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Uniform Cross Section
Rigid-body discretization of continuum elements was developed as a method for simplify-
ing the kinematics of otherwise complex systems. Recent work on pseudo-rigid-body
(PRB) models for compliant mechanisms has opened up the possibility of using similar
concepts for synthesis and design, while incorporating various types of flexible elements
within the same framework. In this paper, an idea for combining initially curved and
straight beams within planar compliant mechanisms is developed to create a set of equa-
tions that can be used to analyze various designs and topologies. A PRB model with three
revolute joints is derived to approximate the behavior of initially curved compliant
beams, while treating straight beams as a special case (zero curvature). The optimized
model parameter values are tabled for a range of arc angles. The general kinematic and
static equations for a single-loop mechanism are shown, with an example to illustrate
accuracy for shape and displacement . Finally, this framework is used for the design of a
compliant constant force mechanism to illustrate its application, and comparisons with
finite element analysis (FEA) are provided for validation. [DOI: 10.1115/1.4040628]

1 Introduction

The functionality and performance of compliant mechanisms
are deeply intertwined with the relationship between the loads
acting on them and the deformation of their parts [1,2]. When the
deformation under study is limited to instantaneous or small val-
ues, the analysis can often be performed using matrix algebra and
screw theory [3–7]. However, when large deformation analysis is
necessary, the methods used include beam theory [8,9], finite
element analysis (FEA) [10,11], and pseudo-rigid-body (PRB)
models [12,13].

Pseudo-rigid-body models are numerical approximations of
compliant members that can be used for large deformation analy-
sis. The kinematics are defined using rigid-body transformations,
with spring elements to mimic the elastic properties of the mate-
rial. There has been significant work in this area over the past two
decades, although much of it was focused on individual applica-
tions rather than toward a generic approach. PRB models have
been derived for various types of compliant elements, such as
fixed-guided beams [14,15], curved segments [16,17], cross-strip
pivots [18], and straight beams under bending [19,20]. Recent
work also focused on PRB models for soft joints with extension
effects [21,22].

The main motivation behind this work is to demonstrate the use
of PRB models for general design of compliant mechanisms,
using different types of flexure elements. This is possible because
the numerical values in PRB models can represent different defor-
mation characteristics. However, in order to achieve this, it is nec-
essary to create a framework for deriving and solving statics and
kinematics equations, which can preferably be automated for use
with computers. Additionally, PRB models have been demon-
strated to have fast analysis times [23], which will help with itera-
tive evaluations during synthesis, or even real-time control.

The use of curved beams in compliant mechanism design is
rather limited, even though they do offer certain advantages

[24–26]. Apart from a different geometrical shape, they can also
offer a degree-of-freedom (and a corresponding stiffness) between
their two end points, whereas straight beams tend to act more like
constraints. This idea is illustrated in Fig. 1, and may be utilized
to good effect in design. Therefore, combining the speed and ver-
satility of PRB models with the usage of curved and straight
beams can be advantageous for the design of compliant mecha-
nisms. Other researchers have worked on PRB models for curved
beams previously, although these were aimed at specific loading
cases. Pinned–pinned circular beams were analyzed by Edwards
et al., but that cannot include moment loads [16]. Wang et al. used
a single-DOF model for approximating pivot-type motions of
semi-circular segments [27]. Kuber worked on models specific to
individual loading conditions [28]. The model derived here will
be suitable for general loads, for initially curved beams of a large
range of arc angles, although it is limited to slender beams of uni-
form cross section for planar applications. Other salient contribu-
tions of this paper are the representation of curved and straight
beams within a single model and a framework for synthesis that
utilizes its potential to achieve realistic designs.

In Sec. 2, the derivation of the PRB model for curved and
straight beams will be explained. The various PRB parameters
will be defined and the results shown for beams of arc angles from
0 deg (straight beam) to 270 deg. Following that, the equations for
analyzing a single-loop fully compliant mechanism will be
detailed in Sec. 3, along with the solution process and accuracy
validation. In Sec. 4, the theoretical design of a compliant
constant-force mechanism will be explained, to illustrate the use
of the equations and the PRB models. Section 5 will then discuss
some of the advantages and drawbacks of this method.

2 The Versatile 3R Pseudo-Rigid-Body Model

In this section, a PRB model will be derived, which can be used
to represent both initially curved and straight beams. The model is
capable of analyzing beam-like elements with a uniform cross
section and a high length-to-width ratio. The model incorporates
forces and moments acting at the tips, which will be necessary for
use within a mechanism where beams are rigidly connected to one
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another. For simplicity, it is assumed that the beams undergo only
lateral bending under the action of the loads, and therefore, the
Euler–Bernoulli beam equations are used to calculate their deflec-
tions. The PRB model is then defined to mimic the deflection
obtained from the beam theory approach by optimizing the values
of its parameters. The objective is to minimize the error between
the model and the results from beam theory [29].

2.1 Beam Equations. An initially curved cantilever beam
subject to tip loads F (at an angle U) and moment M is shown in
Fig. 2. The beam has a cross section with second moment of area,
I and is made of a material with elastic modulus E. The constant
initial radius of curvature is R, and the angle subtended by it is w.
The length of the beam L ¼ wR. If s is the coordinate along the
arc length and hðsÞ is the slope, the differential equations and
boundary conditions that define the behavior of the beam under
the action of the loads are

h00ðsÞ ¼ a sinðh� UÞ s 2 ½0;L� (1)

hð0Þ ¼ 0 h0ðLÞ ¼ bþ j (2)

where

a ¼
FL2

EI
b ¼

ML

EI
j ¼

1

R
¼

w

L

It is worth noting that a straight beam is just a special case of
this, where the initial curvature, j, is zero. Thus, the deflection of
both straight and curved beams can be calculated using these
equations.

2.2 Definition of the Pseudo-Rigid-Body Model. The PRB
models used here consist of four rigid segments with three revo-
lute joints. A schematic of the model is shown in Fig. 3. The
model is chosen to have three joints to match the three independ-
ent degrees-of-freedom for planar motion, which results in a
square Jacobian in the mapping from the joint space to the actua-
tion space (described later). The three degrees-of-freedom in the
model allow for estimation of the beam deflection with high accu-
racy, as demonstrated in previous work on straight beams [23].

The model is defined to be symmetric about the central joint
such that the lengths and stiffness on either side of it are the same.
The symmetry allows the beams to have their fixed or free ends
on either side without loss of accuracy (which is not the case for
other asymmetric models in literature). This has two advantages:
(1) it allows the usage of the models for graph-based analysis of
compliant mechanisms [23], and (2) it decreases the number of
PRB parameters to be determined, which reduces the computa-
tion. Each revolute joint has a stiffness Khi, and each segment has
a length ciL. Each rigid segment is at an angle fi from the previous
segment in the undeflected position, and this angle is zero for
straight beams. An additional rule enforced here is that the revo-
lute joints must be on the circular arc in the undeformed configu-
ration, which is key for compatibility between straight and curved
beams.

If the beam at the fixed end is tangential to the X axis, the tip
coordinates of the model under deformation are given by

Xtip ¼ L
X

4

j¼1

cos
X

j

i¼1

ðfi þ hiÞ

" #

cj (3)

Ytip ¼ L
X

4

j¼1

sin
X

j

i¼1

ðfi þ hiÞ

" #

cj (4)

htip ¼ wþ h2 þ h3 þ h4 (5)

where hi is the rotation of the ith segment, with h1 ¼ 0 always
(for a beam with a cantilever support). From geometry, a mathe-
matical relationship can be calculated between ci and fi as given
below:

c1 ¼ �
2

w

sin w=4ð Þsin w=4� f1 � f2ð Þ

sin f2
(6)

c2 ¼
2

w

sin w=4ð Þsin w=4� f1ð Þ

sin f2
(7)

Fig. 1 A straight beam can act as a line constraint between
two points (assuming no buckling), whereas a curved beam has
behavior similar to a stiff prismatic joint

Fig. 2 Initially curved beam subject to tip loads
Fig. 3 Symmetric 3R PRB model for initially curved beams
before and after deformation
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Due to the symmetry in the definition of the PRB model, a few
other expressions can be derived

c4 ¼ c1 c3 ¼ c2 f4 ¼ f2 ¼
w

4

Since all joints are on the beam in the undeflected position, a few
more relations can be added

c1 ¼
2

w
c2 ¼

2

w
sin

w

4
� f1

� �

f3 ¼
w

2
� 2f1

The spring stiffness values are also symmetric: Kh2 ¼ Kh4.
The statics of the PRB model under the action of tip loads is

defined by Craig [30]

s ¼ JTW (8)

where s represents the internal moments at the joints given by

s ¼

Kh2h2

Kh3h3

Kh4h4

8

>

<

>

:

9

>

=

>

;

and W represents the components of the external loads given by

W ¼

jFj cosU

jFj sinU

M

8

>

<

>

:

9

>

=

>

;

The matrix J is the Jacobian of the mapping from the configura-
tion of the PRB model (defined by the set of joint angles,
(hi : i 2 f2; 3; 4g) to the tip coordinates defined in Eqs. (3)–(5)

J ¼

@Xtip

@h2

@Xtip

@h3

@Xtip

@h4

@Ytip
@h2

@Ytip
@h3

@Ytip
@h4

@htip
@h2

@htip
@h3

@htip
@h4

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

The deformation of the PRB model under the action of tip loads
is determined by solving Eq. (8) to obtain h2; h3, and h4.

2.3 Calculation of Pseudo-Rigid-Body Parameters. Using
the above equations, a numerical optimization procedure is
employed to calculate the optimal values of the PRB parameters
over a large range of loading cases. The idea is to minimize the
average error in the estimation of the tip deflection using the PRB
model compared to the beam equations [29].

The joint stiffness values are defined as

Khi ¼ khi
EI

L
i ¼ 2; 3; 4

and khi are used as the PRB parameters. The model has three inde-
pendent PRB parameters, namely kh2; kh3, and f1. All other geo-
metrical parameters can be derived from f1 using the expressions
described in Sec. 2.2, while kh4 ¼ kh2. The use of the dimension-
less parameters khi and ci allows scaling of the model to be used
with other materials and geometries.

In the work presented here, only beams with arc angles up to
270 deg or 3p=2 rad are studied. This is because incorporating
beams beyond this limit would be difficult and perhaps

impractical from the point of view of design. The PRB parameters
were optimized over the range of loads

a 2 �1:5; 1:5½ � b 2 �0:75; 0:75½ � U 2 �
p

2
;
p

2

� �

and the results are presented in Table 1. The results are also pre-
sented in graphical form in Fig. 4. The load values were chosen to
generate results that reflect large deformations of the beams
(greater than 90 deg) for different loading conditions. The PRB
model estimates the tip deflection with an average error of less
than 0.6% (compared to the values from beam theory) for the
entire range of beam arc angles.

Note that the value of c1 was obtained using Eq. (6), but is
tabulated for easier visualization of the PRB model. The optimal
values of the parameters were fit to a polynomial curve of the
form C0 þ C1wþ C2w

2 þ C3w
3 þ C4w

4. This provides a direct
mapping from the arc angle, allowing easy use during the design
process. The values of the coefficients are given in Table 2.

3 Equations for a Compliant Mechanism

With the PRB models as defined in Sec. 2, it is now possible to
set up the framework for the derivation of kinematic loop equa-
tions, and also the equations defining the static equilibrium of a
compliant mechanism. In order to automate the process, it is nec-
essary to create a few naming conventions, which are described as
follows.

Consider a single-loop compliant mechanism with a few
straight and curved compliant beams as shown in Fig. 5. The fig-
ure also shows the pth beam from an arbitrary starting point
within the loop, between the points P and Q (bottom). As a con-
vention, the loop is analyzed in the counter-clockwise direction.
The angle / is measured from the X-direction to the line PQ, and
/0 is the angle before deformation. The variable w is used to rep-
resent the arc angle, while f and h describe the PRB segment
angles and the deformation of each segment, as discussed previ-
ously. The sign of w is negative if the beam arcs clockwise from P
to Q (or is in the interior of the loop) and positive if it is counter-
clockwise (or on the exterior of the loop). The following equations
are defined for the pth beam

Table 1 Optimal values of PRB parameters compared to beam
equations for circular beams with angle of curvature between
0deg and 270deg. The PRB parameters were optimized over
the range of loads a ‰ ½21:5;1:5�; b ‰ ½20:75; 0:75� and U‰½(2p=2);
(p=2)�.

w (deg) f1 c1 kh2 ¼ kh4 kh3

0 0 0.1337 3.1567 2.7389
15 0.0174 0.1329 3.1735 2.7132
30 0.0339 0.1294 3.2388 2.621
45 0.0502 0.1277 3.2722 2.5769
60 0.0666 0.1271 3.2944 2.5491
75 0.0824 0.1257 3.326 2.5117
90 0.0979 0.1244 3.3519 2.483
105 0.1126 0.1226 3.3872 2.4456
120 0.1292 0.123 3.3894 2.4432
135 0.1456 0.1231 3.3966 2.4352
150 0.1625 0.1235 3.3955 2.4349
165 0.1812 0.1251 3.3768 2.4528
180 0.2008 0.1269 3.3546 2.4764
195 0.2217 0.1292 3.3235 2.5106
210 0.243 0.1313 3.2944 2.5439
225 0.2641 0.1329 3.2727 2.5706
240 0.2859 0.1346 3.2517 2.5973
255 0.3085 0.1364 3.2314 2.6233
270 0.3342 0.1392 3.2011 2.6629

Journal of Mechanical Design SEPTEMBER 2018, Vol. 140 / 092305-3

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/m

e
c
h
a
n
ic

a
ld

e
s
ig

n
/a

rtic
le

-p
d
f/1

4
0
/9

/0
9
2
3
0
5
/6

4
0
1
7
0
5
/m

d
_
1
4
0
_
0
9
_

0
9

2
3

0
5

.p
d
f b

y
 g

u
e

s
t o

n
 1

6
 A

u
g
u

s
t 2

0
2
2



/p ¼ /0p þ
X

p�1

j¼1

X

n

k¼1

hjk (9)

Hpj ¼ /p �
1

2
wp þ

X

j

k¼1

fpk þ hpk
� �

(10)

where Xab represents any variable X for the ath beam and its bth
PRB segment, and n is the number of PRB segments for the beam,
so n¼ 4 for all the equations presented here. H is the angle of the
PRB segment with the horizontal axis. The projections of each
beam on the X and Y axes are given by

Cp ¼ Lp

X

n

j¼1

cpj cosHj

X

n

j¼1

cpj sinHj

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

(11)

where Lp is the length of the pth beam. If the loop has m beams,
all rigidly connected to the adjacent members, the kinematic con-
straints are given by

Fig. 4 Plots showing the variation of the optimal PRB parame-
ters as a function of the arc angle, w in radians. The result at
w50 represents a straight beam. The optimization was per-
formed at 15deg intervals. The curves are polynomial fitting
functions presented at the end of Sec. 2.3.

Table 2 Coefficients of polynomial fits for PRB parameters as a function of the arc angle (w) in radians. The expressions are of the
form X (w)5C01C1w1C2w

2
1C3w

3
1C4w

4, where X can be f1, kh2 or kh3

Parameter C0 C1 C2 C3 C4

f1 0 7.054� 10–2 �1.029� 10–2 3.440� 10–3 –2.642� 10–4

kh2 3.157 1.117� 10–1 5.774� 10–2 �3.624� 10–2 4.128� 10–1

kh3 2.739 �1.905� 10–1 �2.240� 10–2 2.886� 10–2 –3.463� 10–3

Fig. 5 Schematic of a single-loop compliant mechanism with
multiple beams subjected to a load of force F and moment M
(above) and one beam shown separately for defining variables
(below)
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X

m

p¼1

Cp ¼
0

0

� 	

(12)

X

m

p¼1

X

n

k¼2

hpk ¼ 0 (13)

Let us assume that the mechanism is subjected to a force F at
the end of the qth beam, along with a moment M. This leads to a
displacement d at that location, and a change in orientation, hd

d ¼
X

q

p¼1

Cp �
X

q

p¼1

Cp













hpk¼0

k ¼ 1; 2;…n (14)

hd ¼
X

q

p¼1

X

n

k¼2

hpk k ¼ 1; 2;…n (15)

The energy input into the mechanism is given by

Win ¼ F � dþM � hd (16)

The strain energy in the system, captured by the springs in the
PRB models, is the total potential energy of the mechanism

Vtotal ¼
1

2

X

m

p¼1

X

n

k¼2

Khk;p h
2
pk (17)

The residual energy in the mechanism is given by

Eres ¼ Win � Vtotal (18)

The statics solution for the mechanism can be obtained by using
a nonlinear optimization routine to minimize the residual energy
in the system (Eq. (18)) subject to kinematic constraints
(Eqs. (3)–(13)). This has been proven to be a fast and effective
method for calculating the deformation of compliant mechanisms
using the PRB modeling approach [31].

The equations described above were validated using the exam-
ple of a compliant mechanism that can be divided into three beam
flexures (m¼ 3) as shown in Fig. 6, subjected to a force F at P2

(q¼ 2). The parameters of the problem are given in Table 3. The
constrained energy minimization calculations were performed in
Wolfram Mathematica using an interior-point method, whereby
the force F was calculated with the displacement as the input. The
results were compared against finite element analysis performed
using B21 linear beam elements in ABAQUS. The shape of the PRB
model and the results from FEA are overlaid to illustrate how the
PRB model is capable of providing insight into the actual
deformed state of the flexures. Figure 7 compares the results of
the displacement of P2 over the range of forces described here.
The accuracy of the method is demonstrated by the low mean
errors in estimating the forces in the X and Y directions of

7:15� 10�4 N and 6:81� 10�4 N, respectively.
The methodology described here enables the analysis of fully

compliant mechanisms with combinations of initially curved and
straight compliant beams. This can also be extended to more com-
plex flexible members, assuming that the PRB models can be
incorporated into a similar framework.

4 Case Study: Design of a Constant-Force Mechanism

Constant force mechanisms are a special class of compliant
mechanisms that are useful to eliminate the need for complex
force control [32]. They are particularly useful in gripping
applications to avoid damage to the payload [33]. As the name
suggests, they are capable of providing a constant force output
over a range of displacement. In this section, the framework

defined in this paper will be used to develop the initial design for
a fully compliant constant force mechanism.

Consider the schematic shown in Fig. 8. It is one half of a sym-
metric mechanism, which consists of six compliant beams, and
the output (force or displacement) is along the line DD0, which is
also the line of symmetry. There are three beams on either side of
the mechanism, which may be straight or curved. Node A is fixed
to the ground. For the problem discussed here, the dimensions are

Fig. 6 Shape of a three beam compliant mechanism with two
curved and one straight beam calculated using FEA and the
PRB model described in this paper

Table 3 Values of the variables for the mechanism shown in
Fig. 6. The first three rows are coordinates of the nodes. The
third beam has zero curvature (w350). The beams are assumed
to have unit elastic modulus and unit second moment of area
(E51; I51).

Variable Value

P1 {0, 0}
P2 f0:018; 0:249g
P3 f�0:260; 0:364g
P4 f�0:5; 0:15g
w1 �2p=3
w2 2p=3
w3 0

Fig. 7 Comparison of displacement of P2 from Fig. 6 under the
action of load F

Journal of Mechanical Design SEPTEMBER 2018, Vol. 140 / 092305-5
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normalized, and the material has a unit elastic modulus. This
allows the designs to be scaled based on the desired application.
The beams have uniform cross section along their lengths, defined
as I1, I2, and I3, respectively. The variables in the design are the
coordinates of the nodes B, C, and D as defined in Fig. 5, the angle
of curvature of each beam (w1;w2, and w3), and the ratios of the
second moments of area (I2=I1 and I3=I1).

To check if a given design satisfies the criteria for a constant-
force mechanism, the potential energy in the mechanism must
be plotted as a function of the displacement, which is the
input. Upon differentiating the energy curve, the force required
to produce the displacement can be calculated. If the
displacement–force curve has a reasonable range over which the

force remains constant, the design can be used as a constant-
force mechanism.

The analysis is similar to the procedure detailed in Sec. 3. It is
assumed that the point D cannot move in the x� direction due to
symmetry. The major difference to the example in Sec. 3 is that
the objective function for the minimization for the statics solution
is just the potential energy in the mechanism, Vtotal, and the dis-
placement along the y� axis, dy is the input.

Minimize E dy
� �

¼
1

2

X

3

p¼1

X

4

k¼2

Khk;p h
2
pk

subject to
X

3

p¼1

Cp �
X

3

p¼1

Cp













hpk¼0

¼
0

dy

� �

Note that only one half of the mechanism is analyzed due to sym-
metry. The energy–displacement curve is obtained by varying the
displacement dy (at discrete points) for the static solution above,
and is then differentiated to obtain the force–displacement curve.
The standard deviation of the force over the range of displacement
is used to determine the variation in the force. For the constant-
force mechanism, the design objective is to minimize this varia-
tion. The problem definition for the design optimization is given
by

Minimize
�X

f �Xð Þ ¼ r Fy j dy 2 dmin; dmax½ �
� �

where Fy ¼
dE

ddy

subject to �X lb � �X � �Xub

where �X is the set of design variables, f is the objective function,
E and F are the strain energy and associated displacement force, r
represents the standard deviation over the data set, and lb and ub
represent lower and upper bounds for the variables, set by the
user. dmin and dmax define the range of motion of the mechanism,
which were 0 and �0.4, respectively. The optimization over
eleven variables was performed using a genetic algorithm in
MATLAB. The bounds of the variables and the results are given in
Table 4.

The effectiveness of the PRB model approach in deriving the
constant force mechanism was validated using ABAQUS FEA. A
screenshot of the final mechanism analyzed with four node,
reduced-integration, finite strains shell elements (S4R) is pre-
sented in Fig. 9. Note that additional material was added at the
points of the intersection of the beams in order to produce a feasi-
ble design. The plots of strain energy and force versus displace-
ment obtained from FEA are shown in Fig. 10. The data from the
PRB approach are also shown, and the average errors in estima-
tion are 0.36J for the energy and 1.62N for the force. As is

Fig. 8 Schematic of one half of a symmetric compliant mecha-
nism. Each half has three beams, which may be curved or
straight. The thick black dotted lines represent one possible
topology with two curved beams and one straight beam.

Table 4 Optimal design parameters for constant-force mecha-
nism. The first six rows refer to the coordinates of the nodes.
The last two are the ratios of the second moments of area of the
second and third beams with respect to the first beam.

Variable Lower bound Upper bound Optimum value

Bx �0.1 0.1 �0.095
By 0.15 0.35 0.312
Cx �0.35 –.35 �0.246
Cy 0.3 0.5 0.311
Dx �0.65 �0.45 �0.621
Dy 0.25 0.55 0.491
w1 –p p �0.606
w2 –p p –2.964
w3 –p p –0.856
I2=I1 0.5 5 4.704
I3=I1 0.5 5 2.355

Fig. 9 The optimized version of the constant-force mechanism analyzed using FEA. The
undeformed mechanism is shown in white, and the stress variation is illustrated in the
deformed mechanism.
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noticeable, the FEA results are slightly offset from the PRB data.
This can be attributed to the small changes made to the theoretical
design obtained from the PRB approach. However, the character-
istic constant-force behavior of the mechanism is retained, which
demonstrates the efficacy of the methodology described in this
paper.

5 Discussion

The PRB model approach allows for easy derivation of equa-
tions for the analysis of compliant mechanisms. Through careful
optimization of the parameters, it is possible to have highly accu-
rate models that capture the deformation of the beams. The solu-
tion process for static equilibrium of the system is also fast with
the use of energy approach as illustrated in Sec. 3. It has been
demonstrated in literature that PRB models have significant com-
putational advantages over beam equations and finite element
methods due to simpler equations, reduced number of unknowns,
and the potential for gradient-based numerical solutions [23]. The
framework for analysis is presented here in its full form, but can
be simplified to a general form using rigid-body transformations.

The 3R PRB model for initially curved beams shown here is
versatile because it can encapsulate the bending characteristics of
a large range of beam shapes. The loop equations for the compli-
ant beams are also derived with the same idea in mind. Here, the
angle of curvature, w, is used to define the beams. The models
previously defined in literature have been for one specific end
being fixed, with loads applied at the other end (see Refs. [17,19],
and [20]). This renders those models difficult to use for general
design problems, especially for automated design or topology
optimization, which is the reasoning behind the symmetry of the
model defined in this paper. The approach presented here can be
easily extended to include other shapes of flexure elements. For
instance, splines can be used for representation of general curves,
and the circular segments presented in this work are a specific
form of quadratic splines. The methodology can be applied to
determine the values of the PRB parameters as functions of the
coefficients of the spline polynomials. Other commonly used com-
pliant elements such as small-length flexural pivots can be

incorporated into the analysis by using the appropriate values for
the PRB parameters in Eqs. (11) and (17).

It is worth noting that in the examples presented in this paper,
the beams have been described using exactly circular segments,
which may be difficult for other designs. In such cases, the beams
must be suitably discretized into arcs for a good approximation.
Additionally, only single-loop mechanisms are considered here,
and the kinetostatic equations must be altered accordingly for
other topologies. The current model is also suited only to systems
consisting entirely of thin beam-like elements, where bending
characteristics dominate.

The accuracy of the PRB approach in determining both the
deflection behavior and the actual shape of the flexure elements is
very good, as demonstrated by comparisons to FEA. There is a
small error, as noticed in Fig. 10, but it is worth noting that the
PRB model approximates the compliant members purely as beam
elements. Perhaps more importantly, it gives the designer an easy
approach for initial design of the mechanism, which would be
beneficial for proving feasibility and checking the proof of con-
cept. In the case of the constant-force mechanism shown here, a
workable design is obtained through the method described here.
The calculation of stress in the mechanism from PRB models is
not detailed in this paper, but it is possible through back-
calculation using the bending angles, and has been addressed in
Ref. [23].

6 Conclusion

The nature of the definition of PRB models allows them to be
extended to model various types of mechanism characteristics. It
would be beneficial to the research community to create a uniform
formulation to simplify their use. This paper aims to address this
issue by bringing a large range of compliant members under the
definition of one model with four segments and three revolute
joints. The numerical results for the PRB parameters can be
adapted to any size range, and the kinematic constraints and stat-
ics equations are also easy to implement. With a simple optimiza-
tion routine and an understanding of beam bending, it was
possible to create a framework for analyzing a large variety of
compliant mechanisms. The effectiveness of this approach is
clearly demonstrated by the fast design of the constant force
mechanism.
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