is defined to be the difference between t(vk) and the t ime the 
pause i has last started. It is convenient to extend this definition to the whole v 
by setting (ri)k = 0., if vk is not an element of pause i. 

We say that  a t is a proper timing of v if all of the following consistency 
conditions hold: 

1. t l  = 0, tk+l > tk, for all k > 1 (time is non-decreasing), 
2. if vk ~ V a and vk # vk-1, then tk = tk-1 (all state changes outside a 

pause are instantaneous, the time can advance only inside a pause, or in a 
self-loop), 

3. ifvk = v d E V d then -(ri)k < l~ (pause-finishing times satisfy lower bounds), 
4. (r~)k < u~ (elapsed times satisfy upper bounds). 

We do not make an usual requirement that  t ime progresses without bounds, 
or equivalently we do allow that  infinitely many events happen in a bounded 
amount  of time. Hence, a failure to complete a pause can be acceptable. The 
time progress requirement can be easily added by making {v/~} a cycle set. Since 
this has no implications to results presented here, we leave it out of the definition, 
as the users choice. 

We say that  a timed sequence (a, t )  is in the language of a simple timed 
L-process T = (P, d), and write (a, t) E / ; ( T ) ,  if and only if there exists v such 
that  v is an accepting run of a in P,  and t is a proper timing of v. 

Pauses are tied with states, so in a simple timed L-process only one pause can 
be active at one time. To overcome this limitation we define a timed L-process 
as a N-tuple of simple timed processes (T1, �9 �9 TN). We say that  T,~, 1 < n < N 
are the components of T. A language of the timed process T is defined to be 
an intersection of languages of T, 's .  An untimed language of T is defined by: 
Untime(e(T))  = {al3t, (a, t) e E(T)}.  

3 Equivalent Non-Pausing Process 

In this section we will sketch the construction of the equivalent untimed process 
/3 for some timed L-process T. We will define such a process in some extension 

of Boolean algebraL.  P and T are equivalent in a sense that  the projection on 
L of the language of P is exactly equal to the untimed language of T. Therefore, 
to prove Untime(s C s where A is some L-automaton (hence also/~- 
automaton),  it is enough to prove: s  C s Full details of the construction, 
as well as the proof of equivalence are given in [BSV92]. 

Given a timed L-process T = (T1 , . . . ,  TN) defined by its components '  unre- 
stricted L-processes P1, . . . ,  PN, and its components '  sets of pauses dl~. . . ,  dN, 
we construct P as a product of the unrestricted L-process U the region L-process 
R. 

The unrestricted L-process U is a composition of L-processes U I , . . . ,  UN, 
each Un being basically the same as Pn, except that  we add some additional 
information to its output .  This information is needed to coordinate U with R. 
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The first piece of information we add is whether or not a transition in P~ can take 
some time, as required by consistency condition 2. We will extend the Boolean 
algebra L by a new variable t and use it to label all transition that  must take 
some time. If we also label by ,~ t all transition that  must not take any time, we 
will ensure that  transition from these two classes will not happen simultaneously. 
Specifically, we multiply with ,.~ t all entries in the transition matr ix  of Pn, except 
the diagonal (i.e. self-loops), and the entries corresponding to transitions inside 
a pause. Similarly, we will add a new "flag variable" fi for each pause i in d,~. 
We use f i  as a signal that  pause i is finishing. Consequently, we multiply with 
fl all entries of the transition matrix corresponding to the fanouts of v -~ and 

It ' 

multiply by -.~ f i  all other entries. The process U2 for the example in Figure 2a 
is shown in Figure 2b. 

It is easy to see that  the projection of the language of U on algebra L contains 
exactly those sequences that  are accepted by all P , ' s ,  including those sequences 
that  can not be properly timed, hence are not in Unt ime( f~ (T ) ) .  It is the purpose 
of the process R to eliminate such sequences from the language. Basically, R 
keeps record of possible elapsed times in all pauses, and does not allow a finish 
of some pause if the elapsed can not satisfy given bounds. Alur and Dill [AD90] 
have shown that  it is not necessary to remember exact values of the elapsed 
time, but only the integer part and the ordering of fractional parts. They have 
also shown that  if no upper bound is given all values larger than the lower bound 
can be considered equivalent. 

To keep track of the values of elapsed times we extend the Boolean algebra 
with one "multi valued variable" ?/ for each pause i. A variable ~i is a finite 
abstraction of ri, more precisely if ui < oo it takes a distinct value for each 
integer and open interval between integers in [0, ui]. If ui = oo, all values of 
ri larger then the lower bound correspond to single value of ~i. In slight abuse 
of notation we use bounds to represent a domain of ~/. More precisely, we use 
integers to represent themselves and bounds of the form n -  to represent intervals 
( n  - l ,  n ) ,  or ( n  - l ,  c o )  i f  u i  = oo  a n d  li = ( n  _ l )  or li = ( n  _ l ) - .  

We construct the region process as a product of difference tracking automata  
Rri - r j<c  and zero tracking automata  Rr~=0. We build one automaton Rr,=0 for 
each pause i and one automaton Rr~-~_<r for each pair of pauses i and j and 
every bound c necessary to uniquely determine the value of ?i (or ?j) given that  
ri = 0 (rj = O, respectively), and that  t ruth values of vi - rj < c for all c's 
are known. For example, variables 72 and 73 take values in {0, 1- ,  1 ,2-}  and 
{0, 1-,  1, 2 - ,  2, 3- ,  3} respectively, so we need Rr3-~2<c for each c in 

{-I-, - i ,  0-0, l-, I, 2-, 2, 3-} 

The purpose of the R,~-~j<c is to establish whether ri - v j  < c is satisfied or 
not. Its state space is an abstraction of a (possibly infinite) rectangle containing 
all possible pairs of values of vi and rj.  All points satisfying ~'i - vj < c are 
contained in a "good" state and all others make a "bad" state. A unique initial 
state is the one containing point (0, 0). It has no cycle sets nor recur edges, and 
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its transition matr ix reflects possible t rajectories  in the rectangle containing 
feasible values of ri and vj. The trajectory can be constructed for any sequence 
a E s and any timing t of a. The trajectory is constructed incrementally, 
adding a segment from ( (r i )k ,  ( r j ) k )  to ( ( r i )k+l ,  ( r j ) k + l )  according to ak and tk .  
The construction rules are as follows: 

R u l e  1 : we begin at point (0, 0) and stay there as long as neither pause i nor 
j are active, i.e. ak <_'~Pi* "~Pj ,  

R u l e  2(3)  : if pause i (j) is active and pause j (i) is not, i.e. if ak <_ Pi* "~ Pj 
(a~ <..~ Pi * Pj) ,  we move forward, along the ri (rj)  axis, 

R u l e  4 : if both pauses i and j are active, i.e. if ak < Pi * Pj, we move forward, 
along a 450 line, 

R u l e  5(6)  : if pause j (i) is finishing pausing and pause i (j) is not, i.e. if 
ak < f j *  ,., f i  (ak <',, f j  * f i )  we move to the point ( ( r i ) k ,O)  ( (0 , ( r j )k)  
respectively), 

R u l e  7 : if both pauses i and j are finishing, i.e. if ak <_ f j  * f i ,  we move to the 
point (0, 0). 

The length of all forward movements is determined by tkq-1 --re. A transition 
between states of RT,-T~_<c exists if a segment of some properly timed trajectory 
connects two points in those states. The transition is enabled if the conditions 
stated in the rule that generated the segment are met. More precisely, for any 
pair v, w E {good,  bad} the corresponding transition matr ix  entry is of the form: 

M ( v ,  w)  = )-2~(enabl ing_condi t ion * Z ( ( ~ i  = ~) * ( ~  = ~)) )  

where the outer sum goes over all eight enabling conditions in the left column of 
Table 1, and the inner sum goes over all abstracted values (~, ~) of some pair of 
positive real numbers 2 (x, y) E w satisfying the corresponding constraint in the 
right column of Table 1. 

Table 1. Rules for building a transition matrix of difference tracking L-processes 

enabling condition applied rule(s) constraints on (x, y) E w 

t* " '  P i *  , v  pj 1 X = y = 0, (X, y) E V 
t * pi.*,.,,'~ pj  

t* " Pi * pj 
t * p i  *Pi 

",, t*  ~ f i *  Sj 

~ t * f ,* ". f j  
"~ t*  f i *  f3 

~ t .  ~ f~. ~ f j  

6 

1-7 

y = O , 3 ~  > O : ( z - ~ , y )  E v 
x = O, 3~ > O : ( x , y - ~ )  E v 

3~ > 0: ( ~ -  ~ , y -  ~) E v 
y = o , 3 z  < , , j :  - ~  < l , , (~ ,~ )  e ~, 

F )'3(,,. <_ <_ t,,(.,.) ,, 
v : q < u i , - q  < l i , z  < u 3 , - z  < 1~ 

(x, y) E v 

2 If w is a good state (x,y) E w stands for x -  y < c, and if w is a bad state it stands 
for x - y > c .  
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One possible trajectory for pauses 3 and 2 in Figure 2a is shown in Figure 3a. 
Each segment of the trajectory is labeled with the number of the rule that  
generated it. An L-process R~3-r~<~ is shown in 3b. The only transition which 
has a small enough expression to fit in the figure is bad ~ good. The rest of the 
transitions are given in Table 2. Each transition expression is formed as a sum 
over all rows of products of the expression in the first column and the expression 
in the column corresponding to that  transition. 

Table 2. An example of the transition matrix of a difference tracking L-process 

enabling 
condition 

t * p 3 *  ~ P2 

$* ~ P3 * P :  

/ * p 3  *P2  

"~ t* ~ f3 * f :  
~t*13*~ A 

" t *  f 3 *  f :  
~ t ,  ~ 1 3 "  ~ f :  

transition expression 
good ~ good good ~ bad bad ---* bad 

5 = 0 * ? 2 = 0  
0 < ~  < 2 , F : = 0  

5 = 0 , ? : > 0  
5 > 0 , ? : > 0 ,  
(?3 < 3+72 > 1) 

0<73 <2 ,72=0 
? 3 = 0  

73 = 0 , ? :  = 0  
7 3 < 2 + ? : > 1 +  
5 < 3 , ? : > 0  

o 
5 > 2 , ~ : = o  

?~ > 2 , ? : = o  

0 

5 > 2 , ~ : = 0  
0 

5 > 2 . 0 < F ~ < 1  

o 

5 > 2 , F 2 < ]  

2 

6 

I 
Dr 

2 3 ~3 

h 

2 

I 
I 

~ , )  ~t*f3*fS* ('C3--O)*(x~=O)+ 

l ~'-~. -t*f3*-f2* (x3--0)*~<x2<l) 

0 ~ ,~. 
1 2 3 "c3 

a) b) 

Fig. 3. A trajectory (a) and one difference tracking L-process (b) 

Next, we define processes Rr,=o which track whether the elapsed time in A 
pause i can be zero or not. For each pause i we define an L-process Rr~=o with 
two states v ~ and v~, the first one being a unique initial state, no recur edges 
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nor cycle sets and transition matrix:  

MQ,  (v ~ v ~ = (t* ,.. P i+  "~ t* .,. f i )  * (~i = O) MQ,  (v ~ , v~) = t * Pi * (?i > O) 

M q , ( v ~ , v ~ ) =  "~ f i * ( ~ i  > 0 )  M q , ( v l , v ~  f i * ( ~ i = O )  

Intuitively, R~,=0 is in v ~ if ri = 0 and in v I if ri > 0. A transit ion from v ~ 
to v I must  absolutely take some time. A transition from v~ to v ~ occurs if the 
pause i has finished. Note that  f i  is not accepted in v ~ 

4 V e r i f i c a t i o n  S t r a t e g y  

Verifying a task on P can run into difficulties, due to the large size of the state 
space that  has to be searched. We propose a verification strateg~ to avoid this 
problem. We start  a verification process with the unrestricted L-process U. If  
the verification succeeds, we have verified the task. If the verification fails, there 
is at least one sequence which is in the language of the current abstract ion of 
/3  but not in the language of the task. We analyze one run of such a sequence. 
If  that  run violates no t iming constraints, we have proved that  the task is not 
satisfied. However, if the run does violate some t iming constraints, we compose 
the current abstraction of P with some simple abstraction of the process R, which 
is guaranteed to eliminate that  run. We repeat this process until the verification 
is terminated,  either successfully or unsuccessfully. This strategy can lead to 
significant savings in t ime and space, provided that  the behavior of the system 
is not heavily dependent on the t iming constraints. The" verification strategy is 
outlined in Algorithm 1. 

A l g o r i t h m  1: verification strategy 
p r o c e d u r e  verify_task0 

initialize Pc = U 
while not stop 

try to verify a task on Pc 
if success then  stop, the task is verified 
find a timing violating loop G 
if  such a loop does not exist t hen  stop, the task is not verified 
Pc =eliminate_loop(G, Pc) 

end while 
end  p r o c e d u r e  

4.1 I d e n t i f y i n g  T i m i n g  V i o l a t i o n  

Assume that  the error report from the verifier contains a loop and a path  to 
that  loop from the initial state. We can unfold the loop, thus forming an infinite 
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sequence of states. We form a graph with nodes being states in the sequence 
and the edges representing constraints on elapsed time between states. There 
are four kinds of edges corresponding to four consistency constraints: 

b a c k w a r d  n o n - p a u s e  edges:  (induced by consistency condition 1) for all k > 
1 we add an edge (k, k - 1) and label it with "> 0", 

f o r w a r d  n o n - p a u s e  edges:  (induced by consistency condition 2) if t ( v k )  = 

t ( v k + l )  must be satisfied by consistency condition 2, we add an edge from 
(k, k + 1) and label it with "_< 0", 

b a c k w a r d  p a u s e  edges:  (induced by consistency condition 3) if some pause i 
starts at node k and is finishing at node k ~, we add an edge (k ~, k) and label 
it with " - r i  _< li", 

f o r w a r d  p a u s e  edges:  (induced by consistency condition 4) if some pause i 
starts at node k and is still active at node k ~ and ui  < 0% we add an edge 
(k, k') and label it with "ri  <_ u i " .  

The sequence can not be consistently timed only if there exists a loop in the graph 
such that  every sum of numbers satisfying upper-bound constraints in forward 
edges is smaller than any sum of number satisfying lower-bound constraints in 
backward edges. We call such a loop an overconstrained loop. If we set a weight 
of an edge to be the right hand side of its label, then overconstrained loops are 
exactly those with weights smaller than zero. Finding a negative weighted loop 
is well studied problem running in a low polynomial time in the size of the graph 
(e.g. [Tar83]). However, in our case the graph is infinite. Therefore we have have 
modified the existing algorithm to process nodes in natural order (determined 
by the sequence) and to stop as soon as a solution to constraints which can be 
repeated infinitely often is found. It can be shown that if such a solution exists 
it will be found in finite number of steps. 

Without loss of generality, we assume that the loop is minimal, in the sense 
that  removing any edge enables proper timing of nodes. Once a loop has been 
identified, we collapse all non-pause edges, by merging their incident nodes. 
However, we mark nodes obtained by collapsing forward non-pause edges. Such a 
loop is an input to the algorithm which eliminates a timing constraint, described 
in the next subsection. 

For example, for the timed L-process in Figure 2a, a sequence of states: 

v l  = wo , v 2  = Wo , v3  = wo , v 4  = w e , v s  = w a , . . .  (1) 
U 0 U @ tt ~ It ~ U ~ 

is not possible under the timing restrictions, because no timing can satisfy con- 
flicting constraints in the following table: 

constraint edge ledge label II 

t ( v s )  - t ( v 2 )  < 3 v2 ---, v5 r3 < 3 
t ( v ~ )  - t ( v 4 )  >_ 1 v~ ---. v4 - r2  _< - 1  

- t(v ) < o - - ,  < o 

t ( V 3 ) - - t ( V 2 )  > 2V3  --+ V 2 - - T  1 < - - 2 -  



160 

The overconstrained loop corresponding to the edges in the table is shown in 
Figure 4a with non-pause edges collapsed. 

- ~  1 < - 2  -'(2>--- 1 --~ 1 < - 2  

a) b) 

x2 

2 

R .~3-,~2<=2 

�9 ,~ii~ii!i!::iii:~ 

o 1 2 ~3 

xl 

t =========================================== 
I ============================================================================= 

. iiiiii':iiiii~i !iig!!iii!i:;iiiiii!iiii!!ii ii!iii::i~ii 
.. :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  

..~i:~:!:~..:~!~:~::::::::::::::::::::::::::::::::::::::i:i~i~i:i:~i~i~i~i~i~i~i~i~i~i~.~i~i~ 

0 ! 2 

c) d) 

Fig. 4. An overconstrained loop and processes to eliminate it 

4.2 E l i m i n a t i n g  T i m i n g  V i o l a t i o n s  

Given an overconstrained loop G, we want to build some abstraction of R which 
eliminates that  run. The procedure is outlined in Algorithm 2. We will follow 
the execution of the algorithm for the overconstrained loop in Figure 4a. 

Since no nodes are marked we skip the first two steps of the algorithm. We 
start  with any "peak" node, i.e. a node with one in-coming forward edge and one 
outgoing backward edge. In our example, node 3 is the only peak node. Labels 
r3 _< 3 and -7-2 _< - 1  indicate that  pause 2 finishes while pause 3 is still active or 
just finishing. This is possible only if those two conditions can be simultaneously 
satisfied, or in other words, if Rr3-r~<_~ is in the good state. If Rr3-r~_<2 is in the 
bad state at that time, a finish of pause 2 will not be accepted and the sequence 
will be eliminated from the language. Therefore, in step 3 of the Algorithm 2 
we compose a current abstraction of P with the process R~3-T2_<2. We do not 
need to consider edges (1, 3) and (3, 2) any more, so in step 4 we remove them 
from the graph. However, we do need to consider under which conditions will 
the process Rr3-r2_<2 be in a good or bad state. It is clear from Figure 4c that  
it will be in the good state at node 3, only if 7"3 _< 2 when pause 2 starts at 
node 2. Therefore, in step 5 we add an edge (1, 2) and label it with v3 < 2, as 
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shown in Figure 4b. A dual case, when the start of the pause associated with 
the backward edge precedes the start  of the pause associated with the forward 
edge, is considered in step 6. 

We repeat steps 3-6 while there are peak nodes. In our example only one 
additional iteration is necessary, generating an abstracted pair region process.  
R~3_~_<0-, shown in Figure 4d. These two processes are enough to eliminate 
the sequence (1), because the process R~3-~<o- will initially be in the bad 
state and remain there until pause 1 finishes, so it will accept the finish of pause 
1 only if 92 > 2, which in turn will force R ~ - ~ < 2  to move to the bad state, 
where it will not accept the finish of pause 2. 

This new abstraction is also enough to verify the task: " b3 always appear 
before b2 ", which is not satisfied if timing constraints are ignored. Using our 
strategy, we have verified the property using the abstraction of R that  has only 
4 states, in contrast to the full process R that has 960 states. 

Algor i thm 2: eliminating a timing violation 
p rocedu re  eliminate_loop(G, Pc) 
/* G - an overconstrained loop, Pc - a current abstraction of P */ 

step 1: for each (k, m), labeled - r ,  < b, m marked do Pc = Pc | R~i=o 
step 2: for each pair (k, m), (m, n) labeled 7-/< b, - r j  < c, m marked do 

Pc = Pc | R,-i=o | R~.,-Tj<~ 
while there exist a pair of edges (k, m), (m, n) labeled r~ < b, - r j  <_ c 

Pc = Pc | R,-,-~j<b+~ 
remove from G edges (k, m) and (m, n) 
i f  k < n then  add to G edge (k, n) and label it 7-, < b + c 
i fk  > n then  add to G edge (k,n) and label it - r  z < b + c 

end while 
r e t u r n  Pc 

end p rocedu re  

step 3: 
step 4: 
step 5: 
step 6: 

Step 1 is executed only if there is a backward edge coming into a marked 
node. For example, had the no.de 2 in Figure 4a been marked, the processes 
in Figure 4c and d would not eliminate the sequence (1). The marking of the 
node 2 would indicate that  pause 2 starts before pause 1 finishes, but  no t ime 
can elapse between these two events. The process in Figure 4d would still force 
73 > 2 when pause 1 finishes, but this would not be enough to force the process in 
Figure 4c to the bad state, because pause 2 would be active, making for example 
73 = 3 - ,  92 = 1 a possible choice to remain in the good state. This could be 
easily fixed by composing Pc with R~=0 which would ensure 92 = 0 until some 
transition that  can take time occurs. 

Step 2 is executed only if there is a marked node with in-coming forward edge 
and out-going backward, indicating that  the pause associated with the forward 
edge finishes before the pause associated with the backward edge, but no t ime 
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Fig. 5. Additional process needed when the peak node is marked 

can elapse between these two events. Assume, for example, that  the node 3 in 
Figure 4a is marked. Even if the process shown in Figure 4c is in a bad state, 
when pause 3 finishes it will move to the good state, where the finish of pause 2 
is acceptable. We fix this in step 2 by composing Pc with Rr~=0 and RT3-T~_<-I 
(Figure 5). Now, when pause 3 finishes and the process Figure 4c is in the bad 
state it must be that 73 = 0 and ~ = 1- ,  so the process in Figure 5 must 
be in the bad state. Since no t ime can elapse, it will remain there until pause 
2 finishes. But RT3=o will force 73 = 0 (as long as no time elapses) and the 
process in Figure 5 accepts the finish of pause 2 only if 73 > 0. Therefore, the 
sequence (1) is eliminated. 

In general case, Algorithm 2 ensures), that  the original sequence no longer 
has a run in the updated abstraction of P,  because at least one of the difference 
tracking processes will be in the bad state at the corresponding peak node, hence 
it will not accept the finish of the "x-axis pause". 

By Algorithm 2, it is possible to eliminate any timing inconsistent sequence, 
by composing the current abstraction of the system with some difference tracking 
and zero tracking processes. Since there are only finitely many of those, the 
iteration will converge in a finite number of steps. 

5 C o n c l u s i o n s  

To model timing behavior of finite-state systems, we have proposed timed L- 
processes. We believe that t imed L-processes offer two major advantages over 
previous approaches. First, an equivalent L-process is defined as a composition of 
an unrestricted L-process and many smaller processes. We provide a transition 
matr ix  for each of these processes. In this way, the automatic  generation of 
the equivalent process is simpler than in [Dil89] where there is one big region 
automaton and the computation of the next state function includes non-trivial 
matr ix  manipulation, and in [AD90] where the equivalent au tomaton  is defined 
as a single automaton with a very large state space. 

More importantly, we propose a verification strategy to deal with the state 
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space explosion problem. Basically, we propose a "trial and error" strategy, start- 
ing with the unrestricted process, and using at each step only the minimum 
subset of timing constraints necessary to eliminate the reported error. Although 
in the worst case the construction of the full region process is necessary, in our 
experience that  is rarely the case. In fact none of the examples we tried required 
it. However, even if the region process is only partially constructed, the verifica- 
tion of timing constrained systems remains a complex and time-consuming task, 
requiring further research and development of more efficient techniques. 

Besides t ime and space saving, the proposed strategy could also have a pos- 
itive impact on the design. Indeed, to perform the required task, a design does 
not have to meet all t iming constraints, but only those used in the verification. 
Relaxing of constraints could be used to optimize the design. 
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