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Abstract

In symmetric groups, studies of permutation factorizations or triples of permu-
tations satisfying certain conditions have a long history. One particular interesting
case is when two of the involved permutations are long cycles, for which many sur-
prisingly simple formulas have been obtained. Here we combinatorially enumerate
the pairs of long cycles whose product has a given cycle-type and separates cer-
tain elements, extending several lines of studies, and we obtain general quantitative
relations. As consequences, in a unified way, we recover a number of results expect-
ing simple combinatorial proofs, including results of Boccara (1980), Zagier (1995),
Stanley (2011), Féray and Vassilieva (2012), as well as Hultman (2014).

We obtain a number of new results as well. In particular, for the first time,
given a partition of a set, we obtain an explicit formula for the number of pairs of
long cycles on the set such that the product of the long cycles does not mix the
elements from distinct blocks of the partition and has an independently prescribed
number of cycles for each block of elements. As applications, we obtain new explicit
formulas concerning factorizations of any even permutation into long cycles and the
first nontrivial explicit formula for computing strong separation probabilities solving
an open problem of Stanley (2010).

Keywords: Product of long cycles; Permutation factorization; Separation proba-
bility; Plane permutation; Stirling number; Exceedance
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1 Introduction

Let Sn denote the symmetric group on [n] = {1, 2, . . . , n}, and let C(π) denote the
number of disjoint cycles of π ∈ Sn. The set consisting of the lengths of these disjoint
cycles is called the cycle-type of π. We can encode this set as an integer partition of n.
An integer partition λ of n, denoted by λ ⊢ n, can be represented by a non-increasing
integer sequence λ = λ1λ2 · · · , where λ1 ≥ λ2 ≥ · · · ,

∑

i λi = n, or as 1m12m2 · · ·nmn ,
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where we have mi(λ) of part i and
∑

i imi = n. A cycle of length k is called a k-cycle.
We sometimes call an n-cycle on [n] a long cycle. In addition, we denote the number of
permutations of cycle-type λ by zλ. It is well known that if λ = 1m12m2 · · ·nmn , then

zλ =
n!

∏

i i
mimi!

.

We also denote the length of λ, i.e., the number of positive parts in λ, by ℓ(λ).
Factorizations of permutations or triples of permutations satisfying certain conditions

have been extensively studied in different contexts. A particular important and inter-
esting case is when one of the involved permutations is a long cycle, e.g., enumeration
of maps by Walsh and Lehman [28], factorizations of permutations and/or maps and/or
genome rearrangement problems by Boccara [1], Stanley [25], Jackson [24], Zagier [31],
Goupil and Schaeffer [20], Chapuy [13], Chapuy et al. [12], Bernardi [4], and Chen and
Reidys [14], graph embeddings by Gross et al. [21], as well as studying the Euler char-
acteristic of the moduli spaces of algebraic curves by Harer and Zagier [23]. Most of the
related results in the field rely either partially or totally on character theoretic approaches
(e.g., [20,24,25,31]) or integral approaches (e.g., [1,23]) in earlier decades, while progresses
from combinatorial approaches have been made very recently (e.g., [4, 11–14, 20]). It is
generally hard to obtain explicit and simple counting formulas. However, if two of the
involved permutations are long cycles [1, 2, 5, 8–10, 16–19, 25, 26, 30], we may have very
nice formulas for most of studied problems, at least much simpler than those of the gen-
eral case. For instance, we have the following results that can be clearly stated without
requiring additional notation and definitions. (We shall combinatorially prove them all,
providing either the first combinatorial proof or probably the most simple one.)

Theorem 1.1 (Zagier [31], Stanley [26]). The number of n-cycles s such that the product

(1 2 · · · n) s has k cycles is 2
n(n+1)

C(n + 1, k), where C(n, k) stands for the signless

Stirling number of the first kind, i.e., the number of permutations on [n] with k cycles.

Theorem 1.2 (Hultman [22]). The expected number of k-cycles in the product of two

random long cycles on [n] is (−1)k+1

k(n−1
k )

+ 1
k
.

Theorem 1.3 (Boccara [1]). The number of different factorizations of a fixed even per-

mutation on [n] of cycle-type k1(n− k)1 into two n-cycles is given by
2(n−1)!
n+1

(

1− (−1)k

(nk)

)

.

Theorem 1.4. The number of pairs of long cycles whose product does not mix the elements

in [k] and the elements in [n]\ [k] in any of its cycles is k!(n−k)!(n−2)!. More generally,

for an integer composition α = (α1, . . . , αk) of n, the corresponding number is

(n− 1)!

n + 1− k

k
∏

t=1

αt! .
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Theorem 1.5. The number of factorizations of a fixed even permutation of cycle-type

λ = λ1λ2 · · ·λk ⊢ n into two n-cycles is given by

2(n− 1)!
∑

j2+···+jk=l,

l≥0, λt>jt≥0

(−1)l
l!

(λ1 + l + 1)l+1

(

λ2

j2

)

· · ·

(

λk

jk

)

.

In Féray and Vassilieva [19], a refined problem of the one considered in Theorem 1.1
was also considered, that is, enumerating the pairs of long cycles whose product has a
given cycle-type. A simple relation of these refined numbers was obtained in [19] by
counting some colored permutations first and then by some algebraic computations in the
ring of symmetric functions.

Separation probabilities for products of permutations were studied in Bernardi, Du,
Morales, and Stanley [5], where a special case is concerned with the probability of having
the elements in [m] contained in distinct cycles of the product of two uniformly randomly
chosen n-cycles. It was proved [5, 27] that the separation probability is given by

{

1
m!
, if n−m is odd,

1
m!

+ 2
(m−2)!(n+1−m)(n+m)

, if n−m is even.

A more general case of separation probabilities studied was about studying the pairs of
long cycles such that each cycle of their product may contain elements from a particular
subset of [n]. (See a more precise description later.)

Although these formulas concerning products of two long cycles are simple, simple com-
binatorial proofs are not necessarily immediately available. Recently, the author obtained
some analogues of the above Zagier-Stanley result in the context of studying separation
probabilities [16]. For example, it was proved that the number of pairs of n-cycles whose
product has k cycles and separates the elements in [m] is given by

2(n− 1)!

(n+m)(n + 1−m)
Cm(n+ 1, k),

where Cm(n, k) is the number of permutations on [n] with k cycles and the elements in
[m] separated, i.e., an analogue of C(n, k). Based on the analogue, the aforementioned
formulas of separation probabilities immediately follow. In addition, in [17], with simpler
combinatorial arguments, the author also obtained the relation previously obtained by
Féray and Vassilieva [19]. Both works were based on extending the plane permutation
framework that was first introduced in Chen and Reidys [14] in order for studying one-face
hypermaps as well as genome rearrangement problems. Accordingly, it was speculated
that the approach based on the plane permutation framework may take us even further,
which motivated the present work. For instance, we shall prove the above theorems in a
unified way later.

The main problem studied in this paper is described as follows. Let k > 0 and
α = (α1, α2, . . . , αk) be an integer composition of n, i.e.,

∑

i αi = n and αi > 0. We write

α |= n. Let Bi = {
∑i−1

j=0 αj + 1, . . . ,
∑i−1

j=0 αj + αi} ⊆ [n] where we assume α0 = 0. A
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permutation π on [n] is called α-separated if the elements in every cycle of π are coming
from the same Bi for some 1 ≤ i ≤ k. We shall be interested in the pairs of n-cycles
whose product is α-separated, and we shall refer to these pairs as α-separating pairs.

This problem appears to be a special case of the separation probabilities considered
in [5], where any α |= m ≤ n was considered, i.e., there are some free elements. However,
we shall discuss later that it suffices to merely study the case α |= n. We shall actually
begin with studying α-separating pairs whose product has a given cycle-type. Therefore,
our studied problem here can be viewed as extending a number of previously cited works
at the same time.

2 Review of plane permutations

As a new way of representing one-face hypermaps, plane permutations were introduced
in [14] for the first time. As results, several recurrences counting one-face hypermaps
or factorizations of a long cycle were obtained, and a combinatorial proof of the Zagier-
Stanley result was given, answering a call of Stanley [26] for a combinatorial proof. Plane
permutations also provided a unified simple framework studying transposition and block-
interchange distances of permutations, as well as reversal distances of signed permutations.
For the latter application to the genome rearrangement problems, a general lower bound
was obtained, for which the well-known Bafna-Pevzner’s lower bound [6] and Christie’s
formula [7] based on cycle graphs are equivalent to evaluations at a special point. Plane
permutations were later employed to study the local genus distribution problem of graph
embeddings, where the local genus distribution of reembedding a single vertex of a graph
was fully solved and the local genus distribution was shown to be indeed log-concave [15].
Let us review some notation and results in this section.

Definition 2.1. A plane permutation on [n] is a pair p = (s, π) where s = (si)
n−1
i=0 is an

n-cycle and π is an arbitrary permutation on [n]. Given s = (s0 s1 · · · sn−1), a plane
permutation p = (s, π) is represented by a two-row array:

p =

(

s0 s1 · · · sn−2 sn−1

π(s0) π(s1) · · · π(sn−2) π(sn−1)

)

. (1)

The permutation Dp induced by the diagonal-pairs (cyclically), i.e., Dp(π(si−1)) = si for
0 < i < n, and Dp(π(sn−1)) = s0, is called the diagonal of p.

We sometime refer to s, π, Dp respectively as the upper horizontal, the vertical and
the diagonal. The following lemma is obvious but important.

Lemma 2.2. Dp = sπ−1.

Based on Lemma 2.2, we can see that studying factorizations of permutations is equiv-
alent to studying plane permutations.

In a permutation π on [n], i is called an exceedance if i < π(i) following the natural
order and an anti-exceedance otherwise. Exceedances and anti-exceedances are among
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the most well-known permutation statistics. Note that s induces a linear order <s, where
a <s b if a appears before b in s from left to right (with the left most element s0).
Without loss of generality, we always assume s0 = 1 unless explicitly stated otherwise.
These concepts then can be generalized for plane permutations as follows:

Definition 2.3. For a plane permutation p = (s, π), an element si is called an exceedance

of p if si <s π(si), and an anti-exceedance if si ≥s π(si).

In the following, any comparison of elements in s, π and Dp references the order <s.
Obviously, each p-cycle contains at least one anti-exceedance as it contains a minimum,
si, for which π−1(si) is an anti-exceedance. We call these trivial anti-exceedances and
refer to a non-trivial anti-exceedance as an NTAE. Furthermore, in any cycle of length
greater than one, its minimum is always an exceedance.

Example 2.4. For the plane permutation

p =

(

1 5 4 6 2 3
5 4 1 3 6 2

)

,

1 is an exceedance, 2 is an anti-exceedance and also an NTAE.

Let p = (s, π) be a plane permutation. A diagonal block of p is a set of consecutive
diagonal-pairs. A transposition action on the diagonal of p transposes two adjacent di-
agonal blocks of p. Specifically, for a sequence h = (i, j, k) such that i ≤ j < k and
{i, j, k} ⊂ [n− 1], if we transpose the two diagonal-blocks determined by the continuous
segments [si, sj] and [sj+1, sk], we obtain a new two-row array ph = (sh, πh):





· · · si−1 sj+1

✇

✇

· · · sk−1 sk

t

t

t

si

①
①
①
①
①

· · · sj−1 sj

✇
✇
✇
✇
✇

sk+1 · · ·

· · · π(sj) π(sj+1) · · · π(sk−1) π(si−1) π(si) · · · π(sj−1) π(sk) π(sk+1) · · ·



 .

Comparing p and ph, we have the following observations:

• they have the same diagonal;

• the upper horizontals s and sh differ by a transposition of the two continuous seg-
ments [si, sj] and [sj+1, sk];

• the maps π and πh only differ at the images of the elements si−1, sj, and sk.

Thus, the transposition actions on the diagonal provide a natural viewpoint on how dif-
ferent factorizations of the diagonal into a long cycle (the upper horizontal) and another
permutation (the vertical) relate to each other. In particular, the above last bullet implies
that all components other than those containing the mentioned three elements of π will
be completely carried over to πh without any changes. For those components containing
the three elements, the three elements serve as certain breakpoints, where the induced
segments will be re-pasted in a certain way, depending on the distribution of the elements
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si−1, sj , and sk in the components of π. Note that π and πh must have the same parity.
Thus, the difference of the number of cycles in πh and π is contained in {2, 0,−2}. The
NTAEs of p can help us to identify the transposition actions which change the number of
cycles by exactly two.

Let µ, λ be two integer partitions of n. We denote µ✄k λ if µ can be obtained from λ

by splitting one part into k parts, or equivalently, λ from µ by merging k parts into one
part. Let κµ,λ be the number of different ways of merging k parts of µ in order to obtain
λ provided that µ ✄k λ. Note that we differentiate two parts of µ even if the two parts
are of the same value. For example, for µ = 1222 and λ = 112131, we have κµ,λ = 4.

Let D be a fixed permutation on [n]. We consider the set of plane permutations
p = (s, π) where the diagonal is D and the vertical is of cycle-type λ, or equivalently
the set of factorizations of D into a long cycle s on [n] and a permutation π−1 on [n]
of cycle-type λ, i.e., D = sπ−1. Denote this set by ŨD

λ . By studying the transposition
actions on the diagonal of plane permutations with the assistance of NTAEs, the following
result has been obtained.

Proposition 2.5 (Chen&Reidys [14]). Let Ỹ1 be the set of pairs (p, ǫ) where p ∈ ŨD
λ and

ǫ is an NTAE of p. Let Ỹ2 be the set of plane permutations p ∈
⋃

j≥1, µ✄2j+1λ
ŨD
µ where

there are 2j + 1 marked cycles in p if p ∈ ŨD
µ and µ ✄2j+1 λ such that when treating the

2j + 1 marked cycles as a single cycle the cycle-type of the vertical of p is λ. Then there

is a bijection between Ỹ1 and Ỹ2.

The main idea behind the above bijection between Ỹ1 and Ỹ2 can be briefly summarized
here. From a given pair (p, ǫ) in Ỹ1, the NTAE ǫ determines a transposition on the diagonal
of p such that the vertical of the resulting plane permutation after the transposition is
obtained by splitting the cycle containing ǫ of p into three cycles. Obviously, ǫ is still
contained in one of the three cycles. Depending on whether ǫ is still an NTAE of the
resulting plane permutations, additional transpositions can be applied until ǫ is not an
NTAE anymore. Eventually, the original cycle containing ǫ will split into 2j+1 cycles for
some j > 0 which will be marked and the resulting plane permutation has a cycle-type
µ✄2j+1 λ in the vertical. Conversely, from a given element in Ỹ2, there is a unique way to
merge the marked cycles into one single cycle and create an NTAE. We refer to [14] for
details.

The above bijection was motivated by the vertex slicing/gluing bijection on one-face
maps of Chapuy [13]. However, once we had the two-row array formulation of plane
permutations, it was in fact the natural transposition action on the diagonal, or an even
broader perspective, rearrangement of the diagonal-pairs, that were first studied, due
to their clear potential applications to the transposition, block-interchange and reversal
distances of genome sequences. It turned out that the slicing/gluing operations are hiding
there as two particular cases among others (see [14, Lemma 7]), somehow resolving the
mystery of the slicing/gluing bijection [13].

It should be easy to see that the cardinality |ŨD
λ | only depends on the cycle-type η of

D. Let Ũη
λ denote the set of plane permutations on [n] where the diagonal is of cycle-type

η and the vertical is of cycle-type λ. Then, we have |Ũη
λ | = zη|Ũ

D
λ |. We always assume
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ℓ(λ)+ℓ(η) has the same parity as n+1. Otherwise we know Ũ
η
λ = ∅. We denote pηλ = |Ũη

λ |,

in particular, for η = n1, we define p
(n)
λ := p

η
λ. Let Ne(p) denote the number of NTAEs

of p. Note that for p ∈ Ũ
η
λ having a exceedances, we have Ne(p) = n − ℓ(λ) − a. Then,

as a consequence of the bijection in Proposition 2.5, we obtain the quantitative relations
below.

Proposition 2.6 (Chen&Reidys [14]). Let λ, η ⊢ n and p
η
λ,a be the number of p ∈ Ũ

η
λ

such that p has a exceedances. Then we have

∑

a≥0

(

n− ℓ(λ)− a
)

p
η
λ,a =

∑

µ✄2i+1λ, i>0

κµ,λp
η
µ , (2)

∑

a≥0

(

n− ℓ(η)− a
)

pλη,a =
∑

µ✄2i+1η, i>0

κµ,ηp
λ
µ . (3)

We remark that these equations in the above corollary are inherently filtered out (or
avoided) if following the map (and bicolored map [13, 29]) perspective. Because on the
one hand, all plane permutations corresponding to maps (i.e., the diagonal being a fixed
point free involution) have the same fixed number (roughly speaking, 2g for g being the
genus) of NTAEs, such equations never appear in the first place; On the other hand, these
equations do not really provide ‘valid’ recurrences from an enumeration perspective. (In
order for obtaining valid recurrences, we have to apply a sort of ‘reflection principle’ to
clear the parameter ‘a’, as will be shown shortly.) However, these ‘invalid’ recurrences are
actually the most valuable ingredients to make our approach productive.

Note that there is a one-to-one correspondence between Ũ
η
λ and Ũλ

η , as if p = (s, π) ∈

Ũ
η
λ , then p′ = (s−1, D−1

p ) ∈ Ũλ
η . There is a also nice relation stated in the following lemma.

Lemma 2.7 (Chen&Reidys [14]). Let p = (s, π) be a plane permutation with diagonal

Dp, and let p′ = (s−1, D−1
p ). Then,

Ne(p) +Ne(p′) = n + 1− C(π)− C(Dp) . (4)

Now, based on eq. (2), eq. (3), and eq. (4), we obtain

Proposition 2.8 (Chen&Reidys [14]). Let λ, η ⊢ n. Then, we have

(

n+ 1− ℓ(λ)− ℓ(η)
)

p
η
λ =

∑

µ✄2i+1λ, i>0

κµ,λp
η
µ +

∑

µ✄2i+1η, i>0

κµ,ηp
µ
λ , (5)

(

n+ 1− ℓ(λ)
)

p
(n)
λ =

∑

µ✄2i+1λ, i>0

κµ,λp
(n)
µ + (n− 1)!zλ . (6)

In order for obtaining eq. (6) from eq. (5), we have used the fact that any partition µ

with ℓ(µ)+ ℓ(λ) having the same parity as 1+ ℓ(λ) must satisfy µ✄2i+1 1
n for some i ≥ 0

and κµ,1n = 1, and
∑

µ⊢n p
λ
µ = (n− 1)!zλ.

From the summarized bijection above, new bijections can be derived if there are some
appropriate restrictions on the set of plane permutations under consideration. The results
in the rest of the paper are based on such a bijection.
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3 Separating pairs of long cycles

In this section, we present our general results based on a revised version of the bijection
described in Proposition 2.5.

We begin with introducing the following notation. For α = (α1, α2, . . . , αk) |= n, we
write Λ ⊢ α if Λ = (λ[1], λ[2], . . . , λ[k]) is a sequence of integer partitions where λ[i] ⊢ αi. We
also define zΛ :=

∏k

i=1 zλ[i] , ℓ(Λ) :=
∑k

i=1 ℓ(λ
[i]), and mi(Λ) :=

∑k

j=1mi(λ
[j]). Moreover,

for Υ ⊢ α, we write Υ✄i,2j+1 Λ if Υ can be obtained from Λ by splitting one part of λ[i]

into 2j + 1 parts. The number κΥ,Λ is analogously defined.
An α-separated permutation π has an α-type Λ if the elements in Bi have a cycle-type

λ[i]. Let Uη
Λ denote the set of plane permutations on [n] where the diagonal is of cycle-type

η and the vertical has an α-type Λ. With the same reason, we always assume ℓ(Λ)+ ℓ(η)
has the same parity as n + 1 if not explicitly specified.

We denote p
η
Λ = |Uη

Λ|, and specially p
(n)
Λ for η = n1. Note that the bijection described

in the last section inherently preserves the property of the vertical being α-separated in
the forward direction. As to the converse, we merely need to pay attention to how we
mark the cycles, i.e., we can only mark cycles containing elements from the same Bi.
Hence, we can succinctly obtain the following proposition.

Proposition 3.1. Suppose α |= n, Λ ⊢ α and η ⊢ n. Let p
η
Λ,a be the number of p ∈ U

η
Λ

such that p has a exceedances. Then we have

∑

a≥0

(

n− ℓ(Λ)− a
)

p
η
Λ,a =

∑

i>0, j>0
Υ✄i,2j+1Λ

κΥ,Λp
η
Υ , (7)

(

n+ 1− ℓ(Λ)− ℓ(η)
)

p
η
Λ =

∑

i>0, j>0
Υ✄i,2j+1Λ

κΥ,Λp
η
Υ +

∑

µ✄2i+1η, i>0

κµ,ηp
µ
Λ , (8)

(

n+ 1− ℓ(Λ)
)

p
(n)
Λ =

∑

i>0, j>0
Υ✄i,2j+1Λ

κΥ,Λp
(n)
Υ + (n− 1)!zΛ . (9)

Remark. The equations eq. (7), eq. (8), and eq. (9) respectively correspond to eq. (2),
eq. (5), and eq. (6). Although in the present paper, we focus on α-separating pairs of
long cycles, eq. (8) and its corresponding initial values allow us to enumerate α-separating
pairs w.r.t. any arbitrary η. Explicit formulas for the corresponding initial values can be
obtained in the similar manner as the general case concerning separation probabilities dis-
cussed in [16] by enumerating certain labelled plane trees. However, the explicit formulas
for a general η are not expected to be as simple as those of two long cycles.

Next, in eq. (7), if we sum over all η ⊢ n, it is not hard to obtain
∑

η⊢n

∑

a≥0

ap
η
Λ,a =

(

n− ℓ(Λ)
)

(n− 1)!zΛ −
∑

i>0, j>0
Υ✄i,2j+1Λ

κΥ,Λ(n− 1)!zΥ . (10)

We then realize that the left-hand side of eq. (10) is the total number of exceedances of
p ∈

⋃

η⊢n U
η
Λ which can be easily obtained.
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Lemma 3.2. The total number of exceedances

∑

η⊢n

∑

a≥0

ap
η
Λ,a =

n−m1(Λ)

2
(n− 1)!zΛ . (11)

Combining eq. (10) and eq. (11), and using n+ 1−m1(Λ) =
∑

i>0(i+ 1)mi+1(Λ), we
obtain the following proposition.

Proposition 3.3. Let α |= n + 1. For any Λ ⊢ α, we have

(

n+ 1− ℓ(Λ)
)

zΛ =
∑

i>0, j>0
Υ✄i,2j+1Λ

κΥ,ΛzΥ +
zΛ

2

∑

i>0

(i+ 1)mi+1(Λ) . (12)

In order to proceed, we need a few more notations. Let λ = 1m12m2 · · ·nmn ⊢ n+1. For
i > 0 (and mi+1 6= 0), denote λ↓(i+1) the partition µ = 1m1 · · · imi+1(i+ 1)mi+1−1 · · ·nmn ⊢

n, i.e., changing an i+1 part to an i part. Denote Λ
↓(j+1)
i the sequence of integer partitions

(λ[1], . . . , (λ[i])↓(j+1), . . . , λ[k]).
As a consequence of eq. (9), we have the following corollary.

Corollary 3.4. Suppose α |= n + 1 and Λ ⊢ α. For any 1 ≤ i ≤ k and j > 0, denote
Λi,j =

αi

2
jmj

(

(λ[i])↓(j+1)
)

. Then, we obtain

(

n + 1− ℓ(Λ)
)

Λi,jp
(n)

Λ
↓(j+1)
i

=
∑

t>0, d>0,

Υ✄t,2d+1Λ
↓(j+1)
i

κ
Υ,Λ

↓(j+1)
i

Λi,jp
(n)
Υ +

(j + 1)mj+1(λ
[i])

2
(n− 1)!zΛ . (13)

The upcoming lemma is a key ingredient enabling us to proceed further.

Lemma 3.5. Let α |= n+ 1 and Λ ⊢ α. The following is true:

∑

i>0, j>0

Λi,j

∑

t>0, d>0

Υ✄t,2d+1Λ
↓(j+1)
i

κ
Υ,Λ

↓(j+1)
i

p
(n)
Υ =

∑

t>0, d>0
Υ✄t,2d+1Λ

κΥ,Λ

∑

i>0, j>0

Υi,jp
(n)

Υ
↓(j+1)
i

. (14)

For any α |= n+1 and Λ ⊢ α, we denote TΛ =
∑

i>0, j>0Λi,jp
(n)

Λ
↓(j+1)
i

. Summing over all

possible i, j in eq. (13) and applying eq. (14), we obtain:

(

n + 1− ℓ(λ)
)

TΛ =
∑

Υ✄t,2d+1Λ

κΥ,ΛTΥ +
(n− 1)!zΛ

2

∑

i>0

(i+ 1)mi+1(Λ) . (15)

From now on, we also use the notation ∂α
∂i

:= (α1, . . . , αi − 1, . . . , αk). Now we are ready
to prove our first main theorem.
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Theorem 3.6. Let α |= n+ 1 and Λ ⊢ α. Suppose ℓ(Λ) has the same parity as n. Then,

we have

TΛ = (n− 1)!zΛ . (16)

Proof. Inspecting eq. (12) and eq. (15), we observe that both sides of the equality in the
theorem satisfy the same recurrence. Then, it suffices to compare the respective initial
conditions.

Let α |= n and d = (d1, d2, . . . , dk) (di > 0). We denote p
(n)
α,d the number of pairs of n-

cycles whose product is α-separated and the elements in Bi are contained in di cycles, and
we define p

(n)
α :=

∑

d p
(n)
α,d, i.e., the total number of α-separating pairs. As an application

of Theorem 3.6, we have

Theorem 3.7. Let β |= n + 1 and d = (d1, d2, . . . , dk) where
∑

i di has the same parity

as n. Then, we have

k
∑

i=1

βi(βi − 1)

2
p
(n)
∂β
∂i

,d
= (n− 1)!

k
∏

i=1

C(βi, di) , (17)

k
∑

i=1

βi(βi − 1)

2
p
(n)
∂β
∂i

=
(n− 1)!

2

k
∏

i=1

βi! . (18)

Thanks to the above theorems, we obtain the results presented in Introduction. Here
is another main result. For α |= n and d = (d1, d2, . . . , dk), we denote

Y α
d = (n− 1)!C(α1 + 1, d1)

k
∏

i=2

C(αi, di).

For α |= n, we introduce the notation α(j) = (α1 + 1, . . . , αj − 1, . . . , αk) |= n for j > 1.

In addition, we inductively define α(j1,...,jl) :=
(

α(j1,...,jl−1)
)(jl), for jt > 1.

Theorem 3.8. For any α = (α1, . . . , αk) |= n and d = (d1, . . . , dk), we have

p
(n)
α,d =

Y α
d

(

α1+1
2

) +
∑

l>0

(−1)l
∑

(j1,...,jl),
jt>1

Y α(j1,...,jl)

d
(

α1+l+1
2

)

l
∏

t=1

(

1 + α
(j1,...,jt)
jt

2

)

/

(

α1 + t

2

)

. (19)

The above results can be used to derive formulas concerning strong separation prob-
abilities as well.
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