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A Versatile and Efficient Pattern Generator

for Generalized Legged Locomotion

Justin Carpentier, Steve Tonneau, Maximilien Naveau, Olivier Stasse, Nicolas Mansard

Abstract— This paper presents a generic and efficient
approach to generate dynamically consistent motions for
under-actuated systems like humanoid or quadruped robots.
The main contribution is a walking pattern generator, able to
compute a stable trajectory of the center of mass of the robot
along with the angular momentum, for any given configuration
of contacts (e.g. on uneven, sloppy or slippery terrain, or
with closed-gripper). Unlike existing methods, our solver is fast
enough to be applied as a model-predictive controller. We then
integrate this pattern generator in a complete framework: an
acyclic contact planner is first used to automatically compute
the contact sequence from a 3D model of the environment
and a desired final posture; a stable walking pattern is
then computed by the proposed solver; a dynamically-stable
whole-body trajectory is finally obtained using a second-order
hierarchical inverse kinematics. The implementation of the
whole pipeline is fast enough to plan a step while the previous
one is executed. The interest of the method is demonstrated by
real experiments on the HRP-2 robot, by performing long-step
walking and climbing a staircase with handrail support.

I. INTRODUCTION

To use humanoid robots in factories or in disaster

scenarios, a key practical issue is locomotion. For instance,

in the aircraft industry, factories include a lot of stairs with

steps of height between 20 to 30 cm, with a slope above

27 degrees. The large height implies the natural strategy

to use the handrail on the side of the stairs. Despite its

apparent simplicity, multi-contact locomotion in a generic

way remains an open problem. This paper proposes a

complete pipeline to automatically compute and execute such

movements on a real robot, using as only inputs the 3D

representation of the environment and a desired final posture.

The first versatile methods able to demonstrate effective

multi-contact locomotion on a human-size humanoid robot

were optimizing over the whole robot actuation on a

relatively small time window [1]. Since then, multiple contact

locomotion and manipulation have been demonstrated many

times on such robots [2], [3], [4]. The major difficulty lies in

the time to compute a feasible solution. Similarly to what was

done for bipedal locomotion on flat floor [5], a natural way to

simplify this problem is to only consider the dynamics of the

robot through its momenta, namely its center of mass (COM)

and angular momentum. Given a sequence of contacts and

their timings, the problem is to compute the trajectory of the

COM along with the angular momentum that would result

in a dynamically stable whole body trajectory of the robot.

Following some recent contributions to the problem [6],
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[7], [8], [9], we first propose an efficient way to compute

such a trajectory. Our computation time are sufficiently low

to enable online computation and model-predictive control

(MPC). We also show how this solver can be connected

to an efficient contact planner to automatically generate

a feasible whole-body trajectory without any help from a

human operator.

Section II recalls the fundamental basis to model the

problem and introduces our notations. Both are used in

Section III to cast a tailored optimal control problem which

can be efficiently solved using a multiple shooting approach.

We postpone the presentation of the state of the art to this

section, so that we have the technical background to discuss

it in detail. Section IV describes a planner that computes the

contact sequence. The computed contacts are then used in

Section V to bring the real humanoid robot HRP-2 atop of

a staircase using the handrail, and various other movements

demonstrate the interest of our approach.

II. DYNAMIC MODEL

A. Model of the whole body

We consider a free-floating based system composed

of 6 + n degrees of freedom (DOF). Its configuration

vector q ∈ Q
def
= SE(3)× R

n can be split in two parts:

M = (R,p) ∈ SE(3) characterizes the placement of a given

link of the robot relatively to the inertial frame (e.g. the

center of the robot pelvis); and qa ∈ R
n is the configuration

vector of the joints. The first and second time derivatives of

q are denoted by q̇ = (v,ω, q̇a) and q̈ = (v̇, ω̇, q̈a) where

v and ω are respectively the linear and angular velocity of

the arbitrary free-floating base.

Given a set of K contacts I ⊂ SE(3)K , the Lagrangian

dynamics of the polyarticulated system reads:

Hq(q) q̈+bq(q, q̇) = gq(q)+ST τq+

K
∑

k=1

JT
k (q)

[

fi

τi

]

, (1)

where Hq is the mass matrix, bq is the centrifugal

and Coriolis effects, gq is generalized gravity vector,

S =
[

0n×6 In×n

]

distributes the joint-torque vector τq on

the articulation, Jk is the Jacobian of contact k and fk and

τk are the force and torque applied at the contact k.

B. Contact model

We assume that each contact k corresponds to a rigid

interface (i.e. no relative motion, only forces) between one

body of the robot and the environment. Each contact is

associated to a placement Mk = (Rk,pk) ∈ SE(3) ie. the



position pk of an arbitrary reference point of the contacting

body in the world and the orientation Rk of this body.

The interface is defined by a finite set of contact points

where only forces (no torques) are exerted. For instance, the

contact of a rectangular foot with the ground is represented

by the four corner contact points of the foot. Each force

is typically constrained to stay within a friction (quadratic

“ice-cream”) cone defined by the friction coefficient µ.

Rather than considering for contact k the collection of

all these forces, we only consider the resulting wrench:

the linear force fk and the torque τk about pk. The

wrench (fk, τk) is constrained to be in a 6D conic set Kk,

obtained as the Minkowski sum of the cones of the contact

points [10]. Considering (fk, τk) ∈ Kk is equivalent to

considering all the forces of the interface in their 3D cones.

φ = (f1, τ1, ...,fK , τK) is the concatenation of all contact

wrenches, K is the Cartesian product of the 6D contact cones.

C. The under-actuated dynamics

The contact forces and torques influence the variations

of linear and angular momenta. We denote by h the linear

momentum and L the angular momentum around the COM

of the robot (once more expressed in F0). Denoting by c

the COM, the linear momentum is simply h = mċ with m

the total mass of the robot. The contact forces and torques

modify the momentum according to the Newton-Euler law:

ḣ =

K
∑

k=0

fk +mg (2a)

L̇ =
∑

k

(pk − c)× fk + τk, (2b)

with pk the “center” of contact k around which τk is

expressed and g = (0, 0,−9.81) is the gravity vector.

These two equations simply correspond to the first six

rows of (1), but expressed around the COM instead of the

robot root. Let the dynamics of the free-floating base (first

six rows) be denoted by index b and the dynamics of the

actuated segment (n last rows) be denoted by index a.

[

Hb

Ha

]

q̈ +

[

bb
ba

]

=

[

gb
ga

]

+

[

06

τq

]

+

K
∑

k=1

[

JT
k,b

JT
k,a

] [

fk

τk

]

(3)

The b rows corresponds to the total wrench applied on the

robot, but expressed around the robot reference base instead

of the COM. Following this observation, Jk,b has a particular

shape Jk,b =

[

I (pk − b)×
0 I

]

= bXk with b the position of

the base and v× corresponding to the skew matrix operator.

The total momentum of the system expressed around c is

obtained by multiplying the first six rows of (3) by cX∗

b :
[

h

L

]

= cX∗

b Hb q̇ ,
cX∗

b =

[

I 0
(b− c)× I

]

(4)

D. Sequence of contacts and phases

In the following, we consider a sequence of contact

configurations, i.e. an ordered collection of S contact sets

{I1, ...IS}. Each contact set Is corresponds to the phase s

of the movement. Inside a phase, all the contacts of Is are

constants (according to the contact model). We denote the

phase by exponent s: Ks is the number of active contacts

during phase s; Ks
k is the 6D friction cone of contact k during

phase s; etc. For instance a walking sequence may be first

both feet on the ground, then only one foot on the floor, etc.

The duration of the phase is typically specified by a time

interval [∆ts,∆t̄s] of the minimum to maximum duration.

The number of contacts typically varies at each change of

phase, thus the dimension of φ varies too. In practice, two

solutions might be considered. It is possible to consider that

the wrenches of all possible contact bodies are contained in

φ while a binary variable αs
k specifies if the contact k is

active during phase s: αs
k is added in the dynamic equations

as a factor of every instance of fk and τk to nullify the

effect of inactive contacts [8]. The interest of this solution

is that the dynamics keep a constant dimension during all

the movement, which simplifies the implementation of any

control method. Alternatively, it is possible to specifically

handle the variation of dimension of φ in the implementation.

The advantage is that there is no artificial “zeros” in the

dynamics and the implementation is more efficient [9]. In the

implementation of our method, we have chosen the second

solution. In the following, we will abusively neglect the

change of dimension to keep the presentation simple.

III. THE OPTIMAL CONTROL PROBLEM

The dynamics (2) corresponds to the difficult part to

control on a humanoid robot. It is not directly controllable

by the joint torques τq but only indirectly by the contact

wrenches φ. It is also the part of the dynamics that is

unstable (because of the cross-product with c on the second

line, that will grow exponentially if something goes wrong).

On the other hand, if the robot has enough torque (which

current high-performance humanoid robots usually have) it

will always be possible to find τq to satisfy the actuated part

of the dynamics if (2) is satisfied.

Walking pattern generators (WPG) therefore focus on (2)

(or on a reformulation of it) to find a valid trajectory of c

and L satisfying the contact constraints K. In this direction,

a very classical hypothesis to keep the problem simple is

to assume that all the contacts are on a flat ground where

slippage is impossible (µ = +∞), but recent contributions

have been proposed to get rid of this hypothesis in a

satisfactory manner [9], [8], [7]. In this section, we propose

an original formulation of a WPG that is able to handle

any distribution of contacts with interactive capabilities (ie.

computing one step is faster than executing one).

In a first time, we present an optimal control problem

(OCP) under a generic form that represents the problem of

computing walking patterns. This form is not suitable for

efficient resolution but can be seen as a generic template

that covers several previous WPG. We then propose a new

formulation that makes an interesting trade off between

efficiency and generality. The last part of the section shows

how the solution to this problem can be efficiently computed

using a particular direct approach.



A. The generic optimal control problem

We consider the central dynamics (2) along a finite-time

trajectory. The state of the problem is composed of the COM

position and the momentum. We denote it by x = (c,h,L).
The control of this dynamic system is u = φ the contact

wrench. Eq. (2) can be easily reformulated as

ẋ = f(x,u) = Fxx+ Fu(x)u (5)

where Fx and Fu(x) are two matrices easily deduced from

(2). We denote by x and u the state and control trajectories.

Starting with a sequence of contacts, we are interested

in computing a feasible trajectory for the under-actuated

dynamics, satisfying the Newton-Euler equations, path and

terminal constraints. This can be achieved by setting the

following OCP over all the sequence:

min
x=(c,h,L),
u=φ

S
∑

s=1

∫ ts+∆ts

ts

ℓs(x,u) dt (6a)

s.t. ∀t ẋ = f(x,u) (6b)

∀t φ ∈ K (6c)

∀t L ∈ BL (6d)

x(0) = x0 (6e)

x(T ) ∈ X∗ (6f)

where ts+1 = ts + ∆ts is the start time of the phase s

with t0 = 0. Constraints (6b) and (6c) enforce consistent

dynamics with respect to the contact model. Constraint

(6d) imposes some bounds on the angular momentum (or

its variations). Constraint (6e) constrains the trajectory to

start with a given state (typically estimated by the sensor

of the real robot) while (6f) typically enforces a viable

terminal state [11]. The cost (6a) is typically decoupled in

ℓx(x) + ℓu(u) whose parameters may vary according to the

phase. ℓx is generally used to smooth the state trajectory

while ℓu tends to equally distribute the forces, producing

a more dynamic movement. The resulting control is stable

as soon as ℓx involves the L-2 norm of one time derivative

of c [11].

B. Previous formulations

Problem (6) is a difficult problem to solve in its generic

form. In particular, it seems hard to find a closed-form

expression of the viable states X∗, or an equivalent form

suitable for numerical resolution. Similarly, there is no

evidence of what could be some realistic bounds BL (that

would very likely depends on the configuration of the joints

qa). In the following we list some of the main WPG methods

and show how they correspond to some specific choices of

the generic template (6).

1) Walking patterns in 2D: In addition to the previous

remarks, another difficulty is the bilinear form of the

dynamics (5). When the contacts are all taken on a same

plane, a clever reformulation of the dynamics makes it linear

[5], by neglecting the dynamics of both the COM altitude

and the angular momentum. In that case, K boils down to

the constraint of the zero-momentum point (ZMP) to lie in

the support polygon.

Kajita et al. [5] did not explicitly check the constraint

(6c); in exchange, ℓu is used to keep the control trajectory

close to a reference trajectory provided a priori. Similarly,

(6f) is not checked; in exchange, ℓx tends to stabilize the

robot at the end of the trajectory by minimizing the jerk of

the COM. These three simplifications turns (6) into a simple

unconstrained problem of linear-quadratic regulation that is

implicitly solved by integrating the corresponding Riccati

equation.

The LQR was reformulated into an explicit OCP [12],

directly solved as quadratic program. The OCP formulation

makes it possible to explicitly handle inequality constraints:

(6c) is then explicitly checked under its ZMP form. A

modification of this OCP is proposed in [13] where (6f) is

nicely approximated by the capturability constraint, which

constrains the COM position and its first time derivative in

case of planar contacts.

2) Walking patterns in 3D: An iterative scheme is

proposed in [14] that can be written as an implicit

optimization scheme whose cost function is the distance to

a given COM trajectory and given forces distributions. The

resulting forces satisfies (6c) by construction of the solution.

There is no condition on the angular momentum (6d) neither

on the viability of the final state (6f), however the reference

trajectory enforced by the cost function is very likely to play

the same role.

In [6], (6c) is explicitly handled (using the classic linear

approximation of the quadratic cones). As in [7], (6f) is

indirectly handled by minimizing the jerk. No condition

(6d) on the angular momentum is considered. Additionally,

the proposed cost function maximizes the robustness of

the computed forces φ and minimizes the execution time.

Finally, constraints are added to represent the limitation of

the robot kinematics.

In [7], L̇ is null by construction of the solution. Moreover,

(6c) is supposed to always hold by hypothesis and is not

checked, while (6f) is not considered but tends to be enforced

by minimizing the norm of the jerk of the COM, like in

[5]. These assumptions result in an (bilinear)-constrained

quadratic program that is solved by a dedicated numerical

method.

In [8], (6c) is handled under a simple closed form solution,

while (6f) is not considered. To stabilize the resolution, the

cost function tends to stay close to an initial trajectory of both

the COM and the angular momentum, computed beforehand

from a kinematic path. Consequently, (6d) is not considered

either (as it will simply stay close to the initial guess).

In [9], the conic constraint is directly handled. The angular

momentum is treated through the orientation of the system

(L ≈ Ĩω + τL, with Ĩ the compound (rigid) inertia of the

robot and τL = Haq̇a the angular momentum due to the

internal gesticulation). Ĩω is kept low by penalizing the

large rotation ω but τL is unlimited, resulting in (6d) not

being checked. The viability (6f) is not checked neither, but

like previously, it is approximately handled by minimizing



the derivatives of the state in the cost function (however

the first derivatives instead of the third), while a reference

trajectory of the COM is provided to keep a nice behavior

of the numerical scheme. Additionally, constraints are added

to represent the kinematic limits of the whole body.

3) Computing the contact placements: When considering

an explicit OCP formulation, additional static variables can

be added to the problem. Typically, the contact placements

given as invariant in (6) might be computed at the same time.

This was first proposed in [12] for a 2D WPG, and similarly

used in [13] and other works by the same authors. In both

cases, the contact placements are unlimited or similarly

limited to a convex compact set. The problem becomes much

harder when the contacts might be taken among a discrete

set of placements. In [15], the problem was formulated has

a mixed-integer program (i.e. having both continuous and

discrete variables) in case of flat contacts, and solved using

an interior-point solver to handle the discrete constraints. In

[16], the same problem is handled using a dedicated solver

relying on a continuation heuristic and illustrates with the

animation of virtual avatars.

C. The tailored formulation

As mentioned earlier, template (6) is hard to implement

as such. We propose a new instance of problem (6) able

to compute a walking pattern for arbitrary 3D contacts

without providing any reference state or control trajectory.

Furthermore, we want the resulting trajectory to be smooth

and feasible under the other whole-body constraints, and the

method to be fast enough to deal with interactive capabilities.

1) Formulation: We suggest the following OCP:

min
x=(c,h,L),
u=φ

S
∑

s=1

∫ ts+∆ts

ts

ℓh(x) + ℓκ(x) + ℓL(ẋ) + ℓφ(u) dt(7a)

s.t. ∀t ẋ = f(x,u) (7b)

∀t φ ∈ K (7c)

x(0) = (c0,0,0) (7d)

x(T ) = (c∗,0,0) (7e)

ḣ(0) = L̇(0) = ḣ(T ) = L̇(T ) = 0 (7f)

where ℓh(x) = λh||h||
2, ℓL(ẋ) = λL||L̇||

2, ℓφ(u) =

||φ||2 and ℓκ(x) =
∑K

k=1 κ(c,pk) takes care of robot

kinematic limits. It corresponds to an exponential barrier on

the distance between the COM and the contact points:

κ(c,pk) = exp(‖c−pk‖−ub)+exp(−‖c−pk‖+ lb) (8)

where ub, lb are the arbitrary upper and lower bounds.

Additionally, the weight λh is adapted depending on the

phase: for support phases involving large displacement (like

a large movement of the swing foot), the weight is divided

by 10 with respect to its nominal value.

2) Comments: Compared to the template (6), this OCP

literally takes into account the actuation constraint (6c). We

replaced the viability constraint (6f) by an easier formulation

to reach a stable rest state at a given COM position.

While the trajectory of the COM is easy to draw, the

shape of the angular momentum seems really hard to guess.

However, neglecting it [9] or constraining it to zero [7]

or to an a-priori guess [8] are not satisfactory solutions

either. We propose to relax (6d) by penalizing the variations

of the angular momentum quantity. Following [8] we also

tried to penalize the deviation of the angular momentum

from a reference trajectory (or to 0), but it did not improve

the results obtained, thus we did not keep it. Finally,

(7f) are initial and terminal constraints which ensure the

under-actuated dynamics to be at rest at both ends.

We additionally enforced a constraint representing the

kinematic limits, in the spirit of [16], [9]. Like in [9]

and contrary to [16] we used a simple elliptic region to

represent the reachability region. However, contrary to [9],

we integrated this constraint as a smooth exponential barrier.

We indeed noticed in practice that a hard constraint or a more

aggressive log barrier tend to confuse the numerical solver.

On top of this, the proposed cost function manages a

good trade-off between the dynamics of the trajectory and

its smoothness.

3) Additional variables: The phase durations ∆ts are also

treated as variables, to be chosen in a specific interval. In

addition, it would be straightforward to compute the contact

placements in the same OCP for little additional cost.

D. The multiple shooting approach

Problems (6) and (7) consider variables of infinite

dimension and cannot be directly handled by a computer.

Addressing these nominal problems requires the use of

indirect methods like the Pontryagin’s maximum principle

or dynamic programming, to reformulate the optimization

problem as an integration problem of an augmented system.

Unfortunately, these indirect approaches cannot handle (7)

due to the bilinear constraint (7b). Alternatively, “direct”

approaches turn the initial infinite-dimensional problem into

a finite-dimensional one by constraining the control or the

state trajectories to live in an arbitrary basis function.

Various details of implementation should be chosen to

obtain an efficient resolution. The most important in our

opinion is the way the pair (x,u) is handled. We refer to [17]

for more details on the aforementioned methods. Collocation

[6], [16] explicitly represents the state variable while the

control is obtained from the state trajectory by inverting the

system dynamics. On the other hand, single shooting [18],

[7] explicitly represents the control trajectory while the state

is obtained by integration. In between, multiple shooting

makes explicit the control trajectory along with some few

state variables at given shooting nodes.

Focusing on problem (7), the dynamics (2) is numerically

quite stable: collocation, which tends to be robust to unstable

dynamics, becomes unnecessary. On the contrary, it is

relatively easy to build a good initial guess of the state

trajectory, while guessing the control trajectory is a more

complex affair. So, multiple-shooting and collocation are

suitable while single shooting would be difficult to initialize.

By elimination, multiple shooting is the best option.



(a) Initial request (b) Reachability planning (c) Contact sequence

Fig. 1: Contact planner overview. (a) A request between an initial and a final configuration. (b) A path is planned for the root of the robot
with the reachability condition, abstracted with cylinders: the inner one must avoid collision while the outer one must be in collision. (c)
The root path is discretized and extended into a sequence of static equilibrium configurations.

IV. ACYCLIC CONTACT PLANNING

To automatically generate an input contact sequence S for

the pattern generator, we use a contact planner [19]. We recall

its principle and detail modifications brought to it in the

present work. An improved version of our planner, dedicated

to robotics applications, has recently been submitted [20].

A. General principle

Our objective is to describe the motion between initial

and goal postures with a discrete sequence of configurations

in static equilibrium, thus in contact. To tackle this issue

efficiently, we use a decoupled approach: we first compute

a low-dimensional path for the root of the robot, then we

compute a contact sequence along this path (Fig. 1).

When planning a root path, we check efficiently that a root

configuration can lead to a whole-body configuration in static

equilibrium with the “reachability condition”. Informally, it

verifies that a root configuration is “close, but not too close”:

close to allow contact creation (obstacles are in the reachable

workspace – outer cylinders in Fig. 1), not too close to

avoid collisions (a scaling of the root is collision-free – inner

cylinders in Fig. 1). Any sampling-based planner can be used

to compute a path of such configurations. Instead of the PRM

[21] used in our previous work, we use a bi-RRT [22], which

allows efficient online requests, compatible with the MPC

capabilities of our pattern generator.

Once a root path has been computed, the whole-body

static equilibrium configurations are generated along the

discretized path. Between two successive configurations, they

verify that one contact is created or broken at most. The

generation can be biased with user-defined heuristics [23].

In this work we implement two heuristics to account for the

limitations of the torque capabilities of the HRP-2 robot:

• The orientations of the feet are constrained to be parallel

to the direction of motion;

• Contact generation is biased towards high

manipulability limb configurations [24].

B. Kinematic interpolation of the contact sequence

The contact planner generates a collision free root path,

but it does not provide a continuous path for the limbs. We

thus introduce limb-RRT, a local interpolation method that

computes a collision-free limb path between two successive

configurations of the sequence, given the root path. The

limb-RRT considers the following inputs:

• A kinematic chain l composed of n joints (here, n = 6).

The origin of l is the geometrical root of the robot.

• ql
0 Initial configuration of limb l

• ql
1 Goal configuration of limb l

• qr(t) : [0, 1] −→ SE(3) a normalized interpolation

path for the root of the robot.

It outputs ql(t) = [0, 1] −→ R
6, a collision-free path.

To take into account the root trajectory during the

planning, we use a bi-RRT where configurations have an

extra dimension t ∈ [0, 1], used to randomly sample root

configurations in qr(t). The graph is ordered according to t

to ensure continuity of the root positions (an edge from a to

b only exists if ta < tb).

The distance between two configurations is computed

based on the n joint values, weighted by the length of the

sub-kinematic chain they support. For instance for the robot

arm, the three joints of the shoulder have a weight of 1,

the two joints of the elbow a weight of
larm−(lforearm+lhand)

larm
and

so on. The limb-RRT can directly consider bounds on joint

velocities, and return the total time necessary to perform the

motion. Optionally, it can also be bounded to find a solution

respecting a time window.

V. EXPERIMENTAL RESULTS

Two main experiments carried out on the HRP-2 robot are

presented. The first experiment concerns the generation of a

classic walking motion: it is a unitary test but it is important

to properly understand the behaviour of our solver compared

to classic WPG. The second experiment is the climbing stairs

scenario depicted in Fig. 2, where the robot has to make

use of the handrail to help its ascension of the stairs. We

additionally show a standing motion not yet executed on the

robot but demonstrating the versatility of our approach.

A. Experimental setup

All the computations were performed offline on a Intel

Xeon(R) CPU E3-1240 v3 @ 3.40GHz. The contact

planner is open-source and available at https://github.

com/humanoid-path-planner. The OCP is solved using

the proprietary software MUSCOD-II provided by the

Interdisciplinary Center for Scientific Computing (IWR) of

Heidelberg University. This software offers an OCP toolkit



Fig. 2: Exp. 1: Walking in straight line with large stride of 100cm.

Fig. 3: Exp. 1 - Evolution of the cost function.

(e.g. integration and numerical-differentiation routines) along

with an efficient sparse sequential-quadratic-program solver.

The whole-body trajectory is obtained from the contact

sequence and the COM and angular-momentum trajectory

using a second-order inverse kinematics. The typical tasks

where the tracking of the contact placements, the tracking of

the COM position and an additional posture task to keep the

configuration close to the planned postures. The computed

trajectories are then executed by the real robot. For the

walking experiments, we used a closed-loop control provided

with the robot to stabilise the movements of the rubber bush

inside each foot [25]. The stabiliser was not used for the

climbing scenario as it is not able to handle hand contacts.

B. Experiment 1: large stride on a flat ground

In this first experiment, a sequence of cyclic contacts is

manually generated with 100 cm long stride (a very large

step compared to the 1.60m height of the HRP-2 robot).

The timings are fixed (single support: 1.0 s; double support:

0.1 s) with a total duration of 8.2 s. We then compute

a feasible COM trajectory using the proposed OCP. The

foot trajectories are a collection of splines connecting the

desired contact placements and ensuring a zero velocity and

acceleration during take-off and landing of the foot. The

experiment is summarized by Fig. 2 to 4.

Fig. 3 reports the numerical behaviour of the OCP solver.

A near optimal solution (i.e. KKT tolerance below 10−6) is

obtained in 4 s after 50 iterations of the multiple shooting

algorithm. The objective value decreases rapidly in the

beginning, and slows down its progression as the algorithm

tries to fulfil the path constraints. After a feasible solution

is found, every new iteration (i.e. what is computed during

one iteration of a MPC) lasts 40ms. The overall movement

is depicted in Fig. 2 and in the accompanying video.

Fig. 4 shows the ZMP trajectory on the Y axis resulting

from the OCP, compared to the estimation coming from

force sensors measurement. The ZMP is very similar to what

could be obtained by a classic WPG with assumption of flat

contact. The proper tracking on the real robot shows the

dynamic consistency of the output of the OCP.

Fig. 4: Exp. 1 - ZMP trajectories obtained from the OCP, the
multi-body dynamics and the measurements.

C. Experiment 2 : climbing stairs equipped with a handrail

In the climbing scenario, the contact sequence given by

the planner is no more cyclic and takes around 1s to be

computed. The computation of a feasible trajectory to climb

one stair is done in less than 5.5s after 85 iterations.

Fig. 6 illustrates both the forces computed by the solver

and the forces exerted on the real robot. The simulated and

measured forces do not match exactly but they have similar

variations. In both cases, we observe that the robot makes use

of its right hand either for pulling or pushing. The oscillations

in the forces response are mainly due to the presence of a

flexibility part in the robot’s feet and to the compliance of the

handrail. These two external disturbances are not considered

in our framework.

D. Simulated motion

A standing-up motion was also planned, where the robot

exploits the proximal environment in order to stand up. For

this movement, the sequence of contact configurations is

nontrivial and would have been difficult to build manually.

Fig. 7 and the companion video illustrate the motion.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed an original formulation

to efficiently generate walking pattern for any multi-contact

scenarios. The walking pattern generator is written as a

nonlinear optimal control problem, which can be solved very

efficiently, leading to interactive capabilities. While building

an efficient problem, we kept the formulation as generic as

possible, by comparing and justifying every technical choice

with respect to several other formulations proposed in the

state of the art. The few arbitrary modelling choices that were

taken are clearly exhibited and might be the topic of future

research. For example, a future direction may be to express

more clever bounds on the angular momentum variations.

We have also shown how to integrate this WPG in a

complete application, by using a contact planner to compute

the reference contact sequence. The dynamically-consistent



Fig. 5: Exp.2 - Climbing the stairs of 15cm height by using the handrail.

Fig. 6: Exp. 2 - Reference (solid line) and measured (dotted line)
forces acting on the right foot (on top) and hand (on bottom) during
one contact phase.

Fig. 7: Exp.3 - The robot is standing up thanks to wall contacts.

whole-body trajectory is finally obtained by performing a

second-order inverse kinematics using the COM and angular

momentum reference of the pattern generator. The complete

pipeline is interactive on the demonstrated examples and in

most of the classic scenarios that a robot could meet in

a factory. The maturity of the approach was demonstrated

with two real executions with the HRP-2 robot and another

example in simulation.
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