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Abstract

We formally verify the Berlekamp–Zassenhaus algorithm for factoring square-free integer
polynomials in Isabelle/HOL. We further adapt an existing formalization of Yun’s square-
free factorization algorithm to integer polynomials, and thus provide an efficient and certified
factorization algorithm for arbitrary univariate polynomials. The algorithm first performs
factorization in the prime field GF(p) and then performs computations in the ring of integers
modulo pk , where both p and k are determined at runtime. Since a natural modeling of
these structures via dependent types is not possible in Isabelle/HOL, we formalize the whole
algorithm using locales and local type definitions. Through experiments we verify that our
algorithm factors polynomials of degree up to 500 within seconds.

Keywords Factor bounds · Hensel lifting · Isabelle/HOL · Local type definitions ·
Polynomial factorization · Theorem proving

1 Introduction

Modern algorithms to factor univariate integer polynomials—following Berlekamp and
Zassenhaus—first preprocesses the input polynomial to extract the content and detect dupli-
cate factors. Afterwards, the main task is to factor primitive square-free integer polynomials,
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first over prime fields GF(p), then over quotient rings Z/pkZ, and finally over integers Z

[5,8]. Algorithm 1 illustrates the basic structure of such a method for factoring polynomials.1

Algorithm 1: A modern factorization algorithm
Input: Univariate integer polynomial f .
Output: Factorization of f into the content c and irreducible factors fi, j with their multiplicities ( fi, j )

i .

4 Extract the content and compute a square-free factorization with multiplicities: f =c · ( f1)1 · . . . · ( fm )m .
for each fi �= 1 do

5 Choose a suitable prime p depending on fi .
6 Factor fi in GF(p)[x] via Berlekamp’s algorithm: fi ≡ g1 · . . . · gℓ (mod p).
7 Determine a suitable bound d on the degree, depending on g1, . . . , gℓ. Choose an exponent k such

that every coefficient of a factor of fi in Z with degree at most d can be uniquely represented by
a number below pk .

8 Compute the factorization fi ≡ h1 · . . . · hℓ (mod pk ) via the Hensel lifting.
9 Reconstruct the factorization fi = fi,1 · . . . · fi,ni

in Z[x] where each fi, j corresponds to the
product of one or more h’s.

return f = c · ( f1,1)1 · . . . · ( f1,n1 )1 · . . . · ( fm,1)m · . . . · ( fm,nm )m

In earlier work on algebraic numbers [31] we implemented Algorithm 1 in Isabelle/HOL
[29]. There, however, the algorithm was not formally proven correct and thus followed by
certification, i.e., a validity check on the result factorization. Moreover, there was no guarantee
on the irreducibility of resulting factors. During our formalization we indeed found an error in
the implementation of Line 7 of this earlier work. Since in several experiments with algebraic
numbers this error was not exposed, this clearly shows the advantage of verification over
certification.

In this work we fully formalize the correctness of our implementation. It delivers a fac-
torization into the content and a list of irreducible factors.

Theorem 1 (Factorization of Univariate Integer Polynomials)

assumes factorize_int_poly f = (c, fs)

shows square_free_factorization f (c, fs)

and ∀( fi , i) ∈ set fs. irreducible fi

and ∀( fi , i) ∈ set fs. degree fi �= 0

Here, square_free_factorization f (c, [( f1, m1), . . . , ( fn, mn)]) means that f = c · f
m1+1
1 ·

. . . · f
mn+1
n , c is a constant, each fi is square-free, and fi and f j are coprime whenever i �= j .

To obtain Theorem 1 we perform the following tasks.

– In Sect. 3 we introduce three Isabelle/HOL definitions of Z/mZ and GF(p). We first
define a type to represent these domains, which allows us to reuse many algorithms for
rings and fields from the Isabelle distribution and the AFP (Archive of Formal Proofs). At
some points in our development, however, the type-based setting becomes too restrictive.
Hence we also introduce the second integer representation, which explicitly applies the
remainder operation modulo m. For efficient implementation we also introduce the third
representation, which allows us to employ machine integers [24] for reasonably small m.
Between the representations we transform statements using transfer [15] and local type

definitions [21].

1 Our algorithm starts with step 4, so that section numbers and step-numbers coincide.
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A Verified Implementation of the Berlekamp–Zassenhaus Factorization Algorithm 701

– The first part of the algorithm is square-free factorization over integer polynomials. In
Sect. 4 we adapt Yun’s square-free factorization algorithm [32,35] from Q to Z.

– The prime p in step 5 must be chosen so that fi remains square-free in GF(p). Therefore,
in Sect. 5 we prove the crucial property that such a prime always exists.

– In Sect. 6, we formalize Berlekamp’s algorithm, which factors polynomials over prime
fields, using the type-based representation. Since Isabelle’s code generation does not
work for the type-based representation of prime fields, we follow the steps presented in
Sect. 3 to define a record-based implementation of Berlekamp’s algorithm and prove its
soundness.

– In Sect. 7 we formalize Mignotte’s factor bound and Graeffe’s transformation used in
step 7, where we need to find bounds on the coefficients and degrees of the factors of
a polynomial. During this formalization task we detected a bug in our previous oracle
implementation, which computed improper bounds on the degrees of factors.

– In Sect. 8 we formalize Hensel’s algorithm, lifting a factorization modulo p into a fac-
torization modulo pk . The basic operation there is lifting from pi to pi+1, which we
formalize in the type-based setting. Unfortunately, iteratively applying this basic oper-
ation to lift p to pk cannot be done in the type-based setting. Therefore, we remodel
the Hensel lifting using the integer representation. We moreover formalize the quadratic

Hensel lifting and consider several approaches to efficiently lift p to pk .
– Details on step 9 are provided in Sect. 9 where we closely follow the brute-force algo-

rithm as it is described by Knuth [18, p. 452]. Here, we use the same representation of
polynomials over Z/pkZ as for the Hensel lifting.

– In Sect. 10 we illustrate how to assemble all the previous results in order to obtain the
verified factorize_int_poly algorithm. This includes some optimizations for improving
the runtime of the algorithm, such as the use of reciprocal polynomials and Karatsuba’s
multiplication algorithm.

– Finally, we compare the efficiency of our factorization algorithm with the one in Math-
ematica 11.2 [34] in Sect. 11 and give a summary in Sect. 12.

Since the soundness of each sub-algorithm has been formalized separately, our formaliza-
tion is easily reusable for other related verification tasks. For instance, the polynomial-time
factorization algorithm of Lenstra et al. [23] has been verified [11], and that formalization
could directly use the results about steps 4–8 of Algorithm 1 from this paper without requiring
any adaptations.

Our formalization is available in the AFP. The following website links theorems in this
paper to the Isabelle sources. Moreover, it provides details on the experiments.

https://doi.org/10.5281/zenodo.2525350

The formalization as described in this paper corresponds to the AFP 2019 version which
compiles with the Isabelle 2019 release.

1.1 RelatedWork

To our knowledge, the current work provides the first formalization of a modern factorization
algorithm based on Berlekamp’s algorithm. Indeed, it is reported that there is no formalization
of an efficient factorization algorithm over GF(p) available in Coq [4, Sect. 6, note 3 on
formalization].

Kobayashi et al. [19] provide an Isabelle formalization of Hensel’s lemma. They define
the valuations of polynomials via Cauchy sequences, and use this setup to prove the lemma.
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Consequently, their result requires a ‘valuation ring’ as a precondition in their formalization.
While this extra precondition is theoretically met in our setting, we did not attempt to reuse
their results, because the type of polynomials in their formalization (from HOL-Algebra)
differs from the polynomials in our development (from HOL/Library). Instead, we formalize
a direct proof for Hensel’s lemma. The two formalizations are incomparable: On the one
hand, Kobayashi et al. did not restrict to integer polynomials as we do. On the other hand,
we additionally formalize the quadratic Hensel lifting [36], extend the lifting from binary to
n-ary factorizations, and prove a uniqueness result, which is required for proving Theorem 1.
A Coq formalization of Hensel’s lemma is also available. It is used for certifying integral
roots and ‘hardest-to-round computation’ [26].

If one is interested in certifying a factorization, rather than in a certified algorithm that
performs it, it suffices to test that all the found factors are irreducible. Kirkels [17] formalized
a sufficient criterion for this test in Coq: when a polynomial is irreducible modulo some prime,
it is also irreducible in Z. These formalizations are in Coq, and we did not attempt to reuse
them, in particular since there are infinitely many irreducible polynomials which are reducible
modulo every prime.

This work is a revised and extended version of our previous conference paper [10]. The
formalization has been improved by adding over 7000 lines of new material, which are
detailed through different sections of this paper. This new material has been developed to
improve the performance of the verified factorization algorithm and includes among others:

– Integration of unsigned-32/64-bit integer implementation, cf. Sect. 3.
– Formalization of distinct-degree factorization and integration of it as an optional prepro-

cessing step for Berlekamp’s factorization, cf. Sect. 6.3.
– Integration of Graeffe’s transformation for tighter factor bounds, cf. Sect. 7.
– Formalization of a fast logarithm algorithm, required for Graeffe’s transformation, cf.

Sect. 7.
– Formalization of balanced multifactor Hensel lifting based on factor trees, cf. Sect. 8.
– Formalization of Karatsuba’s polynomial multiplication algorithm, cf. Sect. 10.
– Improvements on the GCD algorithm for integer polynomials, cf. Sect. 10.
– Integration of reciprocal polynomial before factoring, cf. Sect. 10.
– Overall, the runtime of our verified factorization algorithm has improved significantly.

The new implementation is more than 4.5 times faster than the previous version [10]
when factoring 400 random polynomials, and the new version is only 2.5 times slower
than Mathematica’s factorization algorithm.

2 Preliminaries

Our formalization is based on Isabelle/HOL. We state theorems, as well as certain definitions,
following Isabelle’s syntax. For instance, of_int :: int⇒α :: ring_1 is the ring homomorphism
from integers to type α, which is of class ring_1. Isabelle’s type classes are similar to Haskell;
a type class is defined by a collection of operators (over a single type variable α) and premises
over them. The type class ring_1 is provided by the HOL library, representing the algebraic
structure of ring with a multiplicative unit. We also often use the extension of the above
function of_int to polynomials, denoted by of_int_poly :: int poly ⇒ α :: ring_1 poly.
Isabelle’s keywords are written in bold. Other symbols are either clear from their notation,
or defined on their appearance. We only assume the HOL axioms and local type definitions,
and ensure that Isabelle can build our theories. Consequently, a sceptical reader that trusts the
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soundness of Isabelle/HOL only needs to validate the definitions, as the proofs are checked
by Isabelle.

We also expect basic familiarity with algebra, and use some of its standard notions without
further explanation. The notion of polynomial in this paper always means univariate polyno-
mial. Concerning notation, we write lc f for the leading coefficient of a polynomial f and
res( f , g) for the resultant of f and another polynomial g.

The derivative of a polynomial f =
∑n

i=0 ai x i is f ′ =
∑n

i=1 iai x i−1. A factorization of a
polynomial f is a decomposition into irreducible factors f1, . . . , fn such that f = f1 ·. . .· fn .
The irreducibility of a ring element x is defined via divisibility (denoted by the binary relation
dvd following Isabelle):

irreducible x ←→ ¬ x dvd 1 ∧
(

∀y. y dvd x −→ y dvd 1 ∨ x dvd y
)

. (1)

We also define the degree-based irreducibility of a polynomial f as

irreducibled f ←→ degree f �= 0 ∧
(

∀g. g dvd f −→ degree g ∈ {0, degree f }
)

. (2)

Note that (1) and (2) are not equivalent on integer polynomials; e.g., a factorization of
f = 10x2−10 in terms of (1) will be f = 2·5·(x −1)·(x +1), where the prime factorization
of the content, i.e., the GCD of the coefficients, has to be performed. In contrast, (2) does not
demand a prime factorization, and a factorization may be f = (10x − 10) · (x + 1). Note
that definitions (1) and (2) are equivalent on primitive polynomials, i.e., polynomials whose
contents are 1, and in particular for field polynomials.

In a similar way to irreducibility w.r.t. (2), we also define that a polynomial f is square-

free if there does not exist a polynomial g of non-zero degree such that g2 divides f . In
particular, the integer polynomial 22x is square-free. A polynomial f is separable if f and
its derivative f ′ are coprime. Every separable polynomial is square-free, and in fields of
characteristic zero, also the converse direction holds.

3 Formalizing Prime Fields

Our development requires several algorithms that work in the quotient ring Z/pkZ and the
prime field GF(p). Hence, we will need a formalization of these fundamental structures.

We will illustrate and motivate different representations of these structures with the help of
a heuristic to ensure that two integer polynomials f and g are coprime [18, p. 453ff]: If f and g

are already coprime in GF(p)[x] then f and g are coprime over the integers, too. In particular
if f and its derivative f ′ are coprime in GF(p)[x], i.e., f is separable modulo p, then f

is separable and square-free over the integers. Hence, one can test whether f is separable
modulo p for a few primes p, as a quick sufficient criterion to ensure square-freeness.

The informal proof of the heuristic is quite simple and we will discuss its formal proof in
separate sections.

– If f is separable modulo p, then f is square-free modulo p (Sect. 3.1).
– If f is square-free modulo p then f is square-free in Z[x], provided that lc f and p are

coprime (Sect. 3.2).
– Testing separability (i.e., coprimality) modulo p is implemented via the Euclidean algo-

rithm in the ring GF(p)[x] (Sect. 3.3).

Moreover, we will describe the connection of the separate steps, which is nontrivial since
these steps use different representations (Sect. 3.4).
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3.1 Type-Based Representation

The type system of Isabelle/HOL allows concise theorem statements and good support for
proof automation [21]. In our example, we formalize the first part of the proof of the heuristic
conveniently in a type-based setting for arbitrary fields, which are represented by a type
variable τ with sort constraint field. All the required notions like separability, coprimality,
derivatives and square-freeness are implicitly parametrized by the type.

Lemma 1 fixes f :: τ :: field poly

assumes separable f

shows square_free f

In order to apply Lemma 1 to a finite field GF(p) we need a type that represents GF(p).
To this end, we first define a type to represent Z/pZ for an arbitrary p > 0, which forms the
prime field GF(p) when p is a prime. Afterwards we can instantiate the lemma, as well as
polymorphic functions that are available for field, e.g., the Gauss–Jordan elimination, GCD
computation for polynomials, etc.

Since Isabelle does not support dependent types, we cannot directly use the term variable
p in a type definition. To overcome the problem, we reuse the idea of the vector representation
in HOL analysis [13]: types can encode natural numbers. We encode p as CARD(α), i.e., the
cardinality of the universe of a (finite) type represented by a type variable α. The typedef

keyword introduces a new type whose elements are isomorphic to a given set, along with the
corresponding bijections.

typedef (α :: finite)mod_ring = {0 ..< CARD(α)}

Given a finite type α with p elements, αmod_ring is a type with elements 0, …, p−1. With the
help of the lifting and transfer package, we naturally define arithmetic in α mod_ring based
on integer arithmetic modulo CARD(α); for instance, multiplication is defined as follows:

lift_definition times_mod_ring :: α mod_ring⇒ α mod_ring⇒ α mod_ring

is λ x y. (x · y)mod CARD(α)

Here the lift_definition keyword applies the bijections from our type definition via typedef
such that times_mod_ring is defined on α mod_ring through a definition on the type of the
elements of the set used in the typedef, namely natural numbers. It is straightforward to
show that α mod_ring forms a commutative ring:

instantiationmod_ring :: (finite) comm_ring

Note that comm_ringdoes not assume the existence of the multiplicative unit 1. IfCARD(α) =
1, then α mod_ring is not an instance of the type class ring_1, for which 0 �= 1 is required.
Hence we introduce the following type class:

class nontriv= assumes CARD(α) > 1

and derive the following instantiation:2

instantiationmod_ring :: (nontriv) comm_ring_1

2 A formalization of the ring Z/pZ is already present inHOL-Library.Numeral_Type as a localemod_
ring. In principle we could reuse results from the library by proving a connection between the locale and our
class; however, as the resulting proofs became slightly longer than direct proofs, we did not use this library.
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Now we enforce the modulus to be a prime number, using the same technique as above,
namely introducing a corresponding type class.

class prime_card = assumes prime (CARD(α))

The key to being a field is the existence of the multiplicative inverse x−1. This follows
from Fermat’s little theorem: for any nonzero integer x and prime p,

x · x p−2 ≡ x p−1 ≡ 1 (mod p)

that is, x−1 = xCARD(α)−2 if CARD(α) is a prime. The theorem is already available in the
Isabelle distribution for the integers, and we just apply the transfer tactic [15] to lift the result
to (α :: prime_card) mod_ring.

instantiationmod_ring :: (prime_card) field

In the rest of the paper, we write α GFp instead of (α :: prime_card) mod_ring.3

3.2 Integer Representation

The type-based representation becomes inexpressive when, for instance, formalizing a func-
tion which searches for a prime modulus p such that a given integer polynomial f is separable
modulo p and hence square-free modulo p. Isabelle does not allow us to state this in the
type-based representation: there is no existential quantifier on types, so in particular the
expression

“∃α. prime (CARD(α)) ∧ square_free (of_int_poly f :: α GFp poly)”

is not permitted.
Hence we introduce the second representation. This representation simply uses integers

(type int) for elements in Z/mZ or GF(p), and uses int poly for polynomials over them. To
conveniently develop formalization we utilize Isabelle’s locale mechanism [3], which allows
us to locally declare variables and put assumptions on them in a hierarchical manner. We
start with the following locale that fixes the modulus:

locale poly_mod= fixesm :: int

For prime fields we additionally assume the modulus to be a prime.

locale poly_mod_prime= poly_mod p for p :: int+ assumes prime p

Degrees, divisibility and square-freeness for polynomials modulo m are defined by4

definition degreem f = degree ( f mod m)

definition f dvdm g ←→ (∃h. g ≡ f · h (mod m))

definition square_freem f ←→
f �≡ 0 (mod m) ∧ (∀g. degreem g �= 0 −→ ¬ g · g dvdm f )

3 We would like to have introduced this abbreviation also in Isabelle. However, we are not aware of how to do
this, since the type_synonym keyword does not allow specifying type constraints such as α :: prime_card.
4 In this paper we use the conventional notations f ≡ g (mod m) and f mod m. In the formalization these
notions are defined as eq_m and Mp respectively.
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The integer representations have an advantage that they are more expressive than the
typed-based ones. For instance, the soundness statement of the aforementioned function can
be stated like “... −→ ∃p. prime p ∧ square_freep f ”. Another advantage of the integer
representation is that one can easily state theorems which interpret polynomials in different
domains like Z[x] and GF(p)[x]. For instance, the second part of the soundness proof of the
heuristic is stated as follows:

Lemma 2 fixes f :: int poly

assumes prime p and square_freep f and coprime (lc f ) p

shows square_free f

Note that there is no type conversion like of_int_poly needed.
A drawback of this integer representation is that many interesting results for rings or

fields are only available in the Isabelle library and AFP in type-based forms. To overcome
the problem, we establish a connection between the type-based representation α mod_ring

and the locale poly_mod. This is achieved by first introducing the intermediate locale

locale poly_mod_type= poly_modm

for m and t y :: α :: nontriv itself+
assumesm = CARD(α)

for Z/mZ and its sublocale for prime fields:

locale poly_mod_prime_type= poly_mod_typem ty

for m :: int and t y :: α :: prime_card itself

Second, we import type-based statements into these intermediate locales by means of transfer

[15]. The mechanism allows us to translate facts proved in one representation into facts in
another representation. To apply this machinery we first define the representation relation
MP_Rel :: int poly ⇒ α mod_ring poly ⇒ bool describing when an integer polynomial
represents a polynomial of type α mod_ring poly. Then we prove a collection of transfer

rules, stating the correspondences between basic notions in one representation and those in
the other representation. For instance,

Lemma 3 (MP_Rel ===>MP_Rel ===>MP_Rel) (·) (·)

relates multiplication of polynomials of type int poly with multiplication of polynomials of
type α mod_ring poly. Concretely, it states that, if polynomials f and g of type int poly are
related to polynomials f and g of type α mod_ring poly respectively (via MP_Rel), then
f · g is related to f · g, again, via MP_Rel. Note that the same syntax is used to represent
the polynomial multiplication operation in both worlds (int poly and α mod_ring poly). The
===> symbol represents the relator for function spaces. That is, related functions map related
inputs to related outputs. Then facts about rings and fields are available via transfer; e.g.,
from

Lemma 4 f �= 0 ⇒ g �= 0 ⇒ degree ( f · g) = degree f + degree g

of standard library, we obtain

Lemma 5 (in poly_mod_prime_type)

f �≡ 0 (mod m) ⇒ g �≡ 0 (mod m) ⇒ degreem ( f · g) = degreem f + degreem g
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Finally, we migrate Lemma 5 from locale poly_mod_prime_type to poly_mod_prime. It
is impossible to declare the former as a sublocale of the latter, since the locale assumption
m = CARD(α) can be satisfied only for certain α. Instead, we see Lemma 5 from the global
scope; then the statement is prefixed with assumption m = CARD(α). In order to discharge
this assumption we use the local type definition mechanism [21], an extension of HOL that
allows us to define types within proofs.

Lemma 6 (in poly_mod_prime)

f �≡ 0 (mod m) ⇒ g �≡ 0 (mod m) ⇒ degreem ( f · g) = degreem f + degreem g

3.3 Record-Based Implementation

The integer representation from the preceding section does not speak about how to implement
modular arithmetic. For instance, although Lemma 3 can be interpreted as that one can

implement multiplication of polynomials in Z/mZ[x] by that over Z[x], there are cleverer
implementations that occasionally take remainder modulo m to keep numbers small.

Hence, we introduce another representation.

3.3.1 Abstraction Layer

This third representation introduces an abstraction layer for the implementation of the basic
arithmetic in Z/mZ and GF(p), and builds upon it various algorithms over (polynomials
over) Z/mZ and GF(p). Such algorithms include the computation of GCDs, which is used
for the heuristic when checking, for various primes p, whether the polynomial f is separable
modulo p, i.e., the GCD of f and f ′ in GF(p)[x] is 1 or not.

The following datatype, which we call dictionary, encapsulates basic arithmetic oper-
ations. Here the type variable ρ represents Isabelle/HOL’s types for executable integers:
integer, uint32, and uint64.5

datatype ρ arith_ops_record= Arith_Ops_Record

(zero: ρ)

(one: ρ)

(plus: ρ ⇒ ρ ⇒ ρ)

...

(of_int: int⇒ ρ)

(to_int: ρ ⇒ int)

Given a dictionary ops, we build more complicated algorithms. For instance, following
is the Euclidean algorithm for GCD computation, which is adjusted from the type-based
version from the standard library.

partial_function gcd_eucl_i ops a b =
(if b = zero ops then normalize ops a else gcd_eucl_i ops b (modulo ops a b))

Here and often we use partial_function [20], since gcd_eucl_i and others terminate only
if ops contains a correct implementation of the basic arithmetic functions. Obviously, these

5 The preliminary version [10] of this paper does not require such an abstraction layer since there we always
implement GF(p) via integers.
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algorithms are sound only if ops is correct. Correct means that the functions zero, plus
etc. implement the ring operations and indeed form a euclidean semiring, a ring, or a field,
depending on the algorithm in which the operations are used.

So we now consider proving the correctness of derived algorithms, assuming the cor-
rectness of ops in form of locales. The following locale assumes that ops is a correct
implementation of a commutative ring τ using a representation type ρ, where correctness
assumptions are formulated in the style of transfer rules, and locale parameter R is the
representation relation.

locale ring_ops=
fixes ops :: ρ arith_ops_record

and R :: ρ ⇒ τ :: comm_ring_1⇒ bool

assumes R (zero ops) 0

and (R ===> R ===> R) (plus ops) (+)

and ... (* correctness of ring operations *)

The second assumption just states that the output of the addition operation of the ops

record (plus ops) is related to the output of the addition operation (+) of elements of type τ

via R, provided that the input arguments are also related via R.
We need more locales for classes other than comm_ring_1. For instance, for the

Isabelle/HOL class normalization_euclidean_semiring, which admits the Euclidean algo-
rithm, we need some more operations to be correctly implemented.

locale euclidean_semiring_ops= ring_ops+
assumes (R ===> R ===> R) (modulo ops) (mod)

and ... (* normalization of GCDs, etc. *)

In this locale we prove the soundness of gcd_eucl_i, again in form of a transfer rule. The
proof is simple since the definition of gcd_eucl_i is a direct translation of the definition of
gcd.

Lemma 7 (in euclidean_semiring_ops) (R ===> R ===> R) (gcd_eucl_i ops) gcd

For class field moreover the inverse operation has to be implemented. Since in our applica-
tion p is usually small, we compute x−1 as x p−2, using the binary exponentiation algorithm.

locale field_ops= euclidean_semiring_ops+
assumes (R ===> R) (inverse ops) Fields.inverse

3.3.2 Defining Implementations

Here we present three record-based implementations of GF(p) using integers, 32-bit integers,
and 64-bit integers. This means to instantiate τ by α GFp, and the representation type ρ by
integer, uint32, and uint64.

We first define the operations using integer, which is essentially a direct translation of the
definitions in Sect. 3.1. For example, x · y is implemented as (x · y)mod p as in times_mod_

ring, and the inverse of x is computed via x p−2. The soundness of the implementation, stated
as follows, is easily proven using the already established soundness proofs for the type-based
version.
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Lemma 8 assumes p = CARD(α)

shows field_ops (finite_field_ops_integer p) (mod_ring_rel_integer :: integer ⇒ α GFp⇒
bool)

Hereafter, finite_field_ops... denotes the dictionary of basic arithmetic operations for GF(p)

(where the representation type ρ should be clear), and mod_ring_rel... denotes the represen-
tation relation.

The implementations using uint32 and uint64 have the advantage that generated code
will be more efficient as they can be mapped to machine integers [24]. It should be taken
into account that they work only for sufficiently small primes, so that no overflows occur in
multiplications: e.g., 65535 · 65535 < 232. The corresponding soundness statements look as
follows, and are proven in a straightforward manner using the native words library [24].

Lemma 9 assumes p ≤ 65535 and p = CARD(α)

shows field_ops (finite_field_ops32 p) (mod_ring_rel32 :: uint32⇒ α GFp⇒ bool)

Lemma 10 assumes p ≤ 4294967295 and p = CARD(α)

shows field_ops (finite_field_ops64 p) (mod_ring_rel64 :: uint64⇒ α GFp⇒ bool)

To obtain an implementation of GCD for polynomials over GF(p), we need further work:
instantiating τ by α GFp poly. So we define a dictionary poly_ops ops :: ρ list arith_ops_

record implementing polynomial arithmetic. Here polynomials are represented by their coef-
ficient lists: the representation relation between ρ list and τ poly is defined pointwise as
follows.

definition (in ring_ops) poly_rel f g ←→ list_all2 R f (coeffs g)

We define poly_ops by directly translating the implementations of polynomial arithmetic
from the standard library; it is thus straightforward to prove the following correctness state-
ment.

Lemma 11 (in field_ops) euclidean_semiring_ops (poly_ops ops) poly_rel

Finally we can instantiate Lemma 7 for polynomials as follows.

Lemma 12 (in field_ops)

(poly_rel ===> poly_rel ===> poly_rel) (gcd_eucl_i (poly_ops ops)) gcd

3.4 Combination of Results

Let us shortly recall what we have achieved at this point. We formalized Lemma 1 in a
type-based setting, and the type variable τ can be instantiated by the type α GFp, where the car-
dinality of α encodes the prime p. Moreover, we have a connection between square-freeness
in GF(p)[x] and Z[x], all represented via integer polynomials in Lemma 2. Finally, we
rewrote the type-based GCD-algorithm into a record-based implementation, and we provide
three different records that implement basic arithmetic operations in GF(p) and GF(p)[x].

Let us now assemble all of the results. In the implementation layer we just define a test
on separability of f using the existing functions like gcd_poly_i from the implementation
layers. In the following definition, one_poly_i corresponds to the implementation of the one
polynomial based on the one element provided by the arithmetic operations record.
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definition separable_i ops f = (gcd_poly_i ops f (pderiv_i ops f ) = one_poly_i ops)

Since separable_i requires as input the polynomial in the internal representation type ρ, we
write a wrapper which converts an input integer polynomial into the internal type. Here, of_
int_poly_i heavily relies upon the function of_int from the arithmetic operations record.

definition separable_impl_main p ops ( f :: int poly) =
(separable_i ops (of_int_poly_i ops f ))

The soundness of this function as a criterion for square-freeness modulo p is proven in a
locale which combines the locale field_ops—ops is a sound implementation of α GFp—with
the requirement that locale parameter p is equal to the cardinality of α.

Lemma 13 assumes separable_impl_main p ops f

shows square_freep f

The proof goes as follows: Consider the polynomial g := of_int_poly f . The soundness of
of_int_poly_i states that of_int_poly_i ops f and g = of_int_poly f are related by poly_

rel. In combination with the soundness of separable_i (via gcd_eucl_i) we know that the
GCD of g and g′ is 1, i.e., separable g. Then Lemma 1 concludes square_free g. Using
the premise p = CARD(α), we further prove square_free (of_int_poly f :: α GFp poly) =
square_freep f , thus concluding square_freep f .

Since we are still in a locale that assumes arithmetic operations, we next define a function
of type int ⇒ int poly ⇒ bool which is outside any locale. It dynamically chooses an
implementation of GF(p) depending on the size of p.

definition separable_impl p = (

if p ≤ 65535 then separable_impl_main p (finite_field_ops32 p)

else if p ≤ 4294967295 then separable_impl_main p (finite_field_ops64 p)

else separable_impl_main p (finite_field_ops_integer p))

Lemma 14 assumes separable_impl p f

and prime p

shows square_freep f

Although the soundness statement in Lemma 14 is quite similar to the one of Lemma 13,
there is a major obstacle in formally proving it in Isabelle/HOL: Lemma 13 was proven in a
locale which fixes a type α such that p = CARD(α). In order to discharge this condition we
have to prove that such a type α exists for every p :: int. This claim is only provable using
the extension of Isabelle that admits local type definitions [21].

Having proven Lemma 14, which solely speaks about integer polynomials, we can now
combine it with Lemma 2 to have a sufficient criterion for integer polynomials to be square
free.

The dynamic selection of the implementation of GF(p) in separable_impl—32-bit or
64-bit or arbitrary precision integers—is also integrated in several other algorithms that are
presented in this paper. This improves the performance in comparison to a static implemen-
tation which always uses arbitrary precision integers, as it was done in our previous version
[10], cf. Sect. 11.
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4 Square-Free Factorization of Integer Polynomials

Algorithm 1 takes an arbitrary univariate integer polynomial f as input. As the very first
preprocessing step, we extract the content—a trivial task. We then detect and eliminate
multiple factors using a square-free factorization algorithm, which is described in this section.
As a consequence, the later steps of Algorithm 1 can assume that fi is primitive and square-
free.

Example 1 Consider the input polynomial 48 + 1128x + 6579x2 − 1116x3 − 6042x4 +
5592x5 + 4191x6 − 2604x7 − 408x8 + 1080x9 + 300x10. In step 4 of Algorithm 1 this
polynomial will be decomposed into

3 · (4 + 47x − 2x2 − 23x3 + 18x4 + 10x5
︸ ︷︷ ︸

f

)2.

The square-free primitive polynomial f will be further processed by the remaining steps of
Algorithm 1 and serves as a running example throughout this paper.

We base our verified square-free factorization algorithm on the formalization [32, Sect. 8]
of Yun’s algorithm [35]. Although Yun’s algorithm works only for polynomials over fields of
characteristic 0, it can be used to assemble a square-free factorization algorithm for integer
polynomials with a bit of post-processing and the help of Gauss’ Lemma as follows: Interpret
the integer polynomial f as a rational one, and invoke Yun’s algorithm. This will produce
the square-free factorization f = ℓ · f 1

1,Q
· . . . · f n

n,Q
over Q. Here, ℓ is the leading coefficient

of f , and all fi,Q are monic and square-free. Afterwards eliminate all fractions of each fi,Q

via a multiplication with a suitable constant ci , i.e., define fi,Z := ci · fi,Q, such that fi,Z

is primitive. Define c := ℓ ÷ (c1
1 · . . . · cn

n). Then f = c · f 1
1,Z

. . . · f n
n,Z

is a square-free
factorization of f over the integers, where c is precisely the content of f because of Gauss’
Lemma, i.e., in particular c ∈ Z.

The disadvantage of the above approach to perform square-free factorization over the inte-
gers is that Yun’s algorithm over Q requires rational arithmetic, where after every arithmetic
operation a GCD is computed to reduce fractions. We therefore implement a more efficient
version of Yun’s algorithm that directly operates on integer polynomials. To be more pre-
cise, we adapt certain normalization operations of Yun’s algorithm from field polynomials
to integer polynomials, and leave the remaining algorithm as it is. For instance, instead of
dividing the input field polynomial by its leading coefficient to obtain a monic field polyno-
mial, we now divide the input integer polynomial by its content to obtain a primitive integer
polynomial. Similarly, instead of using the GCD for field polynomials, we use the GCD for
integer polynomials, etc.

To obtain the soundness of the integer algorithm, we show that all polynomials fZ and
fQ that are constructed during the execution of the two versions of Yun’s algorithm on the
same input are related by a constant factor. In particular fi,Z = ci · fi,Q is satisfied for the
final results fi,Z and fi,Q of the two algorithms for suitable ci ∈ Q. In this way, we show
that the outcome of the integer variant of Yun’s algorithm directly produces the square-free
factorization f = c · f 1

1,Z
. . . · f n

n,Z
from above, so there even is no demand to post-process the

result. The combination of the integer version of Yun’s algorithm together with the heuristic
of Sect. 3 is then used to assemble the function square_free_factorization_int.

Theorem 2 (Yun Factorization and Square-Free Heuristic)

assumes square_free_factorization_int f = (c, fs)
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shows square_free_factorization f (c, fs)

and ∀( fi , i) ∈ set fs. primitive fi ∧ lc f > 0

5 Square-Free Polynomials in GF(p)

Step 5 in Algorithm 1 mentions the selection of a suitable prime p, where two conditions have
to be satisfied: First, p must be coprime to the leading coefficient of the input polynomial f .
Second, f must be square-free in GF(p), required for Berlekamp’s algorithm to work. Here,
for the second condition we use separability as sufficient criterion to ensure square-freeness.

Example 2 Continuing Example 1, we need to process the polynomial

f = 4 + 47x − 2x2 − 23x3 + 18x4 + 10x5.

Selecting p = 2 or p = 5 is not admissible since these numbers are not coprime to 10, the
leading coefficient of f . Also p = 3 is not admissible since the GCD of f and f ′ is 2 + x in
GF(3). Finally, p = 7 is a valid choice since the GCD of f and f ′ is 1 in GF(7), and 7 and
10 are coprime.

In the formalization we must prove that a suitable prime always exists and provide an
algorithm which returns such a prime. Whereas selecting a prime that satisfies the first
condition is in principle easy—any prime larger than the leading coefficient will do—it is
actually not so easy to formally prove that the second condition is satisfiable. We split the
problem of computing a suitable prime into the following steps.

– Prove that if f is square-free over the integers, then f is separable (and therefore square-
free) modulo p for every sufficiently large prime p.

– Develop a prime number generator which returns the first prime such that f is separable
modulo p.

The prime number generator lazily generates all primes and aborts as soon as the first
suitable prime is detected. This is easy to model in Isabelle by defining the generator
(suitable_prime_bz) via partial_function.

Our formalized proof of the existence of a suitable prime proceeds along the following
line. Let f be square-free over Z. Then f is also square-free over Q using Gauss’ Lemma.
For fields of characteristic 0, f is square-free if and only if f is separable. Separability of f ,
i.e., coprimality of f and f ′ is the same as demanding that the resultant is non-zero, so we get
res( f , f ′) �= 0. The advantage of using resultants is that they admit the following property:
if p is larger than res( f , f ′) and the leading coefficients of f and f ′, then resp( f , f ′) �= 0,
where resp( f , g) denotes the resultant of f and g computed in GF(p). Now we go back from
resultants to coprimality, and obtain that f and f ′ are coprime in GF(p), i.e., f is separable
modulo p.

Whereas the reasoning above shows that any prime larger than res( f , f ′), lc f and lc f ′

is admitted, we still prefer to search for a small prime p since Berlekamp’s algorithm has a
worst case lower bound of p · degree f operations. The formal statement follows:

Lemma 15 (Suitable prime)

assumes square_free f

and p = suitable_prime_bz f
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shows prime p

and coprime (lc f ) p

and square_freep f

6 Berlekamp’s Algorithm

In this section we will describe step 6 of Algorithm 1, i.e., our verified implementation of
Berlekamp’s Algorithm to factor square-free polynomials in GF(p).

6.1 Informal Description

Algorithm 2 briefly describes Berlekamp’s algorithm [5]. It focuses on the core computations
that have to be performed. For a discussion on why these steps are performed we refer to
Knuth [18, Sect. 4.6.2].

Algorithm 2: Berlekamp’s factorization algorithm
Input: Square-free polynomial f over GF(p) with d = degree f �= 0.
Output: Constant c and set F of monic and irreducible factors f1, . . . , fn such that f = c · f1 · . . . · fn

1 Let c be the leading coefficient of f . Update f := f /c.

2 Compute the Berlekamp matrix B f ∈ GF(p)d×d for f , where the i-th row is the vector of the

coefficients of polynomial x p·i mod f .
3 Compute the dimension r and a basis b1, . . . , br of the left null space of B f − I , where I is the

identity matrix of size d × d.
4 For each basis vector bi construct the corresponding polynomial hi where the entries in bi are the

coefficients of hi .
5 Set F := { f }, H := {h1, . . . , hr } \ {1}, FI := ∅.
6 If |F | = r ∨ H = ∅, return c and F ∪ FI .
7 Pick h ∈ H and update H := H \ {h}.

Update F := {gcd( fi , h − j) | fi ∈ F, 0 ≤ j < p} \ {1}.
8 If one can find k irreducible polynomials in F , move them to FI and update r := r − k.
9 Goto step 6.

We illustrate the algorithm by continuing Example 2.

Example 3 In Algorithm 1, step 6, we have to factor f in GF(7)[x]. To this end, we first
simplify f by

f ≡ 4 + 5x + 5x2 + 5x3 + 4x4 + 3x5 (mod 7)

before passing it to Berlekamp’s algorithm.
Step 1 now divides this polynomial by its leading coefficient c = 3 in GF(7) and obtains

the new f := 6 + 4x + 4x2 + 4x3 + 6x4 + x5.
Step 2 computes the Berlekamp matrix as

B f =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
4 6 2 4 3
2 3 6 1 4
6 3 5 3 1
1 5 5 6 6

⎞

⎟
⎟
⎟
⎟
⎠
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since

x0 mod f ≡ 1 (mod 7)

x7 mod f ≡ 4 + 6x + 2x2 + 4x3 + 3x4 (mod 7)

x14 mod f ≡ 2 + 3x + 6x2 + x3 + 4x4 (mod 7)

x21 mod f ≡ 6 + 3x + 5x2 + 3x3 + x4 (mod 7)

x28 mod f ≡ 1 + 5x + 5x2 + 6x3 + 6x4 (mod 7).

Step 3 computes a basis of the left null space of B f − I , e.g., by applying the Gauss–Jordan
elimination to its transpose (B f − I )T:

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
4 5 2 4 3
2 3 5 1 4
6 3 5 2 1
1 5 5 6 5

⎞

⎟
⎟
⎟
⎟
⎠

T

=

⎛

⎜
⎜
⎜
⎜
⎝

0 4 2 6 1
0 5 3 3 5
0 2 5 5 5
0 4 1 2 6
0 3 4 1 5

⎞

⎟
⎟
⎟
⎟
⎠

→֒

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 2
0 0 1 0 1
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

We determine r = 2, and extract the basis vectors b1 = (1 0 0 0 0) and b2 = (0 5 6 5 1).
Step 4 converts them into the polynomials h1 = 1 and h2 = 5x +6x2 +5x3 + x4, and step 5
initializes H = {h2}, F = { f }, and FI = ∅.

The termination condition in step 6 does not hold. So in step 7 we pick h = h2 and
compute the required GCDs.

gcd( f , h2 − 1) = 6 + 5x + 6x2 + 5x3 + x4 =: f1

gcd( f , h2 − 4) = 1 + x =: f2

gcd( f , h2 − i) = 1 for all i ∈ {0, 2, 3, 5, 6}

Afterwards, we update F := { f1, f2} and H := ∅.
Step 8 is just an optimization. For instance, in our implementation we move all linear

polynomials from F into FI , so that in consecutive iterations they do not have to be tested
for further splitting in step 7. Hence, step 8 updates FI := { f2}, F := { f1}, and r := 1.

Now we go back to step 6, where both termination criteria fire at the same time (|F | =
1 = r ∧ H = ∅). We return c · f1 · f2 as final factorization, i.e.,

f ≡ 3 · (1 + x) · (6 + 5x + 6x2 + 5x3 + x4) (mod 7)

All of the arithmetic operations in Algorithm 2 have to be performed in the prime field
GF(p). Hence, in order to implement Berlekamp’s algorithm, we basically need the following
operations: arithmetic in GF(p), polynomials over GF(p), the Gauss–Jordan elimination over
GF(p), and GCD-computation for polynomials over GF(p).

6.2 Soundness of Berlekamp’s Algorithm

Our soundness proof for Berlekamp’s algorithm is mostly based on the description in Knuth’s
book.

We first formalize the equations (7, 8, 9, 10, 13, 14) in the textbook [18, p. 440 and 441].
To this end, we also adapt existing proofs from the Isabelle distribution and the AFP; for
instance, to derive (7) in the textbook, we adapted a formalization of the Chinese remainder
theorem, which we could find only for integers and naturals, to be applicable to polynomials

over fields. For another example, (13) uses the equality ( f + g)p = f p + g p where f

and g are polynomials over GF(p), which we prove using some properties about binomial
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coefficients that were missing in the library. Having proved these equations, we eventually
show that after step 3 of Algorithm 2, we have a basis b1, . . . , br of the left null space of
B f − I .

Now, step 4 transforms the basis into polynomials. We define an isomorphism between
the left null space of B f − I and the Berlekamp subspace

W f := {h | h p ≡ h (mod f ), degree h < degree f }

so that the isomorphism transforms the basis b1, . . . , br into a Berlekamp basis Hb :=
{h1, . . . , hr }, a basis of W f . Then we prove that every factorization of f has at most r

factors.
In this proof we do not follow Knuth’s arguments, but formalize our own version of the

proof to reuse some results which we have already proved in the development. Our proof is
based on another isomorphism between the vector spaces W f and GF(p)r as well as the use
of the Chinese remainder theorem over polynomials and the uniqueness of the solution.

Lemma 16 Every factorization of a square-free monic polynomial f ∈ GF(p)[x] has at most

dim W f factors.

Proof Let f ≡ f1 · . . . · fr (mod p) be a monic irreducible factorization in GF(p)[x], which
exists and is unique up to permutation since GF(p)[x] is a unique factorization domain. We
show that there exists an isomorphism between the vector spaces W f and GF(p)r . Then
they have the same dimension and thus every factorization of f has at most dim W f =
dim GF(p)r = r factors, which is the desired result.

First, the following equation holds for any polynomial g ∈ W f . It corresponds to equation
(10) in the textbook [18, p. 440].

g p − g =
∏

a∈GF(p)

(g − a). (10)

From this we infer that each fi divides
∏

a∈GF(p)(g − a). Since fi is irreducible, fi divides
g − a for some a ∈ GF(p) and thus, (g mod fi ) = −a is a constant.

Now we define the desired isomorphism φ between W f and GF(p)r as follows:

φ : W f → GF(p)r

g �→ (g mod f1, . . . , g mod fr )

To show that φ is an isomorphism, we start with proving that φ is injective. Let us assume
that φ g = 0 for some g ∈ W f . It is easy to show degree g < degree f and ∀i < r . g ≡
φ g (mod fi ). Since v = 0 ∈ W f satisfies these properties, the uniqueness result of the
Chinese remainder theorem guarantees that g = 0. This implies the injectivity of φ, since
any linear map is injective if and only if its kernel is {0} [2, Proposition 3.2].

To show that φ is surjective, consider an arbitrary x = (x1, . . . , xr ) ∈ GF(p)r . We show
that there exists a polynomial g ∈ W f such that φ g = x . The Chinese remainder theorem
guarantees that there exists a polynomial g such that:

degree g < degree f (3)

∀i < r . g ≡ xi (mod fi ) (4)

Then, for each i < r we have xi = coeff (gmod fi ) 0 = (gmod fi ), and so g p ≡ g (mod fi ).
Since each fi is irreducible and f is square-free, we have g p ≡ g (mod

∏

fi ). As
∏

fi =
f , we conclude g ∈ W f . Finally, φ g = x follows from (4) and the fact that g mod fi is a
constant. ⊓⊔
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As expected, the proof in Isabelle requires more details and it takes us about 300 lines
(excluding any previous necessary result and the proof of the Chinese remainder theo-
rem). We define a function for indexing the factors, we prove that both W f and GF(p)r

are finite-dimensional vector spaces and also that φ is a linear map. Since each equation of
the proof involves polynomials over GF(p) (so everything is modulo p), we also proved facts
like degree

∏

fi =
∑

degree fi and so on. In addition, we also extend an existing AFP
entry [22] about vector spaces for some necessary results about linear maps, isomorphisms
between vector spaces, dimensions, and bases.

Once having proved that Hb is a Berlekamp basis for f and that the number of irreducible
factors is |Hb|, we prove (14); for every divisor fi of f and every h ∈ Hb, we have

fi =
∏

0≤ j<p

gcd( fi , h − j). (14)

Finally, it follows that every non-constant reducible divisor fi of f can be properly factored
by gcd( fi , h − j) for suitable h ∈ Hb and 0 ≤ j < p.

In order to prove the soundness of steps 5–9 in Algorithm 2, we use the following
invariants—these are not stated by Knuth as equations. Here, Hold represents the set of
already processed polynomials of Hb.

1. f =
∏

(F ∪ FI ).
2. All fi ∈ F ∪ FI are monic and non-constant.
3. All fi ∈ FI are irreducible.
4. Hb = H ∪ Hold.
5. gcd( fi , h − j) ∈ {1, fi } for all h ∈ Hold, 0 ≤ j < p and fi ∈ F ∪ FI .
6. |FI | + r = |Hb|.

It is easy to see that all invariants are initially established in step 5 by picking Hold =
{1} ∩ Hb. In particular, invariant 5 is satisfied since the GCD of the monic polynomial f and
a constant polynomial c is either 1 (if c �= 0) or f (if c = 0).

It is also not hard to see that step 7 preserves the invariants. In particular, invariant 5 is
satisfied for elements in FI since these are irreducible. Invariant 1 follows from (14).

The irreducibility of the final factors that are returned in step 6 can be argued as follows.
If |F | = r , then by invariant 6 we know that |Hb| = |F ∪ FI |, i.e., F ∪ FI is a factorization
of f with the maximum number of factors, and thus every factor is irreducible. In the other
case, H = ∅ and hence Hold = Hb by invariant 4. Combining this with invariant 5 shows
that every element fi in F ∪ FI cannot be factored by gcd( fi , h − j) for any h ∈ Hb and
0 ≤ j < p. Since Hb is a Berlekamp basis, this means that fi must be irreducible.

Putting everything together we arrive at the formalized main soundness statement of
Berlekamp’s algorithm. As in Sect. 6.3 we will integrate the distinct-degree factorization
[18, p. 447 and 448], the algorithm takes, besides the monic polynomial f to be factored, an
extra argument d ∈ N such that any degree-d factor of f is known to be irreducible. Fixing
d = 1 yields the usual Berlekamp’s algorithm. The final statement looks as follows.

Theorem 3 (Berlekamp’s Algorithm for monic polynomials)

assumes square_free ( f ::α GFp poly)

and berlekamp_monic_factorization d f = fs

and ∀g. g dvd f ∧ degree g = d −→ irreducible g

and degree f > 0

andmonic f
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shows f = prod_list fs

and ∀ fi ∈ set fs. irreducible fi ∧ monic fi

In order to prove the validity of the output factorization, we basically use the invariants
mentioned before. However, it still requires some tedious reasoning.

6.3 Formalizing the Distinct-Degree Factorization Algorithm

The distinct-degree factorization (cf. [18, p. 447 and 448]) is an algorithm that splits a
square-free polynomial into (possibly reducible) factors, where irreducible factors of each
factor have the same degree. It is commonly used before applying randomized algorithms
to factor polynomials, and can also be used as a preprocessing step before Berlekamp’s
algorithm. Algorithm 3 briefly describes how it works.

Algorithm 3: Distinct-degree factorization algorithm
Input: A monic square-free polynomial f of nonzero degree.
Output: The set of all pairs (i, g) such that g is the product of all monic irreducible factors of f of

degree i .
1 If degree f = 1 then return (1, f ).
2 Set v := f , d:= 0, w := x , gd := 1 and S := ∅.
3 If v = 1 then return S.
4 If 2d > degree v then return {(degree v, v)} ∪ S.
5 Update d := d + 1, w :=w p mod v and gd := gcd(w − x, v).
6 If gd �= 1, update v := v div gd , w :=w mod v and S := {(d, gd )} ∪ S.
7 Goto step 3.

We implement the algorithm in Isabelle/HOL as distinct_degree_factorization. Termina-
tion follows from the fact that difference between d and the degree of v decreases in every
iteration. The key to the soundness of the algorithm is the fact that any irreducible polynomial
f of degree d divides the polynomial x pd − x and does not divide x pc − x for 1 ≤ c < d .
The corresponding Isabelle’s statement looks as follows where the polynomial x is encoded
as monom 1 1, i.e., 1 · x1.

Lemma 17 fixes f :: α :: GFp poly

assumes irreducible f and degree f = d

shows f dvd (monom 1 1)ˆ (CARD(α)ˆ d) −monom 1 1

and 1 ≤ c ⇒ c < d ⇒ ¬ f dvd (monom 1 1)ˆ (CARD(α)ˆ c) −monom 1 1

Knuth presents such a property as a consequence of an exercise in his book, whose proof
is sketched in prose in just 5 lines [18, Exercise 4.6.2.16]. In comparison, our Isabelle proof
required more effort: it took us about 730 lines, above all because we proved several facts
and subproblems:6

– Given a degree-n irreducible polynomial f ∈ GF(p)[x], the pn polynomials of degree
less than n form a field under arithmetic modulo f and p.

6 Knuth gives a brief outline of a proof, but he also classifies the exercise as a problem of moderate complexity
that may involve more than two hours’ work to solve it on paper.
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– Any field with pn elements has a generator element ξ such that the elements of the field
are {0, 1, ξ, ξ2, . . . , ξ pn−2}. We do not follow Knuth’s short argument in this step, but
we reuse some theorems of the Isabelle library to provide a proof based on the existence
of an element in the multiplicative group of the finite field with the adequate order.

– Given a degree-n irreducible polynomial f ∈ GF(p)[x], x pm − x is divisible by f if
and only if m is a multiple of n. Essentially, we are proving that GF(pn) is a subfield of
GF(pm) if and only if n divides m.

The difference between the sizes of Knuth’s and our proofs is also due to some properties
which Knuth leaves as exercises. For instance, we show that a pn = a for any element
a ∈ GF(p), also that ( f + g)pn = f pn + g pn

in the ring GF(p)[x], for natural numbers
x > 1, a > 0 and b > 0 we demonstrate xa − 1 dvd xb − 1 ⇐⇒ a dvd b and some other
properties like these ones which cause the increase in the number of employed lines. The
whole formalization of these facts, the termination-proof of the algorithm and its soundness
can be seen in the file Distinct_Degree_Factorization.thy of our development.

Once we have the distinct-degree factorization formalized, it remains to find a way to split
each factor that we have found into the desired irreducible factors, but this can just be done by
means of the Berlekamp’s algorithm. This way, we have two ways of factoring polynomials
in GF(p)[x]:

– Using Berlekamp’s algorithm directly.
– Preprocessing the polynomial using the distinct-degree factorization and then apply

Berlekamp’s algorithm to the factors.

We verified both variants as a single function finite_field_factorization where a Boolean
constant is used to enable or disable the preprocessing via distinct-degree factorization. Our
experiments revealed that currently the preprocessing slows down the factorization algorithm,
so the value of the Boolean constant is set to disable the preprocessing. However, since
distinct degree factorization heavily depends on polynomial multiplication, the preprocessing
might pay off, once more efficient polynomial multiplication algorithms become available
in Isabelle.

Independent of the value of the Boolean constant, the final type-based statement for the
soundness of finite_field_factorization is as follows.

Theorem 4 (Finite Field Factorization)

assumes square_free ( f ::α GFp poly)

and finite_field_factorization f = (c, fs)

shows unique_factorization f (c,mset fs)

Here, mset converts a list into a multiset, and unique_factorization f demands that the
given factorization is the unique factorization of f , i.e., c is the leading coefficient of f and
fs a list of irreducible and monic factors such that f = c ·

∏

fs. Uniqueness follows from
the general theorem that the polynomials over fields form a unique factorization domain.

6.4 Implementing Finite Field Factorization

The soundness of Theorem 4 is formulated in a type-based setting. In particular, the function
finite_field_factorization has type

α GFp poly ⇒ α GFp × α GFp poly list.
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In our use case, recall that Algorithm 1 first computes a prime number p, and then invokes a
factorization algorithm (such as Berlekamp’s algorithm) on GF(p). This requires Algorithm 1
to construct a new type τ with CARD(τ ) = p depending on the value of p, and then invoke
finite_field_factorization for type τ GFp.

Unfortunately, this is not possible in Isabelle/HOL. Hence, Algorithm 1 requires a finite
field factorization algorithm to have a type like

int ⇒ int poly ⇒ int × int poly list

where the first argument is the dynamically chosen prime p.
The final goal is to prove Theorem 4 but just involving integers, integer polynomials and

integer lists, and then avoiding statements and definitions that require anything of type α GFp

(or in general, anything involving the type α :: prime_card).
The solution is to follow the steps already detailed in Sect. 3. We briefly recall the main

steps here:

– We implement a record-based copy of all necessary algorithms like Gauss–Jordan
elimination, berlekamp_monic_factorization and finite_field_factorization where the
type-based arithmetic operations are replaced by operations in the record.

– In a locale that assumes a sound implementation of the record-based arithmetic and that
fixes p such that p = CARD(α :: prime_card), we develop transfer rules to relate the new
implementation of all subalgorithms that are invoked with the corresponding type-based
algorithms.

– Out of the locale, we define a function finite_field_factorization_int which dynamically
selects an efficient implementation of GF(p) depending on p, by means of finite_field_
ops... p. This function has the desired type. Its soundness statement can be proven by
means of the transfer rules, but the resulting theorem still requires that p = CARD(α).

– Thanks to local type definitions, such a premise is replaced by prime p.

As the approach is the same as the presented in Sect. 3, we omit here the details. We
simply remark that the diagnostic commands transfer_prover_start and transfer_step were
helpful to see why certain transfer rules could initially not be proved automatically; these
commands nicely pointed to missing transfer rules.

Most of the transfer rules for non-recursive algorithms were proved mainly by unfolding
the definitions and finishing the proof by transfer_prover. For recursive algorithms, we often
perform induction via the algorithm. To handle an inductive case, we locally declare transfer
rules (obtained from the induction hypothesis), unfold one function application iteration, and
then finish the proof by transfer_prover.

Still, problems arose in case of underspecification. For instance it is impossible to prove
an unconditional transfer rule for the function hd that returns the head of a list using the
standard relator for lists, (list_all2 R ===> R) hd hd; when the lists of type α list and β list

are empty, we have to relate undefined ::α with undefined :: β. To circumvent this problem,
we had to reprove invariants that hd is invoked only on non-empty lists.

Similar problems arose when using matrix indices where transfer rules between matrix
entries Ai j and Bi j are available only if i and j are within the matrix dimensions. So, again
we had to reprove the invariants on valid indices—just unfolding the definition and invoking
transfer_prover was not sufficient.

Although there is some overhead in this approach—namely by copying the type-based
algorithms into record-based ones, and by proving the transfer rules for each of the
algorithms—it still simplifies the overall development: once this setup has been established,
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we can easily transfer statements about properties of the algorithms, without having to copy
or adjust their proofs.

This way, we obtain a formalized and executable factorization algorithm for polynomials
in finite fields where the prime number p can be determined at runtime, and where the
arithmetic in GF(p) is selected dynamically without the risk of integer overflow. The final
theorem follows, which is the integer-based version of Theorem 4.

Theorem 5 (Finite Field Factorization on Integers)

assumes finite_field_factorization_int p f = (c, fs)

and square_freep f

and prime p

shows unique_factorizationp f (c,mset fs)

and c ∈ {0 ..< p}
and ∀ fi ∈ set fs. set (coeffs fi ) ⊆ {0 ..< p}

In summary, the development of the separate implementation is some annoying overhead,
but still a workable solution. In numbers: Theorem 4 requires around 4300 lines of difficult
proofs whereas Theorem 5 demands around 600 lines of easy proofs.

7 Mignotte’s Factor Bound

Reconstructing the polynomials proceeds by obtaining factors modulo pk . The value of k

should be large enough, so that any coefficient of any factor of the original integer polynomial
can be determined from the corresponding coefficients in Z/pkZ. We can find such k by
finding a bound on the coefficients of the factors of f , i.e., a function factor_bound such
that the following statement holds:

Lemma 18 (Factor Bound)

assumes f �= 0 and g dvd f and degree g ≤ d

shows |coeff g j | ≤ factor_bound f d

Clearly, if b is a bound on the absolute value of the coefficients, and pk > 2 · b

then we can encode all required coefficients: In Z/pkZ we can represent the numbers

{−⌊ pk−1
2 ⌋, . . . , ⌈ pk−1

2 ⌉} ⊇ {−b, . . . , b}.
The Mignotte bound [27] provides a bound on the absolute values of the coefficients. The

Mignotte bound is obtained by relating the Mahler measure of a polynomial to its coefficients.
The Mahler measure is defined as follows:

mahler_measure f = |lc f | ·
n

∏

i=1

max{1, |ri |}

where n = degree f and r1, . . . , rn are the complex roots of f taking multiplicity into
account. For nonzero f , lc f is a nonzero integer. It follows that mahler_measure f ≥ 1.
The equality mahler_measure (g · h) = mahler_measure g · mahler_measure h easily
follows by the definition of the Mahler measure. We conclude that mahler_measure g ≤
mahler_measure f if g is a factor of f .
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The Mahler measure is bounded by the coefficients from above through Landau’s inequal-
ity:

mahler_measure f ≤
√

∑n
i=1 (coeff f i)2

Mignotte showed that the coefficients also bound the measure from below: |coeff g i | ≤
(

d
i

)

· mahler_measure g whenever degree g ≤ d . Putting this together we get:

|coeff g j | ≤
(

d

j

)

· mahler_measure g

≤
(

d

⌊d/2⌋

)

· mahler_measure f

≤
(

d

⌊d/2⌋

)

·
√

∑

i (coeff f i)2

=

√
(

d

⌊d/2⌋

)2

·
∑

i (coeff f i)2

Consequently, we could define factor_bound as follows:

factor_bound f d = ⌊
√

(
d

⌊d/2⌋
)2 ·

∑

i (coeff f i)2⌋

Such a definition of factor_bound was the one used in our previous work [10]. However,
we have introduced an important improvement at this point to get tighter factor bounds by
means of integrating Graeffe transformations.

Given a complex polynomial f = c
∏

i (x − ri ), we can define its m-th Graeffe transfor-
mation as the polynomial fm = c2m ∏

i ( f − r2m

i ).
These polynomials are easy to compute, since

fm =
{

f , if m = 0.

c · (g2 − xh2), otherwise
(5)

where g and h are the polynomials that separates fm−1 into its even and odd parts such
that fm−1(x) = g(x2) + xh(x2). For instance, if fm−1 = ax4 + bx3 + cx2 + dx + e then
g = ax2 + cx + e and h = bx + d .

We implement both the definition of Graeffe transformation and (5) and then we show
they are equivalent. The former one makes proofs easier, whereas the latter one is devoted
for computational purposes and thus used during code generation. At this point we introduce
functions involving lists, e.g. poly_even_odd (to obtain the odd and even parts of a polyno-
mial) and alternate (to split a list into another two ones in which elements are alternated).
For a polynomial f of degree n, we then prove three important facts:

– mahler_measure fm = (mahler_measure f )2m

– mahler_measure f ≤ 2m
√

∑

i (coeff fm i)2

– |coeff f i | ≤
(

n−1
i

)

· mahler_measure f +
(

n−1
i−1

)

· |lc f |

The first one follows from the definition of Mahler measure and Graeffe transformation,
the second one follows from the first property and the Landau’s inequality and the third one
is obtained from the definition of Mahler measure and the Mignotte’s inequality.

The implementation of an approximation for the Mahler measure based on Graeffe trans-
formations requires the computation of n-th roots, which already can be done thanks to
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previous work based on the Babylonian method [30]. That work implements functions to
decide whether n

√
a ∈ Q and compute the ceiling and floor of n

√
a. The computation of the

n-th root of a number is based on a variant of Newton iteration, but involving integer divisions
instead of floating point or rational divisions, i.e., each occurrence of / in the algorithm has
been substituted by div. We must also choose a starting value in the iteration, which must be
larger than the n-th root. This property is essential, since the algorithm will abort as soon as
we fall below the n-th root. Thus, the starting value is defined as 2⌈⌈log2 a⌉/n⌉.

This of course requires a function to approximate logarithms. At first, the development
[30] implemented this approximation in a naive way, i.e., multiplying the base until we exceed
the argument, which causes an impact on the efficiency and avoid an improvement on the
performance if Graeffe transformations are integrated.

To tackle this, we implement the discrete logarithm function in a manner similar to a
repeated squaring exponentiation algorithm. This way, we get a fast logarithm algorithm, as
required for Graeffe transformations. This algorithm allows us to derive the floor- and ceiling-
logarithm functions. We also connect them to the log function working on real numbers.

Lemma 19 assumes b > 1 and a > 0

shows log_ceiling b a = ⌈log b a⌉

Once we have a fast logarithm algorithm implemented, we can now define a function
mahler_approximation which returns an upper bound for the Mahler measure, based on the
Graeffe transformations. We refer to the sources and [9] for the details of the implementation.
The function receives three parameters: the number m of Graeffe transformations which are
performed, a scalar c and the polynomial f . Using the previous properties, we can now prove
the following important fact:

⌊c · mahler_measure f ⌋ ≤ mahler_approximation m c f

Putting all together, for a polynomial g of degree g = n ≤ d we have:

|coeff g j | ≤
(

n − 1

j

)

· mahler_measure g +
(

n − 1

j − 1

)

· |lc f |

≤
(

d − 1

⌊(d − 1)/2⌋

)

· mahler_measure f +
(

d − 1

⌊(d − 1)/2⌋

)

· |lc f |

≤ mahler_approximation m

(
d − 1

⌊(d − 1)/2⌋

)

f +
(

d − 1

⌊(d − 1)/2⌋

)

· |lc f |

Consequently, we can define factor_bound based onmahler_approximation, but firstly it
remains to decide the number of iterations (the value of m), in a balance between the precision
of the bound and the computational time needed to get it. First we tried too high numbers
which gave good results for small polynomials but have been too expensive to compute for
larger polynomials, i.e., where the factor-bound computation resulted in a timeout. After
some experiments we finally selected a value of m = 2 and defined factor_bound in Isabelle
as follows, which is a function that satisfies the statement presented at the beginning of this
section:

factor_bound f d = (let d1 = d − 1; d2 = d1 div 2; binom = (d1 choose d2)

inmahler_approximation 2 binom f + binom · abs (lc f ))

For m = 2 we get quite some decrease in the estimation of the Mahler measure. Let us
show two examples of it. Consider the polynomials f = x8 +8x7 +47x6 +136x5 +285x4 +
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Table 1 Approximating the Mahler measure of the polynomials f and g

m mahler_approximation m 1 f mahler_approximation m 1 g

0 363 144

1 221 38

2 200 33

3 196 33

4 196 32

171x3−20x2 −21x +2 and g = 2x8−16x7+26x6−10x5−41x4+89x3−87x2 +52x −10
that appear in [1, Sects. 3.6.1 and 3.6.2].

The paper estimates a Mahler measure of 197 for f and 33.4 for g, Our results are
presented in Table 1. They clearly illustrate an improved precision when applying Graeffe’s
transformation a few times.

Interestingly, even with the slightly worse estimation of 200 for f when m = 2, we
result in better factor bounds: they report 1181 and 200 for the largest coefficient for a factor
of degree 4 of f and g, respectively, whereas our factor_bound f 4 results in 604 and
factor_bound g 4 = 106.

So in both cases, the Mahler measure estimations are close to the ones in [1] (with m = 2),
but we manage to get much smaller coefficient bounds via the Mignotte bound (roughly a
factor of 2).

In order to compute a factor bound via Theorem 18 it remains to choose a bound d on the
degrees of factors of f that we require for reconstruction. A simple choice is d = degree f −1,
but we can do slightly better. After having computed the Berlekamp factorization, we know
the degrees of the factors of f in GF(p). Since the degrees will not be changed by the Hensel
lifting, we also know the degrees of the polynomials hi in step 8 of Algorithm 1.

Since in step 9 of Algorithm 1 we will combine at most half of the factors, it suffices to take
d =

∑m
i=⌊ m

2 ⌋ degree hi , where we assume that the sequence h1, . . . , hm is sorted by degree,
starting with the smallest. In the formalization this gives rise to the following definition:

degree_bound hs = (let ds = sort (map degree hs)

in sum_list (drop (length ds div 2) ds))

Note also that in the reconstruction step we actually compute factors of lc f · f . Thus, we
have to multiply the factor bound for f by |lc f |.

Example 4 At the end of Example 3 we have the factorization f = 4 + 47x − 2x2 − 23x3 +
18x4 + 10x5 ≡ 3 · (1 + x) · (6 + 5x + 6x2 + 5x3 + x4) (mod 7).

We compute d = degree (6 + 5x + 6x2 + 5x3 + x4) = 4. With the bound used
in our previous work [10], we have to be able to represent coefficients of at most 10 ·
⌊
√

(4
2

)2 · (42 + 472 + 22 + 232 + 182 + 102)⌋=3380, i.e., the numbers {−3380, . . . , 3380}.
In contrast, using the new estimations we can reduce the bound, and compute that it suffices to
represent coefficients of at most 1730. Thus the modulus has to be larger than 2·1730 = 3460.
Hence, in step 7 of Algorithm 1 we choose k = 5, since this is the least number k such that
pk = 7k > 3460.

Finally, we report that our previous oracle implementation [31, Sect. 4] had a flaw in
the computation of a suitable degree bound d , since it just defined d to be the half of the
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degree of f . This choice might be insufficient:7 Consider the list of degree of the hi to
be [1, 1, 1, 1, 1, 5]. Then the product h1 · h6 of degree 6 might be a factor of f , but the
degree bound in the old implementation was computed as 1+1+1+1+1+5

2 = 5, excluding this
product. This wrong choice of d was detected only after starting to formalize the required
degree bound.

8 Hensel Lifting

Given a factorization in GF(p)[x]:

f ≡ lc f · g1 · . . . · gm (mod p)

which Berlekamp’s algorithm provides, the task of the Hensel lifting is to compute a factor-
ization in Z/pkZ[x]

f ≡ lc f · h1 · . . . · hm (mod pk).

Hensel’s lemma, following Miola and Yun [28], is stated as follows.

Lemma 20 (Hensel) Consider polynomials f over Z, g1 and h1 over GF(p) for a prime p,

such that g1 is monic and f ≡ g1 · h1 (mod p). For any k ≥ 1, there exist polynomials

gk and hk over Z/pkZ such that gk is monic, f ≡ gk · hk (mod pk), gk ≡ g1 (mod p),

hk ≡ h1 (mod p). Moreover, if f is monic, then gk and hk are unique (mod pk).

The lemma is proved inductively on k where there is a one step lifting from Z/pkZ to
Z/pk+1Z. To be more precise, the one step lifting assumes polynomials gk and hk over
Z/pkZ satisfying the conditions, and computes the desired gk+1 and hk+1 over Z/pk+1Z.

As explained in Sect. 3, it is preferable to carry on the proof in the type-based setting
whenever possible, and indeed we proved the one-step lifting in this way.

Lemma 21 (Hensel lifting–one step)

assumes CARD(α) = CARD(β :: prime_card) · CARD(γ )

and CARD(β) dvd CARD(γ )

and # f = g · h andmonic g and coprime (#g) (#h)

and degree f = degree g + degree h

and hensel_1 TYPE(β) f g h = (g, h)

shows f = g · h ∧monic g ∧ g = #g ∧ h = #h ∧
degree g = degree g ∧ degree h = degree h ∧ coprime (#g) (#h)

and… (* uniqueness statement *)

Here, CARD(α) represents pk+1, CARD(β) represents p, and CARD(γ ) represents pk . The
prefix “#” denotes the function that converts polynomials over integer modulo m into those
over integer modulo n, where the type inference determines n.

7 Indeed, one can reduce the degree bound to half of the degree of f if one uses a slightly more complex
reconstruction algorithm which sometimes considers the complement of the selected factors. We did not
investigate the trade-off between the two alternatives.
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Unfortunately, we could not see how to use Lemma 21 in the inductive proof of Lemma 20
in a type-based setting. A type-based statement of Lemma 20 would have an assumption like
CARD(α) = pk . Then the induction hypothesis would look like

CARD(α) = pk ⇒ . . . (6)

and the goal statement would be CARD(α) = pk+1 ⇒ . . . . There is no hope to be able to
apply the induction hypothesis (6) for this goal, since the assumptions are clearly incompat-
ible. A solution to this problem seems to require extending the induction scheme to admit
changing the type variables, and produce an induction hypothesis like CARD(?α) = pk ⇒
. . . where ?α can be instantiated. Unfortunately this is not possible in Isabelle/HOL. A
rule that seems useful for this problem is the cross-type induction schema [6], which is a
general-purpose axiom for cross-type well-founded induction and recursion. However, it is
not admissible in current HOL.

We therefore formalized most of the reasoning for Hensel’s lemma on integer polynomials
in the integer-based setting (cf. Sect. 3.2), so that the modulus (the k in the pk) can be easily
altered within algorithms and inductive proofs.8 The binary version of Hensel’s lemma is
formalized as follows, and internally one step of the Hensel lifting is applied over and over
again, i.e., the exponents are p, p2, p3, p4, … [28, Sect. 2.2]. In the statement, Isabelle’s
syntax ∃! represents the unique existential quantification.

Lemma 22 (Hensel lifting–multiple steps, binary)

assumes prime p and coprimep g h and f ≡ g · h (mod p)

and g mod p = g and h mod p = h

andmonic g and k �= 0

shows ∃! (g, h).

f ≡ g · h (mod pk) ∧monic g ∧
g ≡ g (mod p) ∧ h ≡ h (mod p) ∧ g mod pk = g ∧ h mod pk = h

It is also possible to lift in one step from pk to p2k , which is called the quadratic Hensel

lifting, cf. [28, Sect. 2.3]. In this paper we consider several combinations of one-step and
quadratic Hensel lifting.

In the following we use the symbols →, ⇒, and ց to indicate a one-step Hensel lifting
step, a quadratic Hensel lifting step, and the operation which decreases the modulus from
pi+ j to pi , respectively. For each alternative, we immediately illustrate the sequence of
operations that are performed to produce a factorization modulo p51.

1. Repeated one-step lifting:

p1 → p2 → p3 → . . . → p51

2. Repeated quadratic lifting [28, Sect. 2.3], which applies the quadratic Hensel lifting until
p2ℓ ≥ k and then finally take remainder operation modulo pk in order to convert the
Z/p2ℓ

Z factorization into a Z/pkZ factorization. Hence, the operations for k = 51 are:

p1 ⇒ p2 ⇒ p4 ⇒ p8 ⇒ p16 ⇒ p32 ⇒ p64 ց p51

8 One might transfer the type-based Lemma 21 to integer polynomials, in order to use it within the inductive
proof of Lemma 22. However, the current proof of Lemma 22 does not rely upon Lemma 21.
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3. Combination of one-step and quadratic liftings. Lifting to pk proceeds by recursively

computing the lifting to p⌊ k
2 ⌋, then perform a quadratic Hensel lifting to p2·⌊ k

2 ⌋, and if k

is odd, do a final linear Hensel lifting to pk . Hence, the operations are:

p1 ⇒ p2 → p3 ⇒ p6 ⇒ p12 ⇒ p24 → p25 ⇒ p50 → p51

Although the numbers stay smaller than in the second approach, this approach has the
disadvantage that the total number of Hensel liftings is larger.

4. Combination of quadratic lifting and modulus decrease. To obtain a lifting for pk , we

recursively compute the lifting to p⌈ k
2 ⌉, then do a quadratic Hensel lifting to p2·⌈ k

2 ⌉, and
if k is odd, do a final decrease operation to pk .

p1 ⇒ p2 ⇒ p4 ⇒ p8 ց p7 ⇒ p14 ց p13 ⇒ p26 ⇒ p52 ց p51

In comparison to the third approach, we have slightly larger numbers, but we can replace
(expensive) one-step Hensel liftings by the cheap modulus decrease.

In our experiments, it turned out that alternative 4 is faster than 2, which in turn is faster
than 3. Alternative 2 is faster than 1 in contrast to the result of Miola and Yun [28, Sect. 1].9

Therefore, the current formalization adopts alternative 4, whereas our previous version [10]
implemented alternative 2.

We further extend the binary (quadratic) lifting algorithm to an n-ary lifting algorithm. It
inputs a list fs of factors modulo p of a square-free polynomial f , splits it into two groups fs1
and fs2, then applies the binary Hensel lifting to

(∏

fs1
)

·
(∏

fs2
)

≡ f (mod p) obtaining
g1 · g2 ≡ f (mod pk), and finally calls the algorithm recursively to both

∏

fs1 ≡ g1 and
∏

fs2 ≡ g2 (mod p).
Since the runtime of the binary Hensel lifting is nonlinear to the degree, the lists fs1 and

fs2 should better be balanced so that their products have similar degrees. To this end, we
define the following datatype instead of lists:

datatype α factor_tree=
Factor_Leaf α " int poly" | Factor_Node α "α factor_tree" "α factor_tree"

We implement operations involving this datatype, such as obtaining the multiset of factors
of a factor tree, subtrees and product of factor trees modulo p. This change from lists to trees
allows us to implement the multifactor Hensel lifting [33, Chapter 15.5] as well as easily
balance the involved trees with respect to the degree, that is, we construct the tree so that
the sum of the degrees of the factors of f modulo p which are stored in the left-branch is
similar to the sum of the degrees of the factors stored in the right-branch of the tree. This way,
we avoid expensive computations of Hensel lifting steps involving high-degree polynomials.
We refer to the 1st edition of the textbook [33] for further details on factor trees and to the
Isabelle sources for our implementation.

The final lemma that states the soundness of the Hensel lifting.

Lemma 23 (Hensel Lifting–general case)

assumes hensel_lifting p k f fs = gs

and k �= 0 and prime p and coprime (lc f ) p

and square_freep f and factorizationp f (c,mset fs)

9 Perhaps our quadratic version of Hensel lifting is faster than the iterated one-step version since we did not
integrate (and prove) optimizations (iii) and (iv) of Miola and Yun [28, Sect. 2.4].
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and c ∈ {0 ..< p}
and ∀ fi ∈ set fs. set (coeffs fi ) ⊆ {0 ..< p}

shows unique_factorizationpk f (lc f ,mset gs)

and ∀gi ∈ set gs.monic gi ∧ irreduciblep gi

Note that uniqueness follows from the fact that the preconditions already imply that f is
uniquely factored in Z/pZ—just apply Theorem 5.

We do not go into details of the proofs, but briefly mention that also here local type
definitions have been essential. The reason is that the computation relies upon the extended
Euclidean algorithm applied on polynomials over GF(p). Since the soundness theorem of
this algorithm is available only in a type-based version in the Isabelle distribution, we first
convert it to the integer representation of GF(p) and a record-based implementation as in
Sect. 3.

We end this section by proceeding with the running example, without providing details
of the computation.

Example 5 Applying the Hensel lifting on the factorization of Example 3 with k = 5 from
Example 4 yields

f ≡ 3 · (2885 + x) · (14 027 + 7999x + 13 691x2 + 7201x3 + x4) (mod pk)

9 Reconstructing True Factors

For formalizing step 9 of Algorithm 1, we basically follow Knuth, who describes the recon-
struction algorithm briefly and presents the soundness proof in prose [18, steps F2 and F3,
p. 451 and 452]. At this point of the formalization the De Bruijn factor is quite large, i.e., the
formalization is by far more detailed than the intuitive description given by Knuth.

The following definition presents (a simplified version of) the main worklist algorithm,
which is formalized in Isabelle/HOL via the partial_function command.10

reconstruction f d rf hs res [ ] =
let d = d + 1

in if rf < 2d then f # res

else reconstruction f d rf hs res (sublists hs d)

reconstruction f d rf hs res (gs # todo) =
let g = invpk ((lc f · prod_list gs) mod pk) in

if¬ g dvd lc f · f

then reconstruction f d rf hs res todo

else let

fi = primitive_part g;
f = f div fi ;
rf = rf − length gs;
res = fi # res

10 Although partial_function does not support pattern matching, we prefer to use pattern matching in the
presentation.
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in if rf < 2d then f # res else let

hs = fold remove1 gs hs;
todo = sublists hs d

in reconstruction f d rf hs res todo

Here, rf is supposed to be the number of remaining factors, i.e., the length of hs;
sublists hs d denotes the list of length-d sublists of hs; and invm is the inverse modulo
function, which converts a polynomial with coefficients in {0, . . . , m} into a polynomial
with coefficients in {−⌊m−1

2 ⌋, . . . , ⌈m−1
2 ⌉}, where the latter set is a superset of the range of

coefficients of any potential factor of lc f · f , cf. Sect. 7.
Basically, for every sublist gs of hs we try to divide lc f · f by the reconstructed potential

factor g. If this is possible then we store fi , the primitive part of g, in the list res of resulting
integer polynomial factors and update the polynomial f and its factorization hs in Z/pkZ

accordingly. When the worklist becomes empty or a factor is found, we update the number
rf of remaining factors hs and the length d of the sublists we are interested in. Finally, when
we have tested enough sublists (rf < 2d) we finish.

For efficiency, the actual formalization employs three improvements over the simplified
version presented here.

– Values which are not frequently changed are passed as additional arguments. For instance
lc f · f is provided via an additional argument and not recomputed in every invocation
of reconstruction.

– For the divisibility test we first test whether the constant term coeff g 0 of the candidate
factor g divides that of lc f · f . In our experiments, in over 99% of the cases this simple
integer divisibility test can prove that g is not a factor of lc f · f . This test is in particular
efficient, since the constant term of g is just the product of the constant terms of the
polynomials in gs, so that one can execute the test without computing g itself.

– The enumeration of sublists is made parametric, and we developed an efficient generator
of sublists which reuses results from previous iterations. Moreover, the sublist generator
also shares computations to calculate the constant term of g.

Example 6 Continuing Example 5, we have only two factors, so it suffices to consider d = 1.
We obtain the singleton sublists [g1] = [2885+ x] and [g2] = [14027+7999x +13691x2 +
7201x3+x4]. The constant term of invpk (lc f ·g1) is the inverse modulo of (10·2885)mod pk ,
i.e.,−4764, and similarly, for g2 we obtain 5814. Since neither of them divides 40, the constant
term of lc f · f , the algorithm returns [ f ], i.e., f is irreducible.

The formalized soundness proof of reconstruction is much more involved than the paper
proof; it is proved inductively with several invariants, for instance

– correct input: rf = length hs

– corner cases: 2d ≤ rf , todo �= [ ] −→ d < rf , d = 0 −→ todo = [ ]
– irreducible result: ∀ fi ∈ set res. irreducible fi

– properties of prime: square_freep f , coprime (lc f ) p

– factorization mod pk : unique_factorizationpk f (lc f , hs)

– normalized input: hi mod pk = hi for all hi ∈ set hs

– factorization over integers: the polynomial f ·
∏

res stays constant throughout the algo-
rithm

– all factors of lc f · f with degree at most degree_bound hs have coefficients in the range

{−⌊ pk−1
2 ⌋, . . . , ⌈ pk−1

2 ⌉}
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– all non-empty sublists gs of hs of length at most d which are not present in todo have
already been tested, i.e., these gs do not give rise to a factor of f

The hardest parts in the proofs were to ensure the validity of all invariants after a factor g has
been detected—since then nearly all parameters are changed—and to ensure that the final
polynomial f is irreducible when the algorithm terminates.

In total, we achieve the following soundness result, which already integrates many of the
results from the previous sections. Here, berlekamp_hensel is a simple composition of the
finite field factorization algorithm (that is, the function finite_field_factorization_int which
internally uses the Berlekamp factorization) and the Hensel lifting, and
zassenhaus_reconstruction invokes reconstruction with the right set of starting parameters.

Theorem 6 (Zassenhaus Reconstruction of Factors)

assumes prime p

and coprime (lc f ) p

and square_freep f

and 0 < degree f

and berlekamp_hensel p k f = hs

and d = degree_bound hs

and 2 · |lc f | · factor_bound f d < pk

and zassenhaus_reconstruction hs p k f = fs

shows f = prod_list fs

and ∀ fi ∈ set fs. irreducible fi

The worst-case runtime of this factor-reconstruction algorithm is known to be exponential.
We also have a polynomial-time version based on the lattice reduction algorithm [7,11], but
this contribution goes beyond the scope of this paper.

10 Assembled Factorization Algorithm

At this point, it is straightforward to combine the algorithms presented in Sects. 5 to 9 to get
a factorization algorithm for square-free polynomials.

berlekamp_zassenhaus_factorization f = let

p = suitable_prime_bz f ;

(_, gs) = finite_field_factorization_int p f ;

d = degree_bound gs;

bnd = 2 · |lc f | · factor_bound f d ;

k = find_exponent p bnd;

hs = hensel_lifting p k f gs

in zassenhaus_reconstruction hs p k f

Here, find_exponent p bnd just computes an exponent k such that pk > bnd.
It satisfies the following soundness theorem.
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Theorem 7 (Berlekamp–Zassenhaus Algorithm)

assumes square_free f

and primitive f

and degree f �= 0

and berlekamp_zassenhaus_factorization f = fs

shows f = prod_list fs

and ∀ fi ∈ set fs. irreducible fi

Putting this together with the square-free factorizaton algorithm presented in Sect. 4, we
now assemble a factorization algorithm for integer polynomials

internal_int_poly_factorization f = let

(c, gis) = square_free_factorization_int f ;

bz = berlekamp_zassenhaus_factorization

in (c, [ (h, i). (g, i) ← gis, h ← bz g ] )

and prove its soundness:

Theorem 8 (Factorization of Integer Polynomials)

assumes internal_int_poly_factorization f = (c, his)

shows square_free_factorization f (c, his)

and ∀(h, i) ∈ set his. irreducible h

So, we get a factorization algorithm that works for any integer polynomial. But we can do
it even better: Performance improves if we include reciprocal polynomials when |coeff f 0| <

|lc f |, since then the values of lc f and coeff f 0 are swapped, and thus the value of bnd in
the definition of berlekamp_zassenhaus_factorization decreases.

The reciprocal polynomial of polynomial f =
∑n

i=0 ai x i is
∑n

i=0 an−i x i , and is defined
in Isabelle as reflect_poly f . Reciprocal polynomials satisfy some important properties that
we have proved in Isabelle, among others:

1. content (reflect_poly f ) = content f

2. primitive_part (reflect_poly f ) = reflect_poly (primitive_part f )

3. gcd (reflect_poly f ) (reflect_poly g) = normalize (reflect_poly (gcd f g))

4. coeff f 0 �= 0 ⇒ irreducible (reflect_poly f ) = irreducible f

5. f dvd g ⇒ (reflect_poly f ) dvd (reflect_poly g)

Using these properties and some others already present in the library, we prove that
it is possible to factor a polynomial by factoring its reciprocal and then taking recipro-
cal of its irreducible factors. To avoid unnecessary computations, we define a function
factorize_int_last_nz_poly of type int poly ⇒ int × (int poly × nat) list to do this step
for a polynomial which does not have zero as constant part and then assemble everything
in a function factorize_int_poly of the same type to get a full factorization of any integer
polynomial as follows. It satisfies the soundness Theorem 1 from the introduction.

factorize_int_last_nz_poly f = (let d f = degree f

in if d f = 0 then (coeff f 0, [])
else if d f = 1 then (content f , [(primitive_part f , 0)])
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else if |coeff f 0| < |lc f |
then reflect_factorization (internal_int_poly_factorization (reflect_poly f ))

else internal_int_poly_factorization f )

factorize_int_poly f = (case x_split f of (n, g) (* f = xn · g *)

⇒ if g = 0 then (0, []) else case factorize_int_last_nz_poly g of (a, fs)

⇒ if n = 0 then (a, fs) else (a, (monom 1 1, n − 1) # fs))

By using Gauss’ lemma we also assembled a factorization algorithm for rational poly-
nomials which just converts the input polynomial into an integer polynomial by a scalar
multiplication and then invokes factorize_int_poly. The algorithm has exactly the same
soundness statement as Theorem 1 except that the type changes from integer polynomials to
rational polynomials.

Finally, it is worth noting that several of the presented algorithms require polynomial
multiplications. However, there is no fast polynomial multiplication algorithm implemented
in Isabelle. Indeed, just the naive one is present in the standard library, which is O(n2). Thus,
we decided to formalize Karatsuba’s multiplication algorithm, which is an algorithm of
complexity O(nlog2 3), to improve the performance of our verified version of the Berlekamp–
Zassenhaus algorithm. Karatsuba’s algorithm performs multiplication operation by replacing
some multiplications with subtraction and addition operations, which are less costly [16].
We provide a verified implementation for type-based polynomials, e.g., integer polynomials,
but we also implement a record-based one for polynomials over GF(p), cf. Sect. 3. The
type-based formalization is valid for arbitrary polynomials over a commutative ring, so we
fully replace Isabelle’s polynomial multiplication algorithm by it.

We also tune the GCD algorithm for integer polynomials, so that it first tests whether f

and g are coprime modulo a few primes. If so, we are immediately done, otherwise the GCD
of the polynomials is computed. Our experiments shows that this preprocessing is faster
than a direct computation of the GCD. Since this heuristic involves a few small primes, all
operations in the heuristic are carried out using 64-bit integers.

11 Experimental Evaluation

We evaluate the performance of our algorithm in comparison to a modern factorization
algorithm—here we choose the factorization algorithm of Mathematica 11.2 [34]. To evalu-
ate the runtime of our algorithm, we use Isabelle’s code generation mechanism [12] to extract
Haskell code for factorize_int_poly. The code generator is designed for partial correctness,
i.e., if an execution of the generated code terminates, then the answer will be correct, but termi-
nation itself is not guaranteed. Another restriction is that we rely upon soundness of Haskell’s
arithmetic operations on integers, since we map Isabelle’s integer types (uint32, uint64, and
integer) to Haskell’s integer types (Data.Word.Word32, Data.Word.Word64, and
Integer). The resulting code was compiled with GHC version 8.2.1 using the O2 switch
to turn on most optimizations. All experiments have been conducted under macOS Mojave
10.14.1 on an 8-core Intel Xeon W running at 3.2 GHz.

Figure 1 shows the runtimes of our implementation compared to that of Mathematica
on a logarithmic scale. We also include a comparison between the version presented in our
previous work [10] and the new one which includes the optimizations explained through this
paper. The runtimes are given in seconds (including the 0.5 s startup time of Mathematica),
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Fig. 1 Runtimes compared with Mathematica and the version with no improvements

Table 2 Impact of individual optimizations

Algorithm Total runtime (%)

New 100.0

New without GCD heuristic + 1.2

New without reciprocal polynomials + 3.3

New without dynamic selection of GF(p) implementation + 15.5

New without balanced multifactor Hensel lifting + 16.7

New without Karatsuba’s multiplication algorithm + 26.7

and the horizontal axis shows the number of coefficients of the polynomial. The test suite
consists of 400 polynomials with degrees between 100 and 499 and coefficients are chosen
at random between −100 and 100.

As these polynomials have been randomly generated, they are typically irreducible. In this
case using a fast external factorization algorithm as a preprocessing step will not improve
the performance, as then the preprocessing does not modify the polynomial. We conjecture
that the situation could be alleviated by further incorporating an efficient irreducibility test.

Besides making a global comparison between the old and the new algorithm, we also
evaluate several different optimizations separately. The results are presented in Table 2,
where a row “new without opt” indicates a configuration, where only optimization opt has
been disabled in the new implementation. The time is given relative to the implementation
“new” which includes all optimizations and requires around 14 min to factor all 400 example
polynomials. The table does not list all optimizations of this paper, since some of them could
not easily be disabled in the generated code. In particular, all configurations use the same
variant of the binary Hensel lifting algorithm, which considerably differs from the binary
Hensel lifting of the old implementation. The results show, that in particular the dynamic
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Table 3 Profiling results

Step Amount of total runtime (%)

Berlekamp factorization 75.45

Hensel lifting 22.79

Square-free factorization 0.65

Find suitable prime 0.63

Determine factor bound 0.38

Remaining parts 0.09

selection of the GF(p) implementation, the balancing of multifactor Hensel lifting, and the
improved polynomial multiplication algorithm are significant improvements.

Profiling revealed that for the 400 random example polynomials, most of the time is spent
in the Berlekamp factorization, i.e., in step 6 of Algorithm 1, or more precisely in Step 3
of Algorithm 2, the computation of the basis via Gauss–Jordan elimination. Interestingly,
the exponential reconstruction algorithm in step 9 does not have any significance on these
random polynomials, cf. Table 3.

Nevertheless we remark that this situation can dramatically change on non-random polyno-
mials, e.g., on polynomials constructed via algebraic numbers. For instance when computing
the minimal integer polynomial that has

∑6
i=1

3
√

i as root, 87.3% of the overall time is spent
in the reconstruction algorithm; and for

∑7
i=1

3
√

i we had to abort the computation within the
reconstruction phase. Note that even Mathematica does not finish the computation of the latter
minimal polynomial within a day. As a possible optimization, the exponential reconstruction
phase can be replaced by van Hoeij’s fast reconstruction algorithm based on lattice-reduction
[14], which is implemented in Maple 2017.3 [25]. Although Maple is only 20 % faster than
Mathematica when factoring the 400 random polynomials, it can compute the minimal poly-
nomial within a second, in contrast to the timeout of Mathematica. However, a soundness
proof of van Hoeij’s algorithm is much more involved.

12 Summary

We formalized the Berlekamp–Zassenhaus algorithm for factoring univariate integer polyno-
mials. To this end we switched between different representations of finite fields and quotient
rings with the help of locales, the transfer package and local type definitions. The generated
code can factor large polynomials within seconds. The whole formalization consists of 21320
lines of Isabelle and took about 17 person months of Isabelle experts. As far as we know, this is
the first formalization of an efficient polynomial factorization algorithm in a theorem prover.

Most of the improvements mentioned as potential future work in our previous conference
paper [10] have now been formalized and are integrated in the development, but there still
remain some possibilities to extend the current formalization for optimizing the factorization
algorithm even further. For instance, one can consider using the Cantor–Zassenhaus algorithm
[8] for finite-field factorization, although its formalization would be more intricate (indeed,
it is a probabilistic algorithm).
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21. Kunčar, O., Popescu, A.: From types to sets by local type definition in higher-order logic. J. Autom.
Reason. 62(2), 237–260 (2019)

22. Lee, H.: Vector spaces. Archive of Formal Proofs, Formal proof development. http://isa-afp.org/entries/
VectorSpace.html (2014)

123

http://creativecommons.org/licenses/by/4.0/
http://matryoshka.gforge.inria.fr/pubs/nonuniform_report.pdf
http://isa-afp.org/entries/VectorSpace.html
http://isa-afp.org/entries/VectorSpace.html


A Verified Implementation of the Berlekamp–Zassenhaus Factorization Algorithm 735

23. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann.
261, 515–534 (1982)

24. Lochbihler, A.: Fast machine words in Isabelle/HOL. In: Avigad, J., Mahboubi, A. (eds.) Interactive
Theorem Proving. ITP 2018, Volume 10895 of LNCS, pp. 388–410. Springer, Berlin (2018)

25. Maple 2017.3. Maplesoft, a division of Waterloo Maple Inc. Waterloo (2017)
26. Martin-Dorel, É., Hanrot, G., Mayero, M., Théry, L.: Formally verified certificate checkers for hardest-

to-round computation. J. Autom. Reason. 54(1), 1–29 (2015)
27. Mignotte, M.: An inequality about factors of polynomials. Math. Comput. 28(128), 1153–1157 (1974)
28. Miola, A., Yun, D.Y.: Computational aspects of Hensel-type univariate polynomial greatest common

divisor algorithms. ACM SIGSAM Bull. 8(3), 46–54 (1974)
29. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic, Volume

2283 of LNCS. Springer, Berlin (2002)
30. Thiemann, R.: Computing n-th roots using the Babylonian method. Archive of Formal Proofs, Formal

proof development. http://isa-afp.org/entries/Sqrt_Babylonian.html (2013)
31. Thiemann, R., Yamada, A.: Algebraic numbers in Isabelle/HOL. In: Blanchette, J., Merz, S. (eds.) Inter-

active Theorem Proving. ITP 2016, Volume 9807 of LNCS, pp. 391–408. Springer, Berlin (2016)
32. Thiemann, R., Yamada, A.: Formalizing Jordan normal forms in Isabelle/HOL. In: Avigad, J., Chlipala,

A. (eds.) Certified Programs and Proofs. CPP 2016, pp. 88–99. ACM (2016)
33. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, Cam-

bridge (2013)
34. Mathematica Version 11.2. Wolfram Research, Inc. Champaign (2017)
35. Yun, D.Y.: On square-free decomposition algorithms. In: Symbolic and Algebraic Computation. SYM-

SAC 1976, pp. 26–35. ACM (1976)
36. Zassenhaus, H.: On Hensel factorization, I. J. Number Theory 1(3), 291–311 (1969)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://isa-afp.org/entries/Sqrt_Babylonian.html

	A Verified Implementation of the Berlekamp–Zassenhaus Factorization Algorithm
	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Formalizing Prime Fields
	3.1 Type-Based Representation
	3.2 Integer Representation
	3.3 Record-Based Implementation
	3.3.1 Abstraction Layer
	3.3.2 Defining Implementations

	3.4 Combination of Results

	4 Square-Free Factorization of Integer Polynomials
	5 Square-Free Polynomials in GF(p)
	6 Berlekamp's Algorithm
	6.1 Informal Description
	6.2 Soundness of Berlekamp's Algorithm
	6.3 Formalizing the Distinct-Degree Factorization Algorithm
	6.4 Implementing Finite Field Factorization

	7 Mignotte's Factor Bound
	8 Hensel Lifting
	9 Reconstructing True Factors
	10 Assembled Factorization Algorithm
	11 Experimental Evaluation
	12 Summary
	Acknowledgements
	References


