
Biomechanics and Modeling in Mechanobiology (2019) 18:29–44

https://doi.org/10.1007/s10237-018-1065-0

ORIG INAL PAPER

A versatile hybrid agent-based, particle and partial differential
equations method to analyze vascular adaptation

Marc Garbey1,2,3 · Stefano Casarin1,3 · Scott A. Berceli4,5

Received: 7 February 2018 / Accepted: 26 July 2018 / Published online: 9 August 2018

© The Author(s) 2018

Abstract

Peripheral arterial occlusive disease is a chronic pathology affecting at least 8–12 million people in the USA, typically

treated with a vein graft bypass or through the deployment of a stent in order to restore the physiological circulation. Failure

of peripheral endovascular interventions occurs at the intersection of vascular biology, biomechanics, and clinical decision

making. It is our hypothesis that the majority of endovascular treatment approaches share the same driving mechanisms and

that a deep understanding of the adaptation process is pivotal in order to improve the current outcome of the procedure. The

postsurgical adaptation of vein graft bypasses offers the perfect example of how the balance between intimal hyperplasia

and wall remodeling determines the failure or the success of the intervention. Accordingly, this work presents a versatile

computational model able to capture the feedback loop that describes the interaction between events at cellular/tissue level

and mechano-environmental conditions. The work here presented is a generalization and an improvement of a previous work

by our group of investigators, where an agent-based model uses a cellular automata principle on a fixed hexagonal grid to

reproduce the leading events of the graft’s restenosis. The new hybrid model here presented allows a more realistic simulation

both of the biological laws that drive the cellular behavior and of the active role of the membranes that separate the various

layers of the vein. The novel feature is to use an immersed boundary implementation of a highly viscous flow to represent

SMC motility and matrix reorganization in response to graft adaptation. Our implementation is modular, and this makes us

able to choose the right compromise between closeness to the physiological reality and complexity of the model. The focus

of this paper is to offer a new modular implementation that combines the best features of an agent-based model, continuum

mechanics, and particle-tracking methods to cope with the multiscale nature of the adaptation phenomena. This hybrid method

allows us to quickly test various hypotheses with a particular attention to cellular motility, a process that we demonstrated

should be driven by mechanical homeostasis in order to maintain the right balance between cells and extracellular matrix in

order to reproduce a distribution similar to histological experimental data from vein grafts.
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1 Introduction andmotivation

The insurgence of an arterial localized occlusion, known as

peripheral arterial occlusive disease (PAOD), is one of the

potential causes of tissue necroses and organ failure, and

it represents one of the main causes of mortality and mor-

bidity in the western society (Go et al. 2014; Roger et al.

2012).

In order to restore the physiological circulation, the most

performed technique consists into bypassing the occlusion

with an autologous vein graft. Benefits and limitations of

this procedure are driven by fundamental mechano-biology

processes that take place immediately after the surgical inter-

vention and that fall under the common field of vascular

adaptation. The plasticity of the biological system is indeed
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responsible for the adaptation of the vein to its new envi-

ronment, and it is mostly driven by two distinct processes:

intimal hyperplasia and wall remodeling, this latter either

inward or outward.

If on the one end, intimal hyperplasia is characterized by

migration of smooth muscle cells (SMCs) into the intima with

subsequent cells proliferation and deposition of extracellular

matrix (ECM), typically favoring the lumen narrowing, on

the other end wall remodeling is characterized by the preser-

vation, or the loss, of lumen area through reorganization of

the cellular and extracellular components within the media

(de Korte 2000; Lytle et al. 1985; Saswata et al. 2013; Owens

2010).

Starting from the very early postsurgical period, both the

processes are initiated and it is the balance between them

that dictates the degree of luminal narrowing and ultimately

the success or failure of the revascularization (Owens 2010;

Chiu and Chien 2011).

Despite years of clinical research resulting in significant

improvements in the surgical techniques, the rate of failure of

this procedure is of 12% after just a month from the original

intervention, a percentage that ramps up to 40% after 10

years (Conte et al. 2006; Alexander et al. 2005). Early vein

graft remodeling is believed to be induced by hemodynamic

forces, where wall shear stress stands among the primary

regulators for these events (Varty et al. 1993; Mills et al.

1995). However, the biological mechanisms under vein graft

failure are not completely understood and in addition several

clinical observations have shown how such failure events are

difficult to predict. It is so our hypothesis that their causes

are multiscale and multifactorial, and accordingly it would be

reductive and also wrong to just resume them into some basic

explanations related to the local variation of shear stress or

wall pressure (Jiang et al. 2004; Dobrin et al. 1989; Fillinger

et al. 1994; Zwolak et al. 1987; Galt et al. 1993).

This multiscale character naturally extends to the vascular

adaptation itself: The localized variation of hemodynamics

conditions is the trigger that initiates a cascade of events that

drive tissue remodeling. Further, a variation in environmental

conditions, such as in shear stress, modifies the working point

of the gene regulatory network, which dictates the cell and

matrix-based remodeling response, defining in this way the

local geometrical modifications. Finally, the morphological

changes induce perturbations in local shear stress, resulting

in a new set point of the gene network, and consequently in

a new biological response of the graft.

The conceptual scheme of Fig. 1 gives a better inside on the

multiple feedback loops that link wall shear stress and wall

tension variations with morphology changes at tissue level

through specific cellular and ECM-related dynamic (Garbey

and Berceli 2013). The presented scheme has been trans-

lated into a dynamical system (DS) developed in a previous

work by our group of investigators (Garbey and Berceli 2013)

showing how different feedback cycles can either promote

the same outcome or even compete by promoting opposite

adaptive mechanisms. However, such study is phenomeno-

logical by nature and it lacks the level of understanding

needed to analyze spatiotemporal behavior of SMCs appre-

ciable by histological data, an example of which is given in

Fig. 2a that refers to a vein graft at the time of implantation

and in Fig. 2b that instead refers to two different outcomes

after a 6-month postsurgical follow-up.

Following the general concepts discussed in Evans et al.

(2008) and Berceli et al. (2009), the goal of the present work

is to address the modeling and simulation of the vascular

adaptation processes from a multiscale perspective that has

already proved itself to be effective if used to study the cardio-

vascular system (Zhang et al. 2016). By using this approach,

a virtual experimental framework is provided in order to be

used to test new clinical hypotheses and to better rank the

influence of the many factors that may or may not promote

restenosis.

This paper is based on the extensive work carried out by

our group on vascular adaptation that extends from clinical

data analysis to computational modeling (Hwang et al. 2013;

Garbey et al. 2015; Garbey and Berceli 2013; Garbey et al.

2017; Casarin et al. 2017). Thanks to a more effective choice

of the support structure, the work presented can take into

account pivotal biological events such as cellular motility

and cell–cell, cell–membrane interactions that were very dif-

ficult to replicate with a standard discrete agent-based model

(ABM) on a fixed grid (Garbey et al. 2015, 2017), getting in

this way closer to the physiological reality and representing a

more reliable platform to study the restenosis phenomenon.

As a proof of concept, the hyperplasia of the tunica intima

is replicated with our new model on a two-dimensional cross

section of the vein graft. The choice of a 2D geometry is

in accordance with the nature of our experimental setup on

rabbit model, described in Fig. 3, which provides that wall

thickening is almost independent from the third dimension.

The goal of this paper is to show how a detailed descrip-

tion of the different potentials driving cellular motility during

adaptation is the key to obtain a model close enough to the

physiological reality. We chose as reference histological data

from our already-cited experimental model of rabbit, and we

set as goal to be able to reach the same uniform distribution

of cells against ECM typically appreciable from histology.

In addition, the choice to qualitatively validate the model

against histological data, available in the format of 2D slices,

further corroborates our choice of a 2D approximation.

Nonetheless, the extension of the model to a 3D space does

not pose in principle any particular issue. It would just require

a fairly large investment in terms of software development

and parallel computing. Once the model will be escalated

to the understanding of the effect of local curvatures and/or
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Fig. 1 Conceptual scheme

Parallel cascade of events

following hemodynamics

conditions variations.

Connections between nodes are

expressed by an oriented link in

the graph, where A → B

represents a direct influence of

node A on node B. If A induces

an increase of B, the

corresponding linkage is

indexed with a plus sign.

Alternatively, if A induces a

reduction of B, the

corresponding linkage is

negative (Garbey and Berceli

2013)

bifurcation, a 3D computational model will be required, but

this is not the case for the current work.

Finally, the new model has been cross-validated against

the DS and the ABM previously cited. This is an important

step of the development of every model; indeed, as largely

discussed in Garbey et al. (2017), to be able to cross-validate

two computational frameworks allows to choose the best

model to be used according to the purpose of the analysis

without giving up on the models’ accuracy.

2 Methods

In order to replicate the anatomy of a vein graft’s cross

section, shown in Fig. 2c, the support structure of the com-

putational model is divided in four sub-domains, which are

lumen, tunica intima, tunica media, and external surround-

ing tissue (external support). The intima is separated from

the media by a so-called internal elastic lamina (IEL) while

the adventitia is neglected being typically removed during

surgery.

The numerical model can be decomposed into three sub-

modules:

• Mechanical model (MM): It locally computes the value

of the mechanical quantities of interest such as luminal

blood flow velocity, strain energy across the wall, shear

stress at the wall, transmural pressure as well as diffusion

of growth factors (GFs) inside the wall.

• Tissue plasticity (TP): It defines the SMC mitosis/apoptosis

and ECM deposition/degeneration performed by SMCs

as stochastic laws driven by constant coefficients.
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Fig. 2 Vein graft histology and anatomy histological measurements

conducted both at the time of graft implantation, also pointing out the

separation between intimal and medial layers (a), and after a 6-month

post-implantation follow-up (b) with a comparison between two types of

outcome, clearly an effective remodeling (left) against a re-occlusion of

the graft (right). To be underlined how markedly different phenotypes

ranging from preservation of the lumen to severe intimal thickening

and lumen narrowing are commonly encountered (Garbey and Berceli

2013). The schematic cross section of a vein graft (c) finally shows how

between the intima and the media is the internal elastic lamina (IEL),

while the external elastic lamina (EEL) is between media and adventitia

Fig. 3 Experimental model bilateral vein graft with distal branch lig-

ation model. The most inferior branch of the external carotid served as

the only outflow for the low flow graft on the ligated side, resulting in

two distinct flow regimes (Klein et al. 2017)

• Tissue remodeling (TR): It computes the cellular migra-

tion that determines the matrix reorganization. This step

is the real core of the vascular adaptation, and it repre-

sents the key to finely replicate the inward/outward tissue

remodeling.

The general rationale of our method sees that the MM is

best described by the well-known partial differential equa-

tions (PDEs) of continuous mechanic described in White

(1991), the TP by an ABM that describes individual cells

behavior (Garbey et al. 2015, 2017), and the TR by particles

moving in a highly viscous incompressible media. Further

on the latter, the new way TR is based on the concept that

cells crawl through and within the ECM regulated by a vari-

ety of mecano-biology stimuli, and accordingly cells’ motion

should be computed on the basis of a continuum space (Quar-

anta 2000) rather than on a discrete grid.

The most challenging part is to be able to finely model

the forces that drive cellular motility both in a realistic way

that fits biological observations, but also with a relatively

simple mathematical formula that can be easily calibrated on

experimental data. As highlighted in Introduction, the corner-

stone of our model is its multiscale nature and so its building

must encompass multiple scales both in time and in space,

as described in Table 1.

The numerical discretization and the algorithm imple-

mented for each module and the sub-modules coupling
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Table 1 Multiscale nature of the hybrid model

Space scale versus timescale Second Hour Day

10−4 m TR TP

10−3 m CM TR

10−2 m CM

mechanisms share the same level of importance, and they

will be described in the following subsections.

2.1 Mechanical model (MM)

The blood flow in the lumen is described as a steady incom-

pressible flow that remains constant independently from the

inward or the outward nature of the graft remodeling. This

choice is in accordance with the property of the vascular sys-

tem of having a global controlled mechanism to maintain a

constant blood flow delivery (Guyton and Hall 2000).

This mechanism is responsible for the fact that often

stenoses are diagnosed only when the occlusion of the

vessel is so severe that makes this control mechanism to

fail. Accordingly, the numerical simulation was here imple-

mented in order to arrest once a stenosis has reached a 50%

occlusion.

The timescale for tissue plasticity, typically from days

to weeks, is sufficiently larger than the cardiac pulsation’s

frequency (order of seconds) to assume that the cells adapt

in response to a time-averaged condition of the mechani-

cal environment. We so implicitly supposed that the error

induced by neglecting the nonlinear convective term in the

Navier–Stokes equations and the use of a steady flow solu-

tion is smaller than the level of uncertainty that characterizes

the biology of the system. As a result, the standard set of

equations of a fully developed flow through a pipe was used

to simulate the blood flow across the vein, also assuming a

nonslip condition at the wall (White 1991; Maas et al. 2012).

The MM computes the velocity field inside the lumen and

the shear stress at the wall, labeled as τwall, and both the vari-

ables are updated if the variation of lumen geometry from

one time step to the subsequent is greater than a certain toler-

ance. The variation of lumen geometry is defined as follows:

distance
(

∂Ωnew
lumen, ∂Ωold

lumen

)

, (1)

where distance is the Euclidean distance between two con-

secutive time points of the lumen and tol is of the order of an

SMC diameter.

As this condition implies more than just one cycle of

cell division to be satisfied, it is clear how the mechanical

properties of the vein need to be updated only every few

hours because of the timescale of cell division and this is in

accordance with the steady flow approximation used for this

model.

The deformation of the wall was described either with

a thick cylinder approximation that can be easily computed

analytically with a MATLAB code (Zhao et al. 2003), or by a

neo-Hookean hyperelastic model, which is instead computed

by using a finite elements technique with FEBio software

(Maas et al. 2012). As guideline, the choice is driven by the

degree of closeness between wall and cylinder shape, for

which the closer they are, the more acceptable is to use a

simple thick cylinder approximation.

The description of the tissue mechanical properties is the

one already adopted in previous works by our group of inves-

tigators (Garbey and Berceli 2013; Garbey et al. 2015), and

accordingly, while the displacement of the wall is relatively

negligible, the spatial distribution of strain energy in the

wall, denoted as σ , influences SMCs’ metabolism within the

media. Additional details are also provided in “Appendix 1”

section.

Finally, the diffusion of a generic SMC division growth

factor (GF), triggered by the shear stress across the wall, and

so denoted as G(τ ), is computed with a standard diffusion

problem as follows:

∂G

∂t
= c �G in Ω, G|∂Ωlumen = F(τwall),

∂G

∂n
|∂Ω = 0,

(2)

where c is the diffusion coefficient. The use of GF is driven

by the need of transferring the biological effect of the shear

stress inside the wall.

In order to maintain the simplicity of the implementa-

tion, both the flow solver and the diffusion operator are

implemented with finite differences technique on a regular

cartesian grid with a space step slightly smaller than a SMC

diameter. As a first approximation, we used standard isotropic

diffusion for this 2D approximation of the wall. Finally, the

Dirichlet boundary conditions at lumen wall and the Neu-

mann boundary conditions at the external wall are imposed

by penalty method (Angot et al. 1999; Angot 2005).

2.2 Tissue plasticity (TP)

The activity of SMCs and ECM is described with an

ABM-based implementation (Wolfram 1983; Deutsch and

Dormann 2005; Hwang et al. 2013) that is mostly based on

a cellular automata principle governed by stochastic laws.

Accordingly, each cellular event is associated with a den-

sity of probability, represented by a mathematical function.

“Appendix 2” section gives a better insight on the ABM, and

the set of functions implemented in the current model is sum-

marized in Table 2 that reports the densities of probability for

SMC mitosis/apoptosis and ECM synthesis/degeneration.
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Table 2 Axiomatic description of the set of rules of the ABM

Rule Variable Function

pdivision = papoptosis = α1, SMC SMC equilibrium in basic solution

pdegradation = pproduction = α2, ECM ECM balance in basic solution

A(t) = exp − t−T
δT

; T = α3, δT = α4 All Factor all probability laws by macrophage activity

T and δT Macrophage time of maximum macrophage activity and relaxation time

p I
division = α1 A(t)

(

1 + α5
G(�τ)

τ̄

)

SMC Probability of SMC division in intima

p I
apoptosis = α1 A(t) SMC Probability of SMC apoptosis in intima

p I
production = α2 A(t)

(

1 + α6
�σ
σ̄

)

ECM Probability of ECM production in media

p I
degradation = α2 A(t) ECM Probability of ECM degradation in media

pmigration = α7 A(t)
(

1 + α8
G(�τ)

τ̄

)

SMC Probability of SMC migration from intima to media

The stochastic model describes how specific cellular

events depend on the local concentration of the associated

GF that is itself triggered by low shear stress at intimal level

or high strain energy at medial level (Szilagyi et al. 1973;

Roddy et al. 2003), making the probability of a cellular event

shear dependent and so, transitively, space dependent.

Intimal hyperplasia is the quasi-universal response to a

vascular injury for which a reduction of shear stress stim-

ulates specific GFs to switch their status from quiescent to

active. In order to simulate the switching from a normal con-

dition to a perturbed one, the key is to define a so-called

basic solution, where the system is stable and it is regulated

by standard mechano-environmental conditions that ensure a

fair balance between SMC rate of mitosis and apoptosis and

again a fair balance between the rate of ECM synthesis and

degradation.

To simulate both the basic solution and the perturbed state,

a mitotic cycle of 12 h has been chosen along with a 2 h cycle

for the ECM synthesis/degradation by a SMC. The choice

of both the mitotic cycle and the ECM synthesis time is in

accordance with previous works by our group of investigators

(Garbey et al. 2015); however, a better study of the mitotic

cycle length might further improve the accuracy of the model.

It is to be expected that said time is closer to 24 h than 12 h,

even though, seen the current implementation of the model,

a 12 h difference does not bring to a significant difference.

The system is investigated with a time step of 1 h, in which

each site of the ABM is interrogated to define if it is active

or not.

The basic solution truly represents a “healthy” vein at the

time of implant, and all the probability laws will be expressed

as function of the deviation of shear stress or strain energy

from an ideal shear/tension condition reached with the basic

solution itself.

To simulate the hyperplasia of the intima, it has to be

remarked how, when the vein graft is exposed to low shear

stress, the probability of SMC division is promoted in the

intimal layer and in particular in the spatial area next to

the lumen. This displacement in SMC production decreases

while moving away from the lumen wall also depending

on the rate of decay of the GF concentration through the

wall thickness that depends on the diffusion coefficient c, as

described with (2).

Finally, the rationale and the experimental background

behind the formulation of the probabilities of Table 2 have

been already largely addressed by our group in Garbey et al.

(2015) and Garbey et al. (2017) as well as the testing and the

cross-validation of the TP model (Garbey et al. 2017).

2.3 Tissue remodeling (TR)

In our previous works (Garbey et al. 2015, 2017), a single

SMC or an ECM element was represented by a hexagonal

site on a fixed grid and the reorganization of the matrix in

response to the graft’s adaptation was addressed by discretely

shifting the structure site by site following a minimum energy

path motion.

The flaw of this implementation consists in the fact that a

fixed grid constrains the reorganization of the matrix as the

tissue remodels itself.

It is for this reason that the greatest novelty of the cur-

rent approach is represented by the choice of a continuous

mechanic description for the structure that the model lays

on that is believed to have a better potential to represent

the biology accurately. Specifically, SMCs are not anymore

described as a hexagonal element of a fixed grid, but as par-

ticles crawling in a highly viscous flow, representing the

suspension matrix, and modeled as a simple disc of radius

RSMC.

According to biological evidences, SMCs can generate or

also degrade elements of ECM and this represents, respec-

tively, a source and a sink term in the balance of mass that

will be used to minimize the energy of the structure. Finally,
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as described in Fig. 2c, each layer of the graft is bounded by

an elastic membrane.

The ensemble of these considerations naturally suggests

the use of the immersed boundary technique originally devel-

oped by Peskin (2002) in order to simulate the remodeling

of the vascular structure.

The tissue remodeling is articulated in three phases that

will be addressed separately in the next subsections:

1. The immersed boundary method (IBM) algorithm and

its volume correction to take into account both the cell

activities and the membrane motion adjustment

2. The algorithm to describe SMCs motion under cell–cell

repulsion and other additional external forces

3. The inward versus outward remodeling at each time step

that will be chosen to minimize the mechanical energy

of the wall.

2.3.1 IBM algorithm

The tissue remodeling is achieved by running the IBM algo-

rithm for a period of time δt that corresponds to the tissue

relaxation time itself.

A time-split numerical implementation was considered for

which, at every cycle, the TP model is run with a time step

of 1 h, while the time step for the IBM algorithm, δt , is an

unknown parameter of the model, and it is legit to expect that

the larger δt , the more cylindrical the vein graft will end to

be.

On the other end, the spatial discretization of the IBM is

a Cartesian grid of space step h in both directions, where h

is chosen of the order of the SMC radius.

The formulation of the IBM algorithm is based on the

definition of the domains that it lays on and of the variables

that is regulated by. The algorithm is described in detail in

“Appendix 3” section, and in addition to it, the IBM algorithm

(Peskin 2002) offers dozen of different possibilities regarding

the choice of the temporal scheme, the space discretization,

the discrete approximation of the Dirac function, et cetera.

While planning the implementation, a compromise between

the stability of the scheme, which typically suffers from the

sharp numerical interface within the pressure field, and the

accuracy needed by this numerical feature must be taken into

account. A good example of how to manage this necessary

compromise is offered by Pacull and Garbey (2009), where a

comparison between possible implementations against stan-

dard benchmark problems is finely analyzed. Good examples

of these problems are the oscillation/relaxation of a stretched

“bubble” toward its equilibrium, or the motion of an elastic

“bubble” immersed in a cavity flow.

A standard projection scheme for the Navier–Stokes equa-

tions discretized with finite differences on a staggered grid

was used.

The momentum equation was discretized with central

second-order finite differences for the diffusion term and with

a method of characteristic for the convective term. The time

stepping is semi-implicit and first order in time to compute a

prediction of the velocity field V ∗ at time tn+1. Also, the cor-

rection step to ensure mass conservation uses the following

Hodge decomposition:

V ∗ = V n+1 +
�t

ρ
∇Π (3)

∇ · V n+1 = 0, V n+1
|∂Ω = 0, (4)

where V n+1 is the divergence-free exact projection of V ∗

and the corresponding projection operator is:

[

I − ∇�−1∇

]

.

The divergence of (3) leads to the pressure correction solution

of the Poisson problem as follows:

�Π =
ρ

�t
∇ · V ∗ (5)

By modifying the right-hand-side term of the Poisson

problem described with (4), the local source or sink of mass

corresponding to SMC mitosis/apoptosis or ECM produc-

tion/degradation was taken into account.

Finally, the variation in SMC and ECM balance clearly

depends on the unit of volume of the single SMC, that is

2π RSMC and on the unit of volume of the ECM element, that

is 2π RECM.

2.3.2 SMCmotility

The second phase of tissue remodeling consists into the

computation of SMCs motility. SMCs are here modeled as

particles embedded in a highly viscous media, and the algo-

rithm to compute their trajectory can be divided into two

consecutive steps.

First, SMCs move passively in the matrix by following

the media on the base of the local velocity field with the

same numerical scheme applied to the discrete point of the

immersed boundary, and second, SMCs move also actively

driven by multiple potential driving forces, listed below and

reported in detail in a series of published works (Carter 1967;

Bray 2000; Mitchison and Cramer 1996). The power of com-

putational models consists in their ability to perform several

virtual experiments in a relatively short time, offering the

possibility to test several biological hypotheses with high

flexibility. In this work, we used this feature by testing the

effect of several potential candidates to be the pivotal driver

of cellular motility, further focusing on four of them:
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• SMCs interact with each other. A description of such

interactions can be based on an analogous of the Lennard-

Jones potential as an initial guess. Under this hypothesis,

during mitosis the two cells may separate and remain at

a distance of about their diameter. This makes the two

Lennard-Jones potential coefficients to be cellular size

dependent. Melnikova et al. (2017) provides a detailed

cell–cell interaction potential model for the artery case

that will be interesting when we will have access to mea-

surements relative to arteries in our experimental model.

• Further motion of SMCs depends on the gradient of

molecules density that are the solution of a reaction–

convection diffusion system. Accordingly, a generic GF

has been introduced with (2) in order to describe the

chemotaxis that is originated by the cited gradient.

• Cell motility has a random component that participates

in their diffusion through the tissue.

• SMCs may infiltrate area free of cells to preserve the

tissue integrity. This motion corresponds to a mechanical

homeostasis, and it maintains a local balance between

SMC and ECM distribution to keep the matrix healthy

(Quaranta 2000; Humphrey et al. 2014).

To sum up, the trajectory of a SMC can be so described by

tracking its position along time with the following relation:

Ẋ = VS + VE + VG + VR, (6)

where X is the location of the single SMC.

In (6), VS sums up the repulsive forces between SMC. The

amplitude of this force decays with the distance, and in first

approximation, one can assume a linear decay toward zero in

nS units expressed in cell diameter. Consequently, cell–cell

interaction is only possible between elements belonging to

the same subdomain, i.e., intima or media, and also inter-

action is not possible between cells separated by a distance

larger than 2 ns RSMC, where ns has been chosen to be of

the order of few units.

VE sums up the attractive forces between SMC and the sur-

rounding area occupied by the extracellular matrix. It decays

linearly as for the cell interaction but in ne units and becomes

zero above a distance of 2 ne RSMC. ns and ne have a great

influence on the result of the simulation, and a deep analysis

of them will be useful to address some open problems of the

vein graft’s biology.

VG is proportional to the gradient of G that is the generic

GF that activates SMC proliferation.

Finally, VR is a random vector that mimics the noisy

character of cell motility. Its introduction is justified by the

assumption that a cell cannot move more than a radial unit

within the time step δt of the IBM algorithm.

An important feature of the method here proposed is that

it allows us to implement all these elements that are known

to play a key role at biological level and to also test several

combinations of them. However, compared to our previous

ABM (Garbey et al. 2017), the number of unknown parame-

ters used to describe the new cellular motility module grows

proportionally with the level of closeness of the model to the

physiological reality, and accordingly, a nonlinear stability

analysis will be needed to find the trade-off between com-

plexity and accuracy as already done in Garbey et al. (2015).

2.3.3 Inward–outward membrane motion adjustment

It is important to remark how, without an ad hoc adjustment,

the algorithm presented would always promote outward

remodeling at the expense of inward remodeling since the

medium in the lumen is incompressible.

The thought behind the design of this adjustment must

be driven by the need of minimizing the energy of the

deforming structure during the adaptation, and accordingly

a positive/negative term has been introduced in the mass bal-

ance, like already done for SMC and ECM dynamic. After all,

it has been well demonstrated that biological systems respond

to perturbations by minimizing the free energy level (Karl

2012). Being here the cellular dynamic the perturbation, the

wall will respond by reorganizing in order to minimize its

level of free energy.

Specifically, at each cycle, the mechanical potential

energy of the wall is computed with the MM and the sign

of the term is chosen to be concordant with the sign of the

derivative that minimizes the potential energy.

The hypothesis is so that the tissue accommodates to the

trans-mural pressure that is a combination of blood pressure

and external pressure from the surrounding tissue toward a

state that gives less mechanical stress on cells.

Few additional observations need to be remarked in order

to make the model even closer to the common knowledge of

the biology of vein graft:

• Macrophages in the wall typically getting access to

the system from the lumen or through the vasa vaso-

rum can be treated with the same particle mathematical

framework, but with different parameters describing size,

motility, et cetera.

• According to Peskin’s method (Peskin 2002), the IEL

has a certain porosity that allows SMC to pass through

according to the local mechanical stress of the membrane.

This would be convenient since SMC can migrate from

the media to the intima (Yuan et al. 2017; Hao et al. 2003).

• The volume of a “daughter” cell may increase in time

to an average value after mitosis. In our implementation,

a two-parameter description of the cell–cell interaction

has been used, specifically one parameter for the cell

side and one for the level of interaction, but in a more
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realistic representation the size of the cell should be time

dependent.

Among all the potential improvements of the model, it

is important to highlight how the level of detail is necessar-

ily driven by how feasible is to retrieve specific biological

measurements, needed to set up the model, from histological

data. As an example, one should ask herself how challeng-

ing tracking macrophages or measuring cells dimensions at

experimental level is. This should drive the always actual seek

of a necessary compromise between accuracy and feasibility

of the model.

Finally, most of the issues related to numerical stability

and mass conservation of the IBM were not encountered

because the flow is highly viscous with a low Reynolds

number, and the membrane has relatively low tension in the

immersed boundary calculation. Accordingly, there was no

need to correct the scheme to ensure mass preservation as

instead done in Pacull and Garbey (2009).

2.4 Plan of simulations

After having described the framework of the model, a plan of

the simulations is provided for the convenience of the reader,

along with the details on their setup:

1. A basic solution needs to be retrieved in order to serve

as baseline point for the vascular adaptation. The setup in

order to reproduce a healthy vein at the time of implan-

tation is the same already used in Garbey et al. (2017). It

is important to remark how, due to the stochastic nature

of the TP implementation, a result of the model can be

considered as robust only if run a number of times suffi-

cient to keep the standard deviation low, an aspect largely

addressed in Garbey et al. (2017).

As general rule within the presentation of the results,

a graft’s cross section is chosen among N independent

simulation as representative, while for the representation

of the temporal dynamic of specific cellular events, the

average trend is always chosen as the significant one.

2. Intimal Hyperplasia has been largely studied both by

simulating its early phase, i.e. 1 day of adaptation, and

by studying a longer follow-up like 1 month.

The choice of running the model for different follow-up

times is dictated by the need to distinguish the different

cellular motility impacts during the early phase rather

than during the late phase. Again the coefficients used to

properly tune the probability laws described in Table 2

are the same already used to retrieve intimal hyperplasia

in Garbey et al. (2017). A comparison between histology

obtained from experimental data and the output of our

model is also offered in order to appreciate the closeness

to the experimental reality, especially in terms of variety

of lumen encroachment.

3. A cross-validation between the new model and a zero-

dimensional dynamical system developed by our group

(Garbey and Berceli 2013) has been finally performed on

a 4-month follow-up base as it has been also done for the

ABM developed in Garbey et al. (2017). The motivation

and the rationale are the same, and the DS has been run

for cross-validation purposes with the following setup:

• A 50% decrease in shear stress from its baseline value

to stimulate SMC migration and subsequent prolifer-

ation in intima.

• Initial graft (R)/lumen(r )/IEL (re) radii are set to be

equal to the radii’s value recorded at the end of the

basic solution generation for the PDE model, and they

are R = 0.3; re = 0.28; r = 0.24 where all the

measures are expressed in mm.

• The constant coefficient γ , which corresponds to

α5, see Table 2 for reference, that leads SMC divi-

sion within tunica intima represents the unknown

coefficient that needs to be retrieved in order to cross-

validate the two models.

It is finally important to recall how, in order to calibrate

the DS on the PDE model, the distance between the same

output of the two models, that in this case is the temporal

dynamic of intimal area on a 4-month follow-up, has been

minimized by using a genetic algorithm (GA) and the

optimum value of γ retrieved accordingly.

3 Results

3.1 Basic solution

As anticipated in Methods section, the model was run in a

steady-state condition in order to generate the basic solution

representing the healthy vein at the time of implantation,

here reported in Fig. 4a, where each red dot represents a

SMC, while the green circle individuates the IEL. As it can

be seen, the starting hypothesis was to occupy the wall with

a 25% of SMCs while the remaining 75% is considered to be

uniform ECM. Already the replication of the initial condition

represents a good approximation of the histology of a vein

graft, a detailed description of which is reported in Berceli

et al. (2009).

3.2 Intimal hyperplasia

The study of intimal hyperplasia on two different follow-

up times is here presented in two separate subsections.

As anticipated in Introduction, we systematically compared

the cellular distribution obtained with our simulations with
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Fig. 4 Simulations results Cross section of the vein graft is reported

in a basic solution condition, i.e., healthy vein at the time of implan-

tation, at early stage of hyperplasia progressively adding up, b random

motion, c cell–cell repulsion, and d matrix invasion forces as cellular

motility drivers. Finally, the late phase of hyperplasia is represented

with an encroaching of the lumen affected by e vertical and f horizontal

stretching of the lumen itself

Fig. 5 Histology of a cross section of vein graft staining image of a

portion of graft’s wall where the blued dots identify the cells’ nuclei.

The stack of images were obtained via confocal microscopy and post-

processed in order to correct the artifacts due to the different depths of

cells with respect to the plan of visualization

images from histology obtained from our experimental

model of rabbit, a sample of which is shown in Fig. 5. It

is useful to remark how the goal is here to be able to reach a

relatively uniform distribution of cells within the intima and

the media in order to be as close as possible to the character

of distribution appreciable from Fig. 5.

Having set this as standard to be reached, and being our

hypothesis that this is feasible thanks to a detailed description

of the forces driving the cellular motility, the analysis of the

early stage of hyperplasia is here focused on verifying such

hypothesis.

3.2.1 Early phase of hyperplasia

Figure 4b reports the results for the early phase of intimal

hyperplasia showing how a random particles motion does

not contribute to distribute the SMCs uniformly in the intima

as instead retrievable from histology, and this is caused by

the motion restriction that affects SMCs because of the initial

thickness of the intima, which is about the dimension of a cell

diameter.

Indeed, because the intima is so thin, if a cell undergoes

apoptosis, it cannot be replaced by another one and the empty

spot remains vacant. However, it is also true that by releasing

this constraint on random SMC motion that exhibits friction

to the wall, for example by using a very low stiffness for

lumen wall or IEL, one allows a too large variation of the

intima that collapses unrealistically in some points, while,

also unrealistically, enlarges somewhere else.

By adding the repulsive cell–cell interaction, ranging up

to two cells diameter, the distribution of SMCs within the

intima gets more uniform as shown in Fig. 4c, even though

one can still observe the formation of clusters of SMCs that
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will eventually be trapped in pockets of the lumen wall and

there confined by the tension of the membrane itself.

In addition, from Fig. 4c, it is clear how some large areas

of ECM with no SMCs have the tendency to form and it is

evident how this deviates from the reality observed at histo-

logical data level, where SMCs distribution is more uniform

in radial direction.

A more uniform distribution is reached by adding the

matrix invasion term that is set up with an interaction coef-

ficient ne = 3 as shown in Fig. 4d. The cross-analysis of

Fig. 4b–d seems to confirm our hypothesis about the need of

an accurate and detailed description of the potentials driving

cellular motility, and this is not surprising seen that the reor-

ganization of the wall plays in general a key role during the

adaptation of the graft itself.

Finally, according to the purpose of the presented work,

SMC proliferation was not activated in the tunica media and

consequently a relatively stable and uniform distribution of

SMCs within the media can be observed. More precisely,

from the results presented in Fig. 4b–d, SMCs distribution in

the media is not affected by the type of algorithm chosen to

compute the cellular motility.

3.2.2 Late phase of hyperplasia

Figure 4e, f reports the result of two independent simulations

run with a follow-up time of a month. It is interesting to

observe how, on a longer follow-up, the SMC distribution still

retains its asymmetric character, which is not clear whether

it is justified at histological level or not.

Again, and not surprisingly, the distribution of the SMCs

in the media remains relatively uniform and unvaried, which

represents a solid milestone also considering that the new

model is inherently a smaller ABM than the one presented

in Garbey et al. (2017) but with a larger level of noise.

If needed, in order to promote radial symmetry, a poten-

tial solution will be to suppose that SMCs motility has a

preferred motion in the direction orthogonal to the radius in

order to align the cell arrangement with the dominant radial

strain energy, or alternatively that cell proliferation is higher

in areas characterized by a low SMCs density. Coupled to it,

an increase in the relaxation time δt might be another way to

further foster the SMCs distribution toward the radial direc-

tion.

Figure 6 shows a nice comparison between histology data

and our model. Data reported in the two left panels refer

to rabbit experimental model where intimal hyperplasia was

induced by graft ligation (Conte et al. 2006). It is nice to

appreciate how our model can catch the different patterns of

lumen encroachment, in this very case both horizontal and

vertical invasion. This result is remarkable because it proves

how our computational model shares the same uncertainty of

a true experimental setup, making it suitable not only to test

clinical hypotheses, but also to be used to design in advance

an effective experiments to wisely choose the values of the

driving coefficients of the model. An example is given in

Casarin et al. (2018), where a computational model of graft

adaptation is used in a twofold way: on the one end as virtual

dataset generator and on the other end as a true computational

model.

3.3 Cross-validation

In order to cross-validate the DS and the current model, the

very first step was to use the new PDE model to reproduce the

qualitative patterns studied for intimal hyperplasia with our

previous ABM (Garbey et al. 2017). The results of this step

can be appreciated in Fig. 7, where the temporal dynamic

of lumen area (a), intimal area (b), and medial area (c) are

represented. In every panel, each independent simulation is

marked with a different color and the average trend, which

serves as the representative one, is marked with a bold black

line.

Finally, the result of the calibration, taking as output the

temporal dynamic of lumen area, is reported in Fig. 8, show-

ing a high level of accuracy with a percentile relative error

lower than 2%, and requiring γ to be set up equal to 4.6 in

order to match with the DS the rate of intimal hyperplasia

obtained with the PDE model.

4 Discussion and conclusion

A large stream of works on multiscale modeling of vascular

adaptation, especially after stenting in arteries, has been so far

developed, and it is available from the literature (Nolan and

Lally 2018; Boyle et al. 2010; Zahedmanesh and Lally 2011;

Zun et al. 2017; Amatruda et al. 2014; Tahir et al. 2013, 2014,

2015). Even though they do not take into account the detailed

structure of the wall, they will serve as an excellent base to

test the new generation of vascular treatments, such as cov-

ered stents or angioplasty using drug-eluted balloon. Taking

inspiration from them, our model shares some of the main

concepts and limitations of these multiscale models, even

though our focus on vein graft adaptation, rather than arte-

rial response to treatments, makes the requirements in terms

of modeling very different. Arterial wall has high anisotropic

properties as opposed to vein grafts because of the key role

of ECM fibers in the media. During the intervention, the vein

graft loses its adventitia, which is not the case for arteries,

and during the early stage, the intimal layer is extremely thin

and it undergoes through a dramatic adaptation. As discussed

in Garbey and Berceli (2013), the interplay between the var-

ious components of the system, i.e., SMC, ECM, leads to

a high complexity of feedback mechanisms that are usually

well captured by the cited dynamical system.
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Fig. 6 Histological comparison histology data of rabbit model setup to study intimal hyperplasia (left two panels) (Conte et al. 2006) are compared

with the variety of graft’s cross sections obtained as output of our model (right two panels)

Fig. 7 Intimal hyperplasia-long term follow up The temporal dynam-

ics of a lumen area, b intimal area, and c medial area are represented

on a postsurgical follow-up of 4 months. Each plot is normalized on

the value recorded at the beginning of the follow-up. The colored lines

correspond the output of a single simulation, while the black line cor-

responds to the mean trend of 10 different and independent runs

It has been reported that the percentage of the volume of

SMC in vein graft intima ranges from about 20–40% regard-

less of intimal thickness (Kohler et al. 1991; Kraiss et al.

1991; Zwolak et al. 1987). It is for this reason that a descrip-

tion where SMC get packed (Melnikova et al. 2017) may not

be best in that situation.

It also seems essential to provide a computational model

that can test various hypotheses on the role of the matrix

reorganization and cell motility in vascular adaptation. Vein

Fig. 8 Cross-validation The Dynamical System is calibrated on the

mean output of the PDE model. Figure shows the temporal dynamic of

the lumen area as output of the PDE (solid line), and as output of the

Dynamical System (dashed line) on a 4 months postsurgical follow-up

grafts are probably a good way to start because the detailed

structure of the wall has less complexity than a main artery.

However, the role of the matrix might have been underes-

timated (Evans et al. 2008) in most current computational

models to some extent.

In the current work, a model of vascular adaptation has

been implemented representing a generalization of a previous

ABM developed by our group and laying on a hexagonal fixed

grid structure.

Within this latter, the use of a fixed grid represented a clear

limitation toward a model close enough to the physiological

reality and it is for this reason that different techniques have

been studied in order to bypass this kind of limitation (Hwang

et al. 2009; Johnston et al. 2013; Browning et al. 2018).

In the new approach presented, we used a technique that

relies almost entirely on PDEs and differential equations to

compute the plasticity of the wall and the motility of the

cells without being limited by a fixed grid. Delegating the

goodness of the model almost entirely to the accuracy of

the SMCs motion description made the thinking behind the

architecture of the motion algorithm the real challenge of our

approach.

As it has been appreciated in Results section, the key point

was to understand which forces play a key role in providing a
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uniform cellular distribution across the wall. The power of the

model is indeed its capability of testing different hypotheses

at computational level in a short time and in an effective way.

One clear evidence retrieved by studying the output is

that the matrix invasion by SMCs is pivotal in order to main-

tain mechanical homeostasis and consequently to reproduce

experimental data accurately.

Another evidence is about the distance between cells;

indeed, it has been proved both how a short distance inter-

action in the close proximity of a cell may not be sufficient

to explain the evidences observed at histological level, but

also how a distance of the order of few cells is enough to

match the experimental reality, a statement supported by the

concept of interstitial cellular flow of small molecules.

Future developments of the current model will certainly

see the study of other cellular events, for example medial

mitosis, ECM synthesis, and degradation both in intima and

in media, cellular motility following inflammation during the

very early postsurgical follow-up. These are only few of the

many to be implemented in order to bring the model closer to

the physiological reality. Also, a 3D extension will be imple-

mented, which will set aside the uncertainties due to the low

number of SMCs involved in each simulation. Another nec-

essary future step will be represented by an extensive analysis

of data from histology, in order to better reconstruct the ini-

tial structure of the vein, which will be done by following the

experimental scheme proposed in Klein et al. (2017).

Finally, the work recently published by Browning et al.

(2018), based on prostate cancer cell lines, gives an excellent

example of what should come next in this vascular adaptation

study.

Acknowledgements National Institutes of Health (NIH) Grant

U01HL119178-01 has supported in full this work.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Appendix

A1Mechanical model

A1.1 Approximation of flow velocity and shear stress

In order to compute the steady potential flow inside the

lumen, we used a zero-velocity boundary condition at the

wall ∂Ωlumen, and the conservation of flux at the timescale

of tissue plasticity, which is written as follows:

∫

Ωlumen

u dy dz = Flux,

Further, the flow inside the lumen is driven by a con-

stant pressure gradient dP

dx
, as shown in Figure S1. From this

potential flow solution, the equations for the fully developed

duct flow are written as

d2u

dy2
+

d2u

dz2
=

1

μ
=

dP

dx
= C t , u|∂Ωlumen = 0,

and they are used to compute the normal shear stress compo-

nent at the wall (τwall), where μ is viscosity. A finite volume

scheme and an immersed boundary implementation of the

nonslip condition at the wall are then used to compute the

fluid velocity on a regular spatial grid. While fluid shear stress

is applied only on the luminal surface ∂Ωlumen, the biological

effect of this shear stress [e.g. growth factor (G) and cytokine

production] is transferred to the most superficial portions of

the wall solver.

A1.2 Analytical model of thick wall tissue deformation

This model can be used at the early stage of the vein graft

adaptation when the graft is close to radial symmetry (Zhao

et al. 2003):

The wall deformation depends on the difference between

pressure at lumen wall and the pressure at the EEL wall,

defined as

�P = PEEL − Plumen.

The transmural pressure �P generates the load. Let us

assume first that the vein graft has a thick wall (Rlumen, REEL)

with uniform linear elastic mechanical properties. For sim-

plicity, we make the hypothesis of an open-ended tube, i.e.,

σz = 0. The radial stress σr and circumferential stress σθ are

then given by Kleinstreuer (2006),

σr (r) =
p1r2

1

r2
2 − r2

1

(

1 −
r2

2

r2

)

−
p2r2

2

r2
2 − r2

1

(

1 −
r2

1

r2

)

,

and

σθ (r) =
p1r2

1

r2
2 + r2

1

(

1 −
r2

2

r2

)

−
p2r2

2

r2
2 + r2

1

(

1 −
r2

1

r2

)

,

where r1 = Rlumen, r2 = REEL, p1 = Plumen, p2 = PEEL.

The stress distribution in the radial symmetric thick cylin-

der case is independent on the stiffness or compression ratio

of tissue, i.e., no dependence on Young’s modulus E neither
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Poisson ratio ν. is recorded. This is, however, not true for the

displacement which is so defined:

u(r) =
C1

2
r +

C2

r
,

where

C1 (λ + μ) =
p1r2

1 − p2r2
2

r2
2 − r2

1

,

2 μC2 =
p1 − p2

r2
2 − r2

1

r2
1 r2

2 ,

and λ,μ are the Lamé coefficients:

λ =
Eν

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
.

A1.3 FE model of thick wall tissue deformation

If the wall looses radial symmetry, one must use a numerical

algorithm to retrieve the wall tension at specific locations

inside the wall. It is convenient then to use a FE code based

on a more elaborate model of tissue deformation than just a

simple linear elasticity model.

We used a neo-Hookean model to find the deformation of

tissue of the vein:

W = μ/2
(

J− 2
3 I1 − 3

)

+
K

2
(J − 1)2,

where W is the strain energy per unit of volume, I1 is the

first invariant of the left Cauchy–Green deformation tensor,

μ is the initial shear modulus of the material, K is the bulk

modulus, and J is the determinant of the elastic deformation

gradient.

We use the software Gmsh to generate the finite element

mesh of the wall and Febio software (Maas et al. 2012) to

calculate the tension at each node of the mesh after applying

neo-Hookean model:

σ =

√

[(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2]/2.

where λi are the eigenvalues of the stress or strain tensor of

each point of the node. We refer to Garbey et al. (2015) for

a detail description of the implementation.

A2 Agent-basedmodel

The agent-based model that describes the SMC mitosis and

apoptosis as well as ECM deposition/degeneration follows

the algorithm given in Figure S2, while Table 2 provides the

probability laws for each cellular event.

A3 IBM algorithm

The primitive variables are V and P , respectively, the veloc-

ity and pressure of the fluid, which physical parameters

correspond to the uniform viscosity μ and the uniform den-

sity ρ. The fluid domain Ω = (0, 1)2 ⊂ R
2 is a square

described by the Cartesian coordinate vector x . Γ ⊂ Ω is

denoted as a generic immersed elastic boundary, which curvi-

linear dimension is m (m ≤ d). X is the Lagrangian position

vector of Γ , expressed in the d-dimensional Cartesian ref-

erential. The Lagrangian vector f is the local elastic force

density along Γ , also expressed in the Cartesian referential.

f is projected onto Ω to get the Eulerian vector field F that

corresponds to the fluid force applied by the immersed elastic

boundaries.

For simplicity, the method is here restricted to a single

immersed elastic boundary, even though in order to fit the

anatomy of the vein graft, see Fig. 4, three separate immersed

boundaries have been used: (i) the lumen wall Γlumen, (ii) the

IEL ΓIEL, and the external elastic lamina (EEL) ΓEEL.

If s ∈ (0, 1)m is the curvilinear coordinate of any points

along Γ , and t ∈ [0, tmax] is the time variable, the different

mappings can be summarized as follows:

V : (x, t) ∈ Ω × [0, tmax] −→ R
2

P : (x, t) ∈ Ω × [0, tmax] −→ R

X : (s, t) ∈ (0, 1)m × [0, tmax] −→ Ω

f : (s, t) ∈ (0, 1)m × [0, tmax] −→ R
2

F(x, t) ∈ Ω × [0, tmax] −→ R
2

One of the cornerstones of this method is the explicita-

tion of the fluid–elastic interface interaction, which model

is unified into a set of coupled partial differential equations

(PDEs). To build that, the incompressible Navier–Stokes sys-

tem is written as:

ρ

[

∂V

∂t
+ (V .∇)V

]

= −∇ P + μ�V + F (7)

∇ · V = 0 (8)

The IBM algorithm requires the extrapolation of the Lagrangian

vector f into the Eulerian vector field F from the right end

side of (7). For this purpose, a distribution of Dirac delta

functions δ is used, such as:

F(x, t) =

∫

Γ

f (s, t)δ (x − X(s, t))

ds =

{

f (s, t), if x = X(s, t)

0, otherwise
(9)

The motion of the immersed boundary finely mimics the

motion of the particles suspended in a fluid thanks to the non-

123



A versatile hybrid agent-based, particle and partial differential equations method… 43

slip boundary condition, approximated with (10) by using the

Dirac delta function as an interpolating tool for V , between

Ω and Γ :

∂ X(s, t)

∂t
=

∫

Ω

V (x, t)δ(x − X(s, t))

dx =

{

V (X(s, t), t), if x = X(s, t)

0, otherwise
(10)

The immersed boundary dynamic is regulated with a lin-

ear elastic model that has been implemented by using the

Hooke’s law of elasticity, for which the tension T of the

immersed boundary is a linear function of the strain energy.

For a one-dimensional boundary like the one being described,

the tension is written as

T (s, t) = σ

∣

∣

∣

∣

∂ X(s, t)

∂s

∣

∣

∣

∣

, (11)

where σ is the boundary elasticity coefficient, and conse-

quently the local elastic force density f is written as

f (s, t) =
∂ (T (s, t)τ (s, t))

∂s
, τ (s, t) =

∂ X(s, t)/∂s

|∂ X(s, t)/∂s|
,

(12)

with τ being the vector tangent to Γ . Finally, by replacing

(11) into (12), the local elastic force density assumes its final

form that is written as

f (s, t) = σ
∂2 X(s, t)

∂s2
. (13)
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