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A versatile chemical conversion synthesis of Cu2S
nanotubes and the photovoltaic activities for
dye-sensitized solar cell
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Abstract

A versatile, low-temperature, and low-cost chemical conversion synthesis has been developed to prepare copper

sulfide (Cu2S) nanotubes. The successful chemical conversion from ZnS nanotubes to Cu2S ones profits by the large

difference in solubility between ZnS and Cu2S. The morphology, structure, and composition of the yielded products

have been examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray

diffraction measurements. We have further successfully employed the obtained Cu2S nanotubes as counter

electrodes in dye-sensitized solar cells. The light-to-electricity conversion results show that the Cu2S nanostructures

exhibit high photovoltaic conversion efficiency due to the increased surface area and the good electrocatalytical

activity of Cu2S. The present chemical route provides a simple way to synthesize Cu2S nanotubes with a high

surface area for nanodevice applications.

Keywords: Nanotubes; Chemical transformation; Cation exchange; Growth mechanism; Optical and photovoltaic

properties

Background

Since the discovery of carbon nanotubes in 1991 by
Iijima [1], nanotubes have become a symbol of the new
and fast-developing research area of nanotechnology due
to their significant potential applications in optoelectro-
nics, advanced catalysis, biotechnology, separation, me-
mory devices, and so on [2-8]. A variety of nanotubes,
such as metals and semiconductors [5,9], the so-called
functional materials, have so far been prepared by vari-
ous approaches including hydrothermal method, sol-gel
technique [10], template-assisted method [11,12], elec-
troless deposition [13], surfactant intercalation method,
microwave-enhanced synthesis [14], and thermal evapo-
ration method [15]. At present, template-based tech-
niques turn out to be particularly effective for growth of
nanotubes in spite of complicated processes involved
[16,17]. However, the template removal process after

nanotube formation inevitably affects the purity of the
materials and may also cause the partial loss of nanotube
orientation [18]. Hence, it is necessary to explore a sim-
ple and efficient synthesis method for preparing one-
dimensional tubular nanostructures in large quantities
without additional surfactants or templates.
Copper sulfide (Cu2S), an indirect semiconductor with

a bulk bandgap of 1.21 eV [19,20], has extensively been
investigated and is widely used in field emission [21],
switching [22], sensing devices [23], and solar cells in
virtue of its relatively high electrocatalytic activity [24,25].
The availability of Cu2S nanostructures with well-defined
morphologies and dimensions should enable bringing new
types of applications or enhancing the performance of cur-
rently existing photoelectric devices due to the quantum
size effects. Therefore, the synthesis of Cu2S materials
with well-controlled size and shape is of great significance
for their applications. Until now, a variety of nanostruc-
tures of Cu2S such as nanowires [26,27], nanoparticles
[28], nanodisks [29], nanocrystals [30,31], and nanoplates
[32] have already been synthesized by various methods.
Nevertheless, little has been devoted to the development
of a general and low-cost synthetic method to fabricate
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Cu2S nanotubes without using any templates or crystal
seeds. Considering that size and morphology are crucial
factors in determining the properties of nanomaterials, the
control over them is of great interest with regard to spe-
cific applications of such materials as nanodevices.
In this article, we describe a novel route for the syn-

thesis of Cu2S nanotubes by conversion from ZnS nano-
tubes via a chemical conversion and cation exchange
process at a low temperature of 90°C. Our previous stu-
dies on the transformation of composition have indi-
cated the significance of chemical conversion and cation
exchange [33-36]. The basic idea behind this route is to
take advantage of the large difference in solubility be-
tween ZnS and Cu2S for effective transformation. More-
over, we have shown high photovoltaic performances
of Cu2S nanotubes as the counter electrodes in dye-
sensitized solar cells (DSSCs), due to the enormous sur-
face area and good electrocatalytical activity of Cu2S
[25,37]. The present technique is very convenient and
versatile with the advantages of simplicity (free of any
special equipment or templates), mild condition (low
growth temperature), and high yield (near 100% mor-
phological yield) and has been demonstrated to control
and manipulate effectively the chemical compositions
and structures of nanotubes.

Methods

Synthesis of ZnS nanotubes

The preparation details for ZnS nanotubes can be found
in our recently published papers [35,36]. Briefly, ZnO
nanowires were first prepared by a hydrothermal pro-
cess. As a typical synthesis process, 0.2 g ZnCl2 and
20.0 g Na2CO3 were added into a 50-mL Telfon-lined
stainless steel autoclave and filled with distilled water up
to 90% of its volume. After vigorous stirring for 30 min,
the autoclave was maintained at 140°C for 12 h, followed
by cooling down naturally to room temperature. The
synthesis of ZnO nanowires could be realized after the
product was washed and dried. Subsequently, the as-
prepared ZnO nanowires on substrates (silicon or glass
slides) were transferred to a Pyrex glass bottle containing
40 mL 0.2 M thioacetamide (TAA). The sealed bottle was
then heated to 90°C for 9 h in a conventional laboratory
oven to synthesize ZnS nanotubes. The final products on
the substrates were washed repeatedly with deionized
water and then dried at 60°C before being used for the
next step in the reaction and further characterization.

Synthesis of Cu2S nanotubes

The synthesis of Cu2S nanotubes was realized by trans-
ferring the silicon or glass slides with ZnS nanotubes on
them to a Pyrex glass bottle containing 20 mM CuCl
and 70 mM tartaric acid. During the reaction process,
the solution temperature was kept at 90°C. The final

products on the substrates were washed thoroughly using
deionized water to remove any co-precipitated salts and
then dried at air at 60°C. For better crystal quality and sta-
bility, the as-prepared Cu2S nanotubes were annealed at
200°C for 10 min under argon atmosphere.

Morphological and structural characterization

The morphology and structure of the samples were cha-
racterized using a field-emission scanning electron mi-
croscope (FE-SEM; Philips XL30FEG, FEI Co., Hillsboro,
OR, USA) with an accelerating voltage of 5 kV and a high-
resolution transmission electron microscope (HRTEM;
JEOL JEM-2100 F, JEOL Ltd., Akishima, Tokyo, Japan).
Selected area electron diffraction (SAED) and energy-
dispersive X-ray (EDX) microanalysis were also performed
during the transmission electron microscopy (TEM)
and scanning electron microscopy (SEM) observations.
X-ray diffraction (XRD) was carried out on a diffrac-
tometer (D/max-2200/PC, Rigaku Corporation, Tokyo,
Japan) equipped with a high-intensity Cu Kα radiation
(λ = 1.5418 Å). Raman spectra were measured at room
temperature on a Jobin Yvon LabRAM HR 800UV micro-
Raman/PL system (HORIBA Jobin Yvon Inc., Edison, NJ,
USA) at the backscattering configuration under the excita-
tion of a He-Cd laser (325.0 nm) for ZnS nanotubes but
Ar+ laser (514.5 nm) for Cu2S nanotubes.

Fabrication of DSSCs

The TiO2 nanoporous films with an area of 0.25 cm2

were sintered in air for 1 h at 500°C and then immersed
in 0.5 mM N719 dye (Ruthenium 535-bisTBA, Solaronix,
Aubonne, Switzerland) solution in ethanol for 12 h. These
films were used as the photoanodes and mounted together
with a counter electrode with Cu2S nanotubes (prepared
by coating on fluorine-doped tin oxide (FTO) glass) to
form backside illuminated cells. The Cu2S-coated FTO
glass was prepared by drop-casting Cu2S solution on
the clean FTO glass and subsequently waiting until all
solvent evaporates. The liquid electrolyte was injected
into the cells by a syringe, which consisted of 0.1 M
iodine (I2), 0.1 M lithium iodide (LiI), 0.6 M tetra-
butylammonium iodide, and 0.5 M 4-tert-butyl pyri-
dine in acetonitrile (CH3CN, 99.9%).

Results and discussion

In our experiments, ZnO nanowires were first prepared
by a hydrothermal process. Conversion to ZnS nano-
tubes was then obtained by transferring ZnO nanowires
into TAA solution. Typically, samples were heated at
90°C for 9 h [35]. We believe that this result may be ex-
plained by a fast out-diffusion of Zn ions and a less effi-
cient in-diffusion of S [38]. Figure 1a shows the FE-SEM
image of the obtained ZnS nanotubes. The irregular
open tips on some of the shells authenticate the hollow
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nature of the prepared nanotubes. TEM image (Figure 1b)
gives further evidence for the hollow structure of ZnS
nanotubes. The diameters of ZnO nanowires and ZnS
nanotubes are about 70 nm. Figure 1c presents a HRTEM
image taken on the edge of the ZnS nanotube, which ex-
hibits clear crystal lattice fringes without noticeable struc-
tural defects. The corresponding ringlike SAED pattern
(inset of Figure 1c) also provides evidence for the poly-
crystalline nature of ZnS nanotubes. The composition of
the ZnS nanotubes can be easily identified by the EDX
spectrum (Figure 1d). Measurements of the XRD pattern
(Figure 1e) and the room-temperature Raman spectrum
(Figure 1f) also confirm that the reaction product is ZnS.
The observation of multiple resonant Raman peaks indi-
cates that the yielded ZnS nanotubes possess good optical
quality [39].

The main attempt in the present work is to synthesize
Cu2S nanotubes and to investigate their optical pro-
perties and photovoltaic conversion efficiency when used
as a counter electrode. To make the conversion of ZnS
nanotubes to Cu2S ones, we transfer the substrates with
ZnS nanotubes on them into 40 mL of 20 mM CuCl and
70 mM tartaric acid aqueous solution. When immersed
into the abovementioned solutions, the ZnS surface
turned dark red immediately, and then shinning cyan
and gray in a short time. After 1 h’s reaction, the product
surface became black and fluffy, manifesting the formation
of dense Cu2S nanotubes. A series of time-dependent ex-
periments were conducted to track the formation process
of Cu2S tubular structures, as shown in Figure 2. Under
the reaction time of 10 min, some Cu2S nanoparticles on
the ZnS nanotubes were observed because ion exchange
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Figure 1 FE-SEM, TEM, and HRTEM images and EDX, XRD, and Raman spectra of ZnS nanotubes. (a) FE-SEM and (b) TEM images of ZnS

nanotubes. (c) HRTEM image of a ZnS nanotube shell, together with the corresponding SAED pattern shown in the inset. The corresponding

(d) EDX, (e) XRD, and (f) room-temperature Raman spectra of ZnS nanotubes.
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Figure 2 FE-SEM images and EDX spectra of Cu2S nanotubes with different reaction times. FE-SEM images of Cu2S nanotubes with

different reaction times: (a) 10 min, (b) 20 min, (c) 40 min, and (d) 1 h. (a’-d’) The corresponding EDX spectra of Cu2S nanotubes with different

reaction times.
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happens as Cu+ reacts with S2− slowly dissolved from the
surface of ZnS nanotubes to form initial Cu2S shells, as
depicted in Figure 2a. After another 10 min’s reaction,
more Cu2S nanoparticles piled up on the initial Cu2S
shells (Figure 2b). When the reaction time reached to
40 min, large numbers of Cu2S nanoparticles were pro-
duced (Figure 2c). When further prolonging the reaction
time to 1 h, uniform Cu2S nanotubes of large quan-
tities with diameters of about 70 nm and lengths of
about 300 to 500 nm were fully converted from ZnS
ones (Figure 2d).
The corresponding EDX spectra in Figure 2a’,b’,c’,d’ give

clear evidence for the FE-SEM observation of the samples
obtained through various reaction times. From Figure 2a’,
we can observe the successful incorporation of Cu elem-
ent into the ZnS nanotubes in the compositional infor-
mation, and the Cu/Zn stoichiometric ratio is 0.47. The
signal of Si originates from the substrate. With the in-
crease of the reaction time, the Cu/Zn stoichiometric ratio
becomes higher and higher (from 1.21 to 2.82) due to
the fact that more and more Zn atoms were replaced
by Cu atoms with the reaction processing, as shown
in Figure 2b’,c’. Further chemical reaction will yield pure
Cu2S nanotubes, which can be unambiguously confirmed
by the EDX spectrum in Figure 2d’. There are only Cu, S,
and Si elements without any Zn element, and the Cu/S
stoichiometric ratio is 2.0. This result confirms the total
exchange of cations during the transformation process
from ZnS to Cu2S.
According to the experimental observation described

above, the whole process can be described as follows.
Once the obtained ZnS nanotubes were transferred into
CuCl solution, cation exchange began at the interfaces
between the ZnS nanotube surfaces and solution. With
the increase in the reaction time, Zn2+ was gradually
substituted by Cu+, resulting in the synthesis of Cu2S
nanotubes. The driving force for the cation exchange is
provided by the large difference in solubility between
ZnS and Cu2S (solubility product constant (Ksp) of ZnS
is 2.93 × 10−25, whereas Ksp of Cu2S is 2.5 × 10−48) [40].
The above conversion mechanism reveals that the ZnS
nanotubes can act as both reactants and templates dur-
ing the cation-exchange process.
Samples were analyzed by TEM to determine the mor-

phology of the cation-exchanged products. Figure 3a
shows the TEM image of the as-prepared Cu2S nano-
tubes obtained at 10 min. One can notice that bits of
Cu2S nanoparticles with an average size of 18 nm were
formed on the outer layers of ZnS nanotubes. As the re-
action time reached 20 min, the Cu2S nanoparticles on
the surface of nanotubes became a bit more, as seen
in Figure 3b. With the reaction time increased to 40 min,
the TEM in Figure 3c reveals that the outer layers
were composed of numerous Cu2S nanoparticles. Further

prolonging the chemical reaction time to 1 h, we were
able to realize uniform and pure Cu2S nanotubes with
about 70 nm in diameter and 18 to 22 nm in shell thick-
ness (Figure 3d).
HRTEM analyses were performed on Cu2S-1 h na-

notubes to obtain detailed information regarding the
structure of the nanotubes. Figure 3e is a representative
HRTEM image taken on the edge of the obtained Cu2S-
1 h nanotube (Figure 3d). Only the polycrystalline nature
of Cu2S nanotubes can be observed. The clearly ob-
served crystal lattice fringes demonstrate that the nano-
tubes are highly crystallized and free from dislocation
and stacking faults. The corresponding SAED pattern
with characteristic ring diffractions shown in the inset of
Figure 3e also confirms the polycrystalline feature of the
Cu2S nanotubes.
The XRD pattern of the samples prepared by chemical

conversion and cation exchange is shown in Figure 4a.
The diffraction peaks of Cu2S-1 h nanotubes can be in-
dexed to a single phase of cubic Cu2S (JCPDS File No.
53-0522). The shape of the diffraction peaks demonstrates

Figure 3 TEM and HRTEM images and SAED pattern of the

Cu2S nanotubes. TEM images of the Cu2S nanotubes with different

reaction times: (a) 10 min, (b) 20 min, (c) 40 min, and (d) 1 h.

(e) HRTEM image of the Cu2S-1 h nanotubes, together with the

corresponding SAED pattern shown in the inset.
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that the products should be well crystallized. No other im-
purities were found in the samples, indicating that the
products are pure cubic Cu2S.
Raman spectroscopy is an effective tool for the study

of the molecular structure within nanostructures. Up to
now, there is little research work on the Raman cha-
racterization of Cu2S nanostructures. Figure 4b shows
the room-temperature Raman spectrum of the Cu2S-1 h
nanotubes. The excitation wavelength is 514.5 nm from
an Ar ion laser. A strong and sharp band at 472 cm−1

probably originates from the lattice vibration, which is
consistent with the results reported for Cu2S films [41,42]
and Cu2S nanotree arrays [43].
To characterize the influence of Cu2S on the perfor-

mance of counter electrodes, a series of time-dependent
J-V curves are shown in Figure 5 and the photovoltaic
parameters of the tested DSSCs are listed in Table 1.
When the Cu2S nanotubes processed by various reaction
times were applied into DSSCs, the cell performance
was increased significantly as the reaction time increa-
ses from 10 min to 1 h. Both the photocurrent and

photovoltage increased with reaction time, and they
reached the peak value when the reaction time reached
1 h. The improved efficiency can be attributed to the lar-
ger specific surface area of the produced Cu2S nanopar-
ticles since the enlarged surface helps to increase the
photovoltaic reaction sites and promote the efficiency of
the electron-hole separation [37], and the composition of
the nanotubes gradually changing from ZnS through
mixed ZnCuS to Cu2S. Furthermore, the best photovoltaic
conversion efficiency (η) up to 2.88% was achieved at 1 h’s
reaction time with the parameters of 6.715 mA cm−2 in
short-circuit current density (Jsc), 0.70 V in open-circuit
voltage (Voc), and 0.62 in fill factor (FF), which indicates
the high electrocatalytical activity of Cu2S reported by
Hodes et al. [25]. Therefore, the large surface area of the
Cu2S nanotubes was not the only factor responsible for
the high photovoltaic performance, and the good electro-
catalytical activity could also be critical.
For comparison, the photovoltaic performance of DSSC

with Pt counter electrode is shown in Figure 5 and the
photovoltaic parameters are listed in Table 1 while keep-
ing other factors unchanged. Although the performances
of Cu2S counter electrode DSSCs are slightly inefficient
in photovoltaic conversion efficiency (η), it is notewor-
thy that the cost reduction is crucial for future develop-
ment all the time for all kinds of solar cells, which
means our Cu2S counter electrodes are completely com-
petent for application in high-efficiency dye-sensitized
solar cells.
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Figure 4 XRD pattern (a) and room-temperature Raman spectrum (b) of the Cu2S-1 h nanotubes.
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Figure 5 Photovoltaic behavior of dye-sensitized solar cells

with counter electrodes of Cu2S nanotubes at different reaction

times. Under illumination of 100 mW cm−2.

Table 1 Photovoltaic parameters of tested DSSCs using Pt

and Cu2S nanotubes of different reaction times as

counter electrodes

Jsc (mA cm−2) Voc (V) FF η (%)

Cu2S-10 min 2.99 0.52 0.43 0.67

Cu2S-20 min 4.86 0.53 0.37 0.95

Cu2S-40 min 7.55 0.64 0.36 1.72

Cu2S-1 h 6.72 0.70 0.62 2.88

Pt 11.50 0.68 0.44 3.50
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Conclusions
In summary, we have developed a versatile chemical con-
version synthesis of Cu2S nanotubes at a low temperature
of 90°C. The conversion mechanism of the Cu2S nano-
tubes from ZnS nanotubes is due to the large difference in
solubility between ZnS and Cu2S. The morphological,
structural, and optical characteristics of the yielded Cu2S
nanotubes were characterized by SEM, TEM, XRD, and
Raman spectra in detail. Furthermore, the prepared Cu2S
nanostructures have been successfully used as the counter
electrodes in dye-sensitized solar cells. Compared to
all those Cu2S nanotubes produced at different reac-
tion times, the photovoltaic efficiency was enhanced sig-
nificantly as the reaction time increases from 10 min to
1 h, and also a photovoltaic conversion efficiency up to
2.88% was obtained. We attribute the improved perform-
ance to the increased surface area and the good electroca-
talytical activity of Cu2S. An optimized process to prepare
the Cu2S DSSCs is expected to further promote the
overall efficiency. Although the current work focuses on
the synthesis and application of Cu2S nanotubes in dye-
sensitized solar cells, this kind of nanostructures is also
expected to be used in other nanodevices such as gas sen-
sors, photocatalyzers, quantum dot-sensitized solar cells,
and so on, in which a high surface area is preferred. The
present strategy is a very convenient and efficient method
to control and manipulate effectively the chemical com-
position and structure of nanomaterials. This simple che-
mical method opens up possibilities to the synthesis of
various nanostructures with high surface area for exten-
sive study of the physical and chemical properties of the
obtained nanostructures, broadening their potential nano-
device applications.
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