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Abstract—A versatile mass-sensing platform based on the 

nonlinear dynamical response of a microcantilever embedded in 

a self-excitation feedback loop is proposed. It is experimentally 

shown that the delay imposed in the feedback loop by an 

adjustable phase-shifter can be used to finely tune this system to 

work in three different modalities, according to the desired mass 

sensing application: i) as a continuous mass sensor, where the 

oscillation frequency smoothly responds to changes in the mass 

added to the resonator; ii) as a threshold sensor, where a sudden 

change in the oscillation frequency is triggered by an arbitrarily 

small change of mass added to the cantilever; and iii) as a stable 

microresonator, whose oscillation frequency is almost not 

affected by environmental conditions, such as changes in added 

mass, or in density/ viscosity of the surrounding fluid. This 

variety of dynamical responses was registered for a wide range of 

added masses, in the form of beads individually attached to the 

cantilever. A complete analytical model to explain the observed 

experimental results is derived and shows a strong agreement 

with the measured data. The high resolution and signal-to-noise 

ratio, as well as the threshold and stable sensing modalities 

obtained with this closed-loop technique, are not available in the 

current open-loop microcantilever-based mass sensors.    

 
Index Terms—Mass-sensing, nonlinear oscillations, self-excited 

microcantilever. 

 

I. INTRODUCTION 

Microelectromechanical systems (MEMS) have emerged in 

the last decades as the best candidates for a wide range of 

technological and scientific applications. Microresonator-

based sensors, actuators or signal processing components 

benefit from the high resonance frequencies and quality 
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factors (Q) characteristic of these mechanical resonators [1]. 

Their microscopic dimensions and very small active masses 

render these devices extremely sensitive to external 

perturbations from the surrounding environment, and were 

crucial to successfully develop imaging applications [2] or 

force [3], viscosity [4], temperature [5] and mass sensors [6], 

[7]. 

In particular, micromechanical resonators used for mass 

sensing have the potential to ultimately measure the mass of 

individual molecules, being only limited by the fundamental 

noise processes [6]. Typically, the operation of 

micromechanical mass sensors relies on detecting the 

resonance frequency shift induced by an additional mass 

adsorbed on the surface of the probe. The sensitivity is known 

to be greatly improved by using smaller devices, low-noise 

motion detection and ultrahigh vacuum. An extreme 

optimization of these parameters on a single experiment 

allowed achieving a yoctogram (10-24 g) resolution [7]. One of 

the major concerns that must always be addressed when 

developing a mass sensor is the reduced bandwidth – often 

less than 1Hz [8] – due to the large quality factor of externally 

excited microresonators operating in air, which induces long 

transients. On the other hand, performing measurements in 

viscous fluids decreases the quality factors and the sensitivity, 

and often reveal the presence of the undesired spurious 

mechanical modes [9], [10]. When measuring the resonance 

frequency shift caused by the added mass of interest, it is 

usually assumed that the mass is distributed evenly on the 

probe surface, which is not necessarily true. In addition, when 

individual masses, such as cells or proteins, are attached, the 

response of the resonator depends on the actual position of the 

added mass [11]. Therefore, negative pressure in hollow 

cantilevers [12], mechanical traps [13] or centrifugal forces 

[14] were used to place the particles at a specific position 

along the probe. 

More recently, strategies where the microresonator is 

embedded in a feedback loop proved to be very effective in 

obtaining a more selective frequency response, which can be 

crucial to overcome the low quality factor typically associated 

with viscous media and the undesired forest of peaks. Among 

the proposed strategies are the Q-control [15], parametric 

resonance [16], [17] and self-excitation circuits [18], [19]. In 

addition, using feedback loops makes the response of the 

resonator faster, which translates to a significant increase of 

measurement bandwidth. Generally, the resonance frequency 

of the device is continuously tracked by a frequency-

modulated phase-locked loop (PLL), allowing measuring 

adsorption events in real time with sensitivities in the order of 
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atto- or zeptogram (10-18 to 10-21 g) [20]-[22]. Applying the 

same concept for measuring multiple eigenmode frequencies 

simultaneously allows the determination of position and mass 

distribution of the analytes [23].  

One of the main drawbacks of using feedback loops to 

improve sensing performance is the presence of different 

sources of nonlinearities introduced, for example, by the 

nonlinear electronic components required to process the 

signals or even by the intrinsic mechanical nonlinearities of 

the resonator. The analysis of the dynamics of microresonators 

in presence of mechanical nonlinearities has shown interesting 

and surprising phenomena, such as stable operation of the 

resonators far beyond the critical vibration amplitude [24], 

[25] or bistable regimes [26], [27]. It was also shown that the 

frequency of oscillation is strongly dependent on the delay 

affecting the feedback signal [27]-[29]. 

This work shows how shifting the signal along a self-

excitation loop composed of a cantilever, a gain, a saturator 

and a tunable phase-shifter affects the dynamical response of 

the cantilever, and how it is possible to use this platform in 

three different regimes: as a high-sensitivity mass sensor, as a 

threshold mass sensor, and as a stable microresonator whose 

oscillation frequency is almost unaffected by the 

environmental conditions. The authors have previously studied 

and modeled a similar system in [29] and proposed it as a 

viscosity sensor in [30]. Here, such model is extended to 

incorporate the presence of the added mass, and the dynamical 

response of the cantilever is theoretically and experimentally 

studied as function of the added mass (in the form of attached 

beads) and of the feedback delay that is introduced in the loop 

by the phase-shifter.  

The paper is organized as follows: in section II the 

experimental setup is discussed. Special emphasis is given to 

the description and characterization of the phase-shifter, and to 

the methods of attaching and measuring the diameters and 

mass of the beads used to change the mass of the resonator. 

Experimental results illustrating the nonlinear behavior of the 

self-excited oscillation frequency for different added masses 

and delays in the feedback loop are presented in section III. In 

section IV the nonlinear response of the cantilever is discussed 

by analyzing the phase condition for the existence of self-

sustained oscillations and an analytical model describing the 

dependence between the self-sustained oscillation frequencies 

and the added mass is derived. Finally, some conclusions are 

discussed in section V. 

II. EXPERIMENTAL METHODS 

A. Experimental setup 

A schematic of the experimental setup used to study the 

dynamics of the sensor operating in air is shown in Fig. 1(a). 

Glass and polystyrene beads are individually attached to the 

cantilever to change the effective mass of the probe. The 

cantilever motion is acoustically excited by a dither piezo and 

optically detected by a four-quadrant detector connected to a 

R9 controller (RHK Technology). The switch S indicates the 

possibility of selecting between two different measuring 

configurations: traditional amplitude modulation or open-loop 

mode (AM in Fig. 1), and autotapping or closed-loop mode 

(AT in Fig. 1). In the open-loop mode, the dither piezo is 

externally excited by a function generator, using sinusoidal 

signals at different frequencies. The amplitude and phase of 

the deflection signal are measured using a lock-in. Both the 

function generator and the lock-in are available in the R9 

controller itself. In the closed-loop mode, the deflection signal 

coming from the detector is fed into an electronic circuit 

(Elbatech srl) composed of a tunable phase-shifter, a gain and 

a saturator, before being fed back to the excitation dither piezo 

as a voltage to induce the self-oscillations of the cantilever. 

The amplitude and frequency of these oscillations are 

measured from reading the deflection signal with an external 

oscilloscope (Tektronix TDS-2022).  

The total delay, 𝜏𝑡𝑜𝑡, shown in Fig. 1(a) represents the intrinsic 

delay of the feedback loop, i.e. the time that the deflection 

signal naturally takes to go around the feedback loop once. 

This delay is responsible of shifting the initial sinusoidal 

deflection signal by several periods. It was shown in [29] that 

the total delay, 𝜏𝑡𝑜𝑡, results from individual contributions of 

the electronic components of the circuit (gain + saturator), 𝜏𝐸𝑇 , the electronic elements composing the phase-shifter, 𝜏𝑃𝑆, 

and the delay caused by the propagation of the elastic waves in 

the cantilever and holder materials, 𝜏𝐶𝑇 . The first two terms, 𝜏𝐸𝑇  and 𝜏𝑃𝑆, were individually estimated in [29] by connecting 

sinusoidal signals to the inputs of these circuits and measuring 

the phase shift of the corresponding outputs. The last term of 

the total delay, 𝜏𝐶𝑇 , depends on the specific connection 

between the cantilever and the holder, and must be measured 

every time a new probe is used.  

The adjustable phase-shifter introduced in the feedback loop 

allows adding an extra phase shift to the natural phase shift 

induced by the total delay of the system. Its role is to finely 

control the phase between the cantilever deflection and the 

dither piezo excitation. Fig. 1(b) shows the electrical 

schematics of a single stage of the phase-shifter, which works 

as an all-pass filter capable of shifting the signal by at most -π 
radians. The complete phase-shifter consists of two of these 

stages connected in series (inducing a total phase shift of -2π 
radians), each stage being individually operated by adjusting a 

potentiometer which controls the value of a resistor, 𝑅𝑖, 
between 0 and 10.2 kΩ. The values of the capacitances of each 
stage, 𝐶𝑖, are fixed in the circuit and are chosen accordingly to 

the working range of frequencies, to guarantee that at least one 

of the stages can effectively reach the maximum phase shift of 

-π radians. Finally, there is also the possibility of inverting the 
polarity of the voltage signal applied to the terminals of the 

dither piezo, as shown by the parameter p = ±1 of Fig. 1(a). 

This option allows users to shift the signal by extra -π radians.  
To summarize, the two stages of the phase-shifter, combined 

with the possibility of inverting the polarity of the signal that 

feeds the piezo, can be used to adjust the phase-shift of the 

signal along the feedback loop by a complete period (-2π 
radians). Note that this shift will add to the shift caused by the 

intrinsic total delay of the system, 𝜏𝑡𝑜𝑡. The influence of 
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feedback delay on the dynamic response of the cantilever with 

different added masses will be assessed in this work. 
 

 

Fig. 1.  a) Schematic of the experimental setup. A glass/polystyrene bead is attached to the silicon cantilever. The cantilever motion is acoustically excited by a 

dither piezo and optically detected using a four-quadrant detector. In amplitude mode (AM), or open-loop mode, the function generator sweeps the excitation 

driving frequency, and deflection amplitude and phase are recorded. In autotapping mode (AT), or closed-loop mode, the deflection signal is fed back to the 

piezo as a voltage, after being shifted by the total delay and by an adjustable phase-shifter, amplified by the gain and limited by the saturator in the feedback 

loop. The polarity of the voltage applied to the dither piezo can be inverted (p = ±1). b) Detail of a single stage of the phase-shifter, capable of shifting the signal 

by at most -π radians. Two stages were connected in series. The values of C1 and C2 are 237 pF and 5.14 nF in each stage, respectively, and the two 

potentiometers R1 and R2 are adjustable within the range 0-10.2 kΩ. 

 

The closed-loop configuration shown in Fig. 1(a) generates 

self-sustained stable oscillations of the cantilever with angular 

frequency 𝜔𝑜𝑠𝑐 . The onset of the self-oscillations results from 

a competition between the feedback gain, which constantly 

amplifies the motion of the cantilever, and the presence of the 

nonlinear saturation, which constantly limits these trajectories. 

When the system reaches a steady-state, the cantilever self-

oscillates with a frequency and amplitude ensuring that the 

overall loop gain is unitary and that the total phase shift of the 

signal around the feedback loop is an integer multiple of -2π 
radians, see section IV [29], [30]. 

In this work, the dynamic response of the silicon ACST 

cantilever (from AppNano) vibrating in air with five different 

beads attached was characterized using the open-loop and 

closed-loop configurations. The cantilever natural resonance 

frequency (in air and with no mass attached) was measured 

using the open-loop configuration. The length and width of the 

cantilever were measured from visual inspection on the 

microscope using the calibrated micrometer ruler shown in 

Fig. 2(a). Finally, the thickness, fundamental resonance 

frequency and spring constant were estimated as described in 

section II. Table I shows the estimated and measured 

geometrical and dynamical parameters of the cantilever.  

 

TABLE I 

GEOMETRICAL AND DYNAMICAL PARAMETERS OF ACST 

CANTILEVER MEASURED EXPERIMENTALLY 

ACST (AppNano) 

Length (μm) 160 

Width (μm) 33 

Thickness (μm) (eq. (1)) 2.91 

Frequency (kHz)  162.32 

Spring Constant (N/m) (eq. (4)) 8.92 

 

B. Attaching the beads 

Different micrometric beads of glass (Monospheres, 

Whitehouse Scientific LTD) or polystyrene (Latex beads 

polystyrene, Sigma-Aldrich) were individually attached to the 

free-end of the cantilever. The attached beads work as a 

concentrated mass of a known material, located at a known 

position along the cantilever. This approach is crucial to 

perform repeatable experiments and to validate the analytical 

model. More complex strategies to add mass to the cantilever, 

such as deposition techniques or chemical reactions on the 

surface, would make it difficult to control, for example, the 

thickness or stress of the added layer which can change the 

stiffness and resonance frequency of the cantilever. 

For such validation purpose, a simple process to attach the 

individual beads was developed: a very small amount of beads 

were randomly spread on a clean microscope slide and put 

underneath the cantilever. This tipless cantilever is part of an 

AFM setup and its in-plane position and height can be 

regulated using two micrometric screws. An optical 

microscope was then placed on top of this apparatus and 

focused on the beads distributed on the microscope slide. To 

attach the beads, the cantilever was carefully moved down and 

laterally, while looking through the microscope, until the 

center of its free-end on the bottom surface went in contact 

with one single isolated bead. Finally, at this point, an extra 

slight movement down of the cantilever is used to apply a 

small pressure to the bead and facilitate the attachment. This 

contact was perceptible on the microscope by the bending of 

the cantilever. The cantilever was then brought up using the 

micrometric screws and most of the times the chosen bead was 

found attached to the probe bottom surface (the large ratio 

between cantilever surface and volume of the beads contribute 

favorably to the attachment, due to surface electrostatic forces) 

[31]. To confirm the attachment, the microscope slide 

underneath the cantilever was substituted by a mirrored 

surface, which allows to observe the bottom 
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Fig. 2.  Optical images of the beads attached to bottom surface of the cantilever and the respective diameters estimated optically. a) Calibration slide used to 

estimate the dimensions of the cantilever (length and width) and diameter of beads; b) and c) big and small glass beads, respectively; d, e, f) Big, medium and 

small beads of polystyrene, respectively. All the images have the same magnification. 

side of the cantilever with the attached bead. Some images of 

the different beads, shown in Fig. 2, were recorded with a 

camera connected to the microscope. To cover several orders 

of magnitude of added masses, five beads of different sizes 

and two different materials were individually attached to the 

tip of the cantilever: one small and one big bead of glass, and 

one small, one medium and one big bead of polystyrene.  

 

C. Measuring mass and diameter of the beads 

1) Optical estimation of bead diameter and mass 

The diameters of the beads were estimated from the images 

acquired on the microscope using a CCD camera (Basler 

acA250014gc) at 2590x1942 pixels. The reported bead 

diameter is the mean value of the width of three different 

profiles, processed using the free software Gwyddion [32] and 

compared with the image of a calibrated micrometric ruler 

(AmScope MR095 Microscope Stage Calibration Slide). The 

micrometric ruler and the five beads attached with the 

respective estimated diameters are shown in Fig. 2.  

The optical estimation of the beads diameter (with associated 

error) is shown in Table II. The mass of the beads was then 

calculated from the optically estimated diameter of each bead, 

considering the density of the materials [33], [34] and 

assuming that the beads are perfect spheres.  

 

2) From the resonance frequency of the cantilever with the 

beads attached 

An alternative way of determining the mass and diameter of 

each bead is based on the resonance frequency of the 

cantilever with the beads attached (measured in open-loop 

mode). This method allows a more complete characterization 

of the cantilever, which is useful for the modeling performed 

in later sections. The cantilever thickness can be determined 

from the Euler-Bernoulli beam equation with the appropriate 

boundary conditions [35], using the value of resonance 

frequency of the cantilever in air and with no added mass 

measured in open-loop mode (𝑓0 = 𝜔02𝜋 = 162.32 𝑘𝐻𝑧) and the  

optically estimated length L of the beam:  𝑇 = 𝜔0 𝐿2(1.8751)2 √12𝜌𝐶𝑇𝐸 = 2.91𝜇𝑚.            (1) 

 

In this equation, 𝐸 = 179𝐺𝑃𝑎 and 𝜌𝐶𝑇 = 2330𝑘𝑔/𝑚3 are the 

Young’s modulus and the density of the silicon, respectively. 
The calculated value of thickness is reported in Table I. 

In this work, the cantilever is modeled as a single-degree-of-

freedom damped harmonic oscillator, with an added mass and 

subject to a hydrodynamic force. This model is an extension of 

the model presented in reference [30], in which the cantilevers 

oscillated in viscous fluids. The total hydrodynamic force is 

described by an inertial and a dissipative term, which account, 

respectively, for the weight of the layer of fluid that the beam 

displaces as it moves, and for the viscous drag force exerted 

by the fluid on the moving cantilever [36]. These two terms 

can therefore be modeled as a hydrodynamic mass, 𝑚ℎ𝑦𝑑𝑟𝑜, 

and a hydrodynamic damping coefficient, 𝑐ℎ𝑦𝑑𝑟𝑜, and 

approximated by [30], [36]-[38]:    

 𝑚ℎ𝑦𝑑𝑟𝑜(𝜔) = 𝜋4 𝜌𝑊2𝐿 (𝑎1 + 𝑎2𝑊 √2𝜂𝜌𝜔)                                   (2) 𝑐ℎ𝑦𝑑𝑟𝑜(𝜔) = 𝜋4 𝜌𝑊2𝐿𝜔 (𝑏1𝑊 √2𝜂𝜌𝜔 + 2𝜂𝜌𝜔 (𝑏2𝑊)2).                       (3) 

 

Both hydrodynamic parameters depend on the angular 

frequency of oscillation 𝜔, the viscosity 𝜂 and density 𝜌 of the 

surrounding fluid, and on the constants a1 = 1.0553, a2 = 

3.7997 and b1 = 3.8018 and b2 = 2.7364. Finally, L and W 

represent, respectively, the length and width of the cantilever 

measured optically and shown in Table I.  

According to the harmonic oscillator model, the resonance 

frequency of the cantilever vibrating in air and with no added 

mass is given by 𝜔0 = √𝑘 𝑚𝑟_0⁄ , where 𝑘 is the spring 

constant of the cantilever and 𝑚𝑟_0 accounts for the effective 

mass concentrated on the tip of the cantilever with no bead 

attached (the index 0 is used hereafter to denote the case 

where no bead is attached). 

This expression is used to calculate the spring constant of the 

cantilever, knowing that 𝑓0 = 162.32 𝑘𝐻𝑧 and considering 

that 𝑚𝑟_0 = 0.24 (𝑚𝐶𝑇 + 𝑚ℎ𝑦𝑑𝑟𝑜(𝜔0)) [39]:  

 𝑘 = 𝜔02 0.24 (𝑚𝐶𝑇 + 𝑚ℎ𝑦𝑑𝑟𝑜(𝜔0)) = 8.92 𝑁/𝑚,              (4) 
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where 𝑚𝐶𝑇 = 𝑇𝐿𝑊𝜌𝐶𝑇 = 3.53 ∙ 10−11 𝑘𝑔 is the total mass of 

the cantilever and 𝑚ℎ𝑦𝑑𝑟𝑜(𝜔0) is substituted by the expression 

given by (2), considering the frequency 𝜔0 and the properties 

of the air (𝜂 ≈ 1.8 × 10−5𝑃𝑎 𝑠 and 𝜌 ≈ 1.29 𝑘𝑔/𝑚3 [40]). 

The calculated value of 𝑘 is presented in Table I. It is worth 

noting that the value of the spring constant obtained with this 

method (𝑘 = 8.92 𝑁/𝑚) is in close agreement with the value 

obtained by the well-known expression 𝑘 = 𝐸𝑊𝑇34𝐿3 =8.95 𝑁/𝑚 [35]. 

Finally, the resonance frequency of the cantilever vibrating 

with the different beads, 𝑓𝐴, (measured in each case using the 

open-loop mode) is used to determine the added mass of the 

beads, 𝑚𝐴, using the expression 𝜔𝐴 = √𝑘 𝑚𝑟_𝐴⁄ , where 𝑚𝑟_𝐴 = 0.24 (𝑚𝐶𝑇 + 𝑚ℎ𝑦𝑑𝑟𝑜(𝜔𝐴)) + 𝑚𝐴 is the effective mass 

concentrated on the tip of the cantilever [41] and 𝑘 is the 

spring constant of the cantilever, calculated from (4) (the 

index A is hereafter used to denote the presence of an added 

mass). By rearranging the previous expression, one obtains: 

 𝑚𝐴 = 𝑘𝜔𝐴2 − 0.24 (𝑚𝐶𝑇 + 𝑚ℎ𝑦𝑑𝑟𝑜(𝜔𝐴)).            (5) 

 

Theoretically, this expression is only valid when the beads are 

perfectly placed at the free end of the cantilever, which is not 

always the case here, as shown in Fig. 2. The position of the 

bead along the major axis of the cantilever changes its 

resonance frequency and, therefore, the added mass calculated 

with (5). References [12] and [41] discuss a method to correct 

for this effect, based in shape of the vibrating mode. In the 

experiments described here, the error between values of mass 

added to the cantilever obtained using both methods was 

found to be within the experimental error of the setup and 

therefore this correction was discarded for the sake of 

simplicity. The diameter of each bead can then be calculated 

from its mass, assuming that the bead is a perfect sphere and 

considering the density of each material [32], [33]. The values 

of masses and diameters obtained with this method are shown 

in Table II and show a good agreement with the values 

obtained from visual inspection. 

III. EXPERIMENTAL RESULTS 

A. Open-loop Mode – Amplitude and Phase Spectra 

Fig. 3 shows a representative example of the experimental 

amplitude and phase spectra obtained by sweeping the 

excitation frequency in the open-loop configuration, for the 

case of the ACST cantilever with the medium polystyrene 

bead attached. The measured amplitude spectrum is fitted to 

the amplitude of the damped harmonic oscillator model, given 

by the function [8], [42]: 

 𝐴 = 𝐻√(𝜔𝐴2 −𝜔2)2+(𝜔𝜔𝐴 𝑄𝐴 )2,              (6) 

 

where A is the measured amplitude, ω is the excitation angular  

frequency of the dither piezo, 𝜔𝐴  is the angular resonance 

frequency of the cantilever with the added bead (the index A 

should be substituted by the index 0 in the case of no added 

mass), Q and H are the quality factors and amplitude of the 

resonant mode, respectively.  The parameters 𝜔𝐴 , 𝑄𝐴 and H 

were used to fit the model of (6) to the experimental amplitude 

spectra, as exemplified in Fig. 3(a). The fitted values of 

resonance frequency, 𝑓𝐴, are used to calculate the mass of each 

bead using (5) and are shown in Table II, along with the 

values of 𝑄𝐴. Fig. 3(b) shows the phase spectra measured in 

open-loop mode and used to estimate the delay due to the 

cantilever and its holder, 𝜏𝐶𝑇 . This delay is the proportionality 

constant between the excitation angular frequency 𝜔 and the 

phase shift between the input excitation signal fed to the piezo 

and the output deflection signal. In open-loop mode the 

feedback loop is open and the measured delay just contains 

information about the mechanical cantilever and holder, 

excluding the influence of all other electronic components. 𝜏𝐶𝑇  

is then estimated from the slope of the phase spectrum far 

from the resonance (to avoid the characteristic jump of -π 
radians of this region) using: 

 𝜑𝑑𝑒𝑙𝑎𝑦 = −𝜏𝐶𝑇𝜔,                 (7) 

 

with 𝜑𝑑𝑒𝑙𝑎𝑦  in radians, refer to Fig. 3(b). An average delay of 𝜏𝐶𝑇 ≈ 13.9 𝜇s was obtained considering the measurements in 

open-loop mode of the cantilever with the different beads. 

 

 
Fig. 3.  Experimental amplitude and phase measured in open-loop mode for 

the cantilever with the medium polystyrene bead attached. a) The damped 

harmonic oscillator model is fitted (red dashed-dotted line) to the measured 

amplitude (solid black line) and the parameters are extracted; b) The delay on 

the propagation of the elastic waves through the holder and cantilever 

materials is extracted from the slope of the phase spectrum away from the 

resonance. The resonance occurs at 156.65 kHz, as indicated in Table II. 

B. Closed-loop Mode – Oscillation frequencies as function of 

signal shift along the loop, for different added masses 

Following the characterization in open-loop mode, the 

dynamics of cantilever with (or without) the beads operating 

in the closed-loop configuration was studied as a function of 

the phase shift imposed by the adjustable phase-shifter, 𝜑𝑃𝑆. 

This shift can be controlled by adjusting the two 

potentiometers R1 and R2 in the phase-shifter shown in Fig. 1 

and by inverting the polarity of the signal fed to the dither 

piezo.  
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TABLE II 

 DIAMETERS AND MASSES OF BEADS ATTACHED OBTAINED WITH THE TWO PROPOSED METHODS.  

 
 

Beads 

𝑫𝒃𝒆𝒂𝒅 ±  𝟎. 𝟓 (𝝁𝒎) 

(optically) 

𝒎𝑨 (kg) 

(sphere) 

𝒇𝑨 (kHz) 

(Eq. (6)) 

𝑸𝑨 

(Eq. (6)) 

𝒎𝑨 (kg) 

(Eq. (5)) 

𝑫𝒃𝒆𝒂𝒅 (𝝁𝒎 ) 

(sphere) 

% error on 

D (m) 

No bead - - - 162.32 200 - -  

Polystyrene 

(ρ = 1050 kg/ m3) 

Small 3.3 1.98 x 10-14 161.15 200 1.83 x 10-14 3.2 3% 

Medium 10.2 5.83 x 10-13 156.65 190 5.25 x 10-13 9.9 3% 

Big 15.7 2.13 x 10-12 145.65 180 1.97 x 10-12 15.3 2.5% 

Glass 

(ρ = 2450 kg/ m3) 

Small 14.5 3.91 x 10-12 131.35 130 4.41 x 10-12 15.1 4% 

Big 22.7 1.50 x 10-11 98.27 50 1.47 x 10-11 22.5 1% 

A typical experimental protocol consisted in fixing the value 

of polarity (p = 1) and the value of R1, and sweeping the value 

of R2 from 0 to 10.2 kΩ. 
Then the value of R2 was kept constant while the value of R1 

was swept until reaching 10.2 kΩ. At this stage, the polarity of 
the piezo was inverted (p = -1) and the potentiometers were 

sequentially swept back to 0 kΩ. For each set of experimental 

conditions the frequency and amplitude of the oscillation were 

recorded. 

By sweeping the values of the resistors and inverting the 

polarity on the piezo, the original signal (deflection signal 

from the four-quadrant detector) can be shifted by at least a 

complete period (-2π radians), before being fed back to the 

dither piezo. 
Fig. 4 presents examples of experimental results obtained with 

the cantilever with the medium polystyrene bead attached.  

  

Fig. 4.  Frequencies and amplitudes of the self-sustained oscillations, using the 

medium polystyrene bead attached to the cantilever. a) Frequencies of self-

excited oscillation as a function of the value of one resistor in the phase-

shifter, for fixed polarities. The dotted lines are guidelines to the eye; b) 

Amplitude of self-oscillations against the corresponding oscillation frequency 

for each set of experimental conditions. The dashed arrows indicate the rapid 

frequency decrease around the sudden jump (from 145.0kHz to 167.5kHz), 

also shown in Fig. 4(a) (purple squares). 

 
Fig. 4(a) shows three series of results obtained when sweeping 

R1 or R2, for fixed polarities. Three distinct behaviors, 

depending on the experimental conditions, can be observed: 

the series represented by the yellow circles shows a steady 

decrease on the values of the oscillation frequencies when R1 

increases, for non-inverted polarity. Inverting the polarity, the 

red triangles show little dependence of the oscillation 

frequencies with the value of the resistor R1. Finally, the 

purple squares show a steep decrease on the values of 

oscillation frequencies for low values of increasing R2, before 

an abrupt jump from low to high frequencies is observed. 

Then, the steep decrease of oscillation frequencies resume, 

until a plateau is reached. On the right panel, the amplitude is 

plotted against the corresponding oscillation frequency, for 

each set of experimental conditions. It can be observed that 

this amplitude curve recovers the shape of the amplitude curve 

measured in the open-loop configuration (Fig. 3(a)) and it can 

also be fitted by the harmonic oscillator model with similar 

parameters. 

The best way to compare all the measured experimental data is 

by showing the shift imposed by the phase-shifter in the loop 

for each set of fixed experimental conditions (𝑅1, 𝑅2 and 𝑝), 

against the corresponding oscillation frequency. This is shown 

in Fig. 5, for each attached bead. The shift imposed by the 

phase-shifter is calculated using (8), explained in detail in 

section IV, which contains all the experimental parameters 

(𝑅1, 𝑅2 and 𝑝). The black dashed line represents the case of 

the cantilever with no added mass and the symbols represent 

the cases with the different beads attached. It can be observed 

that, as the added mass increases, the position of the jump 

moves to more negative values of imposed shift by the phase-

shifter. The case of the green squares, representing the big 

glass bead, is the exception. The reason, as explained in the 

next section, is the periodicity of -360 degrees on the response 

of the self-excited cantilever – in other words, the signal 

circulating in the feedback loop can only be shifted by a 

maximum of -2π radians, before repeating itself. 
It can also be noted that the values of oscillation frequency 

away from the abrupt jump tend to the values of the natural 

resonance frequency of the cantilever with each bead attached 

(see Table II). The data shown in Fig. 4(a) is contained in the 

purple squares of Fig. 5 (medium polystyrene bead). In 

particular, for the case of the experimental data that shows the 

sudden jump in Fig. 4(a) (p = -1, R1 = 0.02 kΩ and R2 sweep), 

one can conclude that by increasing the value of the 

potentiometer R2 while keeping the other parameters constant, 

the frequency of the self-sustained oscillations decrease from 

154 kHz to 145 kHz (moving away from the cantilever 

resonance frequency, see Fig. 4), corresponding to an 

increased phase-shift imposed by the phase-shifter in the loop 

(Fig. 5). At about -250 degrees of phase-shift (Fig. 5, or R2 ~ 

0.01 kΩ in Fig. 4(a)), the oscillation frequency jumps abruptly 

to a higher value of 167.5 kHz (Fig. 4 and Fig. 5). This jump 

corresponds to the oscillations in the loop emerging on the 

right side of the resonance peak of the cantilever, with low 

amplitude (Fig. 4(b)). Finally, further increasing the phase-

shift causes the frequency and amplitude of the oscillations to 

increase, while approaching the natural frequency of the 

cantilever (Fig. 4(b)). 
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Fig. 5.  Cantilever oscillation frequencies plotted against the shift imposed by 

the phase-shifter (calculated with (8)), for each set of experimental conditions 

(R1, R2 and p). The position of the jump moves to more negative values of 

imposed shift as the added mass increases. The values of oscillation frequency 

far from the jump tend to the values of the natural resonance frequency of the 

cantilever with the added masses. (To improve the clarity of the figure the 

case of the small glass bead is not shown). 

 

In conclusion, the experimental data shown in Fig. 4 shows 

that there are sets of experimental conditions that can make 

the response of this system very stable, i.e. insensitive to 

changes in imposed shifting delay by the phase-shifter. There 

are also different operating conditions that can make the 

oscillation frequencies to respond very fast to changes in 

imposed delay, or even to jump abruptly for small variations 

of the imposed delay. The concept behind using this system as 

a versatile mass-sensing platform is the possibility to choose 

the operating conditions to make the system work in one of 

these three distinct ways, and use the masses added to the 

cantilever to change the phase of the system (playing the role 

of the phase-shifter). In the next section these results will be 

modeled and explained.  

IV. ANALYTICAL MODELING AND INTERPRETATION OF THE 

EXPERIMENTAL RESULTS 

An analytical model of the self-excitation loop is developed in 

this section and used to interpret the experimental results 

shown in section III. The model studies the effect of each 

individual circuit element on the phase of the signal 

circulating in the excitation loop and the conditions that must 

be verified to obtain self-sustained oscillations. 

A. Phase of the cantilever vibrating in viscous fluid with an 

arbitrary added mass 

The phase of the cantilever vibrating in a viscous fluid with an 

arbitrary added mass, 𝑚𝐴, is calculated using the transfer 

function of the damped harmonic oscillator shown in (6) [30], 

[41]:                               

  𝜑𝐶𝑇 = −𝑎𝑡𝑎𝑛 ( 𝜔𝛾𝜔𝐴2 −𝜔2) = −𝑎𝑡𝑎𝑛 ( 𝜔(𝑐+𝑐ℎ𝑦𝑑𝑟𝑜)𝑘−𝜔2 (0.24(𝑚𝐶𝑇+𝑚ℎ𝑦𝑑𝑟𝑜)+𝑚𝐴)),  (7) 

where 𝜑𝐶𝑇  is the phase of the cantilever (i.e. between force 

applied to its base and resulting deflection at the free end),  𝛾 = (𝑐 + 𝑐ℎ𝑦𝑑𝑟𝑜) (0.24(𝑚𝐶𝑇 + 𝑚ℎ𝑦𝑑𝑟𝑜) + 𝑚𝐴)⁄  is the 

damping ratio of the cantilever with the added mass 𝑚𝐴, 𝜔 is 

the angular frequency of oscillation and 𝜔𝐴  is the angular 

resonance frequency of the cantilever with the added mass (the 

index A should be substituted by the index 0 and 𝑚𝐴 = 0 in 

the case of no added mass), and with 𝑚ℎ𝑦𝑑𝑟𝑜 and 𝑐ℎ𝑦𝑑𝑟𝑜 given 

by (2) and (3). Finally, 𝑘 is the spring constant of the 

cantilever, determined from (4), and 𝑐 = 𝜔0𝑚𝐶𝑇𝑄0  is the intrinsic 

viscous damping coefficient, obtained from the fit of the 

damped harmonic oscillator model to the experimental 

amplitude of the cantilever with no attached mass in open-loop 

configuration [30], [41]. When the cantilever vibrates in a 

viscous medium this parameter is often negligible compared to 𝑐ℎ𝑦𝑑𝑟𝑜. The dashed-dotted orange curve of Fig. 6 represents 

the cantilever phase calculated numerically using (7), as 

function of the oscillation frequency, for the case of no added 

mass to the cantilever. The geometry of the cantilever shown 

in Table I and the rheological properties of air [40] were 

considered in the simulation. The presence of the cantilever in 

the feedback loop will cause a shift in the interval 0 and -π 
radians between the excitation force and the mechanical 

deflection.  

 

B. Phase of the elements of the electronic circuit 

The elements of the electronic circuit are the gain, the 

saturator, the total intrinsic delay of the loop and the 

adjustable phase-shifter. The saturator is the only nonlinear 

block of the feedback loop. Nevertheless, the output of the 

nonlinear saturator can be well approximated by a sinusoidal 

wave having the same frequency as the input, due to the 

intrinsic band-pass filter characteristics of the resonator 

embedded in the feedback loop. In other words, the presence 

of the resonator in the feedback loop attenuates any low 

frequencies or higher harmonics of the signal caused by 

nonlinear elements. Therefore, the saturator can be substituted 

with an amplitude-dependent gain by using the describing 

function technique [29], [43]. In this case, if the amplitude of 

the input signal is smaller than the threshold σ (representing 

the saturation threshold value defined by the user and shown 

in Fig. 1(a)), the gain is unitary and the output signal is the 

same as the input. When the amplitude of the input is higher 

than σ, the output becomes smaller than the input, which 

contributes to stabilizing the signal that is constantly amplified 

by the feedback gain. The gain 𝐾 and the saturator describing 

function are real functions for each value of amplitude and 

frequency of the self-sustained oscillation [29], [43]. 

Therefore, these elements act only on the amplitude of the 

signal and do not affect its phase. 

Conversely, the intrinsic total delay of the setup introduces a 

natural shift of the signal given by 𝜑𝑡𝑜𝑡 = 𝜏𝑡𝑜𝑡𝜔𝑜𝑠𝑐, with 𝜑𝑡𝑜𝑡 

in radians, where 𝜔𝑜𝑠𝑐  is the angular oscillation frequency. 

The delay 𝜏𝑡𝑜𝑡 is the sum of three distinct contributions, see 

section II. The first two terms were measured in [29], where 
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this electronic circuit was used for the first time (𝜏𝑃𝑆 = 1.0 𝜇𝑠 

and 𝜏𝐸𝑇 = 1.1 𝜇𝑠). The delay introduced by the cantilever and 

holder, 𝜏𝐶𝑇 , was measured in section III from the phase curve 

in the open-loop configuration (𝜏𝐶𝑇 = 13.9 𝜇𝑠). Therefore, 𝜏𝑡𝑜𝑡 = 𝜏𝑃𝑆 + 𝜏𝐸𝑇 + 𝜏𝐶𝑇 = 16.0 𝜇𝑠. The dotted green line in 

Fig. 6 represents the total delay of the system plotted against 

the oscillation frequency. 

Finally, the phase-shifter can be described by the transfer 

function 𝑃𝑆(𝑗𝜔) = 𝑝𝐻1(𝑗𝜔𝑜𝑠𝑐)𝐻2(𝑗𝜔𝑜𝑠𝑐), where 𝐻𝑖(𝑗𝜔𝑜𝑠𝑐) =1−𝑗𝜔𝑜𝑠𝑐𝑅𝑖𝐶𝑖1+𝑗𝜔𝑜𝑠𝑐𝑅𝑖𝐶𝑖 is the transfer function of each stage. Therefore, the 

total shift imposed by the phase-shifter reads: 

 𝜑𝑃𝑆 = 𝜋𝑃 − 2 𝑎𝑡𝑎𝑛(𝜔𝑜𝑠𝑐𝑅1𝐶1) − 2 𝑎𝑡𝑎𝑛(𝜔𝑜𝑠𝑐𝑅2𝐶2),       (8) 

 

with 𝜑𝑃𝑆 in radians, and the parameter 𝑃 used to model the 

inversion of polarity in the dither piezo (for convention, p = 1 

and P = 0 for non-inverted polarity and p = -1 and P = -1 for 

inverted polarity). In this work, 𝐶1 = 237 𝑝𝐹 and 𝐶2 =5.14 𝑛𝐹. Examples of the shift created by one stage of the 

phase-shifter with inverted polarity are shown in blue in Fig. 

6. 

The total shift of the signal imposed by the electronic circuit, 𝜑𝑒𝑙𝑒𝑐 , for fixed experimental conditions, results from 

contributions of all the described elements and reads: 

 𝜑𝑒𝑙𝑒𝑐 = 𝜋𝑃 − 2 𝑎𝑡𝑎𝑛(𝜔𝑜𝑠𝑐𝑅1𝐶1) − 2 𝑎𝑡𝑎𝑛(𝜔𝑜𝑠𝑐𝑅2𝐶2) − 𝜔𝑜𝑠𝑐𝜏𝑡𝑜𝑡.   (9) 

 

C. Phase condition for the existence of self-sustained 

oscillations in the feedback loop 

The existence of self-sustained oscillations in the feedback 

loop implies that the deflection signal repeats itself after a 

complete loop in the self-excitation scheme. Formally, this 

condition can be stated as [28], [29]: 

 𝑦(𝑡) = 𝐾𝜓(𝑎)𝑝𝐶𝑇(𝑗𝜔)𝑃𝑆(𝑗𝜔)𝑒−𝑗𝜔𝜏𝑡𝑜𝑡𝑦(𝑡)⇒ 𝐾𝜓(𝑎)𝑝𝐶𝑇(𝑗𝜔)𝑃𝑆(𝑗𝜔)𝑒−𝑗𝜔𝜏𝑡𝑜𝑡 = 1,                   (10) 

 

where 𝑦(𝑡) represent the probe deflection, 𝐶𝑇(𝑗𝜔), 𝑃𝑆(𝑗𝜔) 

and 𝑒−𝑗𝜔𝜏𝑡𝑜𝑡 are the transfer functions of the cantilever, phase-

shifter and total delay of the setup, respectively, the parameter 𝑝 = ±1 accounts for the polarity applied on the terminals of 

the dither piezo, 𝐾 represent the gain and 𝜓(𝑎) is the 

describing function of the saturator used in the experimental 

feedback loop, with 𝑎 being the amplitude of the saturator 

input [29], [43]. Given that the gain 𝐾 and the describing 

function of the saturator 𝜓(𝑎) [42] are real functions and do 

not affect the phase of the signal, (10) can be decomposed into 

its real and imaginary parts as: 𝐾𝜓(𝑎)𝑅𝑒[𝐺(𝑗𝜔)] = 1,                         (11) 𝐼𝑚[𝐺(𝑗𝜔)] = 0,                                 (12) 

 

where 𝐺(𝑗𝜔) = 𝑝𝐶𝑇(𝑗𝜔)𝑃𝑆(𝑗𝜔)𝑒−𝑗𝜔𝜏𝑡𝑜𝑡. Equation (11) 

shows that the overall loop gain must be unitary, while (12) 

states that the total phase shift around the loop must be an 

integer multiple of 2π radians. By decomposing the total phase 
of the transfer function 𝐺(𝑗𝜔) and using (9), equation (12) can 

be rewritten as: 

 𝜑𝐶𝑇 + 𝜑𝑒𝑙𝑒𝑐 = 0  (𝑚𝑜𝑑 2𝜋).                                  (13) 

 

where 𝜑𝐶𝑇  is the phase of the cantilever oscillating at 𝜔𝑜𝑠𝑐 . 

Equation (13) describes the phase condition for the existence 

of self-sustained oscillations. It shows that the cantilever will 

adjust its phase (and hence its oscillation frequency 𝜔𝑜𝑠𝑐) in 

order to compensate the total phase, 𝜑𝑒𝑙𝑒𝑐, imposed by the 

phase-shifter (function of 𝑅1, 𝑅2 and 𝜔𝑜𝑠𝑐), the polarity on the 

piezo (function of 𝑃) and the total intrinsic delay of the system 

(function of 𝜔𝑜𝑠𝑐  and 𝜏𝑡𝑜𝑡).  

Fig. 6 illustrates how (13) can be used to explain the observed 

experimental results shown in section III. This figure shows 

the phase associated with each element of the circuit plotted 

against the oscillation frequency, as described in section IV.B. 

The overall phase is then calculated by adding all the terms 

together. The values of frequency for which the overall phase 

matches a multiple of -2𝜋 radians are the solutions of (13). 

These solutions are represented by the black circles on top of 

the dashed-dotted red horizontal lines. 

 
Fig. 6.  Interpretation of one of the abrupt jumps in oscillation frequency 

measured experimentally using (13). This figure shows the phase associated to 

each element in the self-excitation loop (cantilever, phase-shifter and total 

intrinsic delay). The gain and saturator are not represented, since these 

elements act only on the amplitude of the signal and not on its phase. As 

shown in Fig. 4(a) and Fig. 5, the phase imposed in the loop by the phase-

shifter can be controlled with the values of R1, and the loop oscillation 

frequency adjusts to satisfy (13). The sudden jump corresponds to the change 

of the solution of (13) from −6𝜋 to −8𝜋 radians.  

 
Fig. 6 illustrates the jump in oscillation frequency resulting 

from systematically increasing the values of the resistor 𝑅1, as 

shown in Fig. 4(a) (for simplicity, only the first stage of the 

phase-shifter is considered with inverted polarity, 𝑃 = −1). It 
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can be observed that for a small value of 𝑅1 (𝑅1 = 2𝑘Ω, 

dotted blue line) the oscillation frequency solving (13) is given 

by 𝑓𝑜𝑠𝑐 = 150 𝑘𝐻𝑧, corresponding to a total phase shift of −6𝜋 radians. This frequency is lower than the natural 

resonance frequency of the cantilever with no added mass 

(𝑓0 = 162.32 𝑘𝐻𝑧). An increment of 𝑅1 increases the shift 

introduced by the phase-shifter in the system. Therefore, the 

oscillation frequency is forced to decrease, and the magnitudes 

of the phase shifts introduced by the cantilever and total delay 

decrease as well to keep the sum constant at −6𝜋 radians. 

When this compensation is no longer possible (case of 𝑅1 =4 𝑘Ω, dashed-dotted blue line) the system jumps to the 

solution −8𝜋 radians with an 𝑓𝑜𝑠𝑐 = 180 𝑘𝐻𝑧. After this 

point, the shifts to lower frequencies resume (case of 𝑅1 =8 𝑘Ω, solid line, 𝑓𝑜𝑠𝑐 = 170 𝑘𝐻𝑧), to compensate for the 

larger shift introduced by the phase-shifter. This process 

describes the shifts and jumps experimentally observed and 

plotted in Fig. 4 and Fig. 5. 

 

D. Self-sustained oscillation frequency as function of added 

mass 

Equation (13) allows to calculate the phase of the cantilever 

for each set of experimental conditions (𝑅1, 𝑅2, 𝑝) and for a 

self-sustained oscillation with frequency 𝜔𝑜𝑠𝑐 . Nevertheless, a 

systematic way of finding which multiple of −2𝜋 radians 

solves such phase condition is required. This task can be 

algorithmically performed by imposing the physical constraint 

that the cantilever phase must be in the range −𝜋 < 𝜑𝐶𝑇 < 0, 

in agreement with the simple harmonic oscillator model. If the 

generic value 𝜑𝑒𝑙𝑒𝑐 is written in the form 𝜑𝑒𝑙𝑒𝑐 = 𝑎 − 𝑛𝜋, 

with 0 < 𝑎 < 𝜋 and 𝑛 = 1, 2, 3, ⋯, the value of the cantilever 

phase is simply given by 𝜑𝐶𝑇 = −𝑎. Table III illustrates this 

procedure for some intervals of values of 𝜑𝑒𝑙𝑒𝑐 , with specific 

examples. 

By imposing that the phase 𝜑𝐶𝑇 = – 𝑎 of the cantilever 

oscillating in closed-loop at frequency 𝜔𝑜𝑠𝑐  is the same as the 

phase of the cantilever modelled as a damped harmonic 

oscillator in (7), one obtains: 

 ( 𝜔𝑜𝑠𝑐(𝑐+𝑐ℎ𝑦𝑑𝑟𝑜)𝑘−𝜔𝑜𝑠𝑐2 (0.24(𝑚𝐶𝑇+𝑚ℎ𝑦𝑑𝑟𝑜)+𝑚𝐴)) = −𝑥                       (14) 

 

with 𝑥 = 𝑡𝑎𝑛(𝜑𝐶𝑇), and 𝜑𝐶𝑇 = – 𝑎, calculated using the 

algorithm shown in Table III. Equation (14) can be rearranged 

in order to obtain an explicit dependence between the added 

mass, 𝑚𝐴, and the self-sustained oscillation frequency, 𝜔𝑜𝑠𝑐: 

 𝑚𝐴 =  (𝑐+𝑐ℎ𝑦𝑑𝑟𝑜)𝜔𝑜𝑠𝑐 𝑥 + 𝑘(𝜔𝑜𝑠𝑐)2 − 0.24(𝑚𝐶𝑇 + 𝑚ℎ𝑦𝑑𝑟𝑜).         (15)    

                    

 

 
 

 

 

 

TABLE III 

PHASE OF CANTILEVER, 𝜑𝐶𝑇, WORKING IN CLOSED-LOOP AS 

FUNCTION OF 𝜑𝑒𝑙𝑒𝑐 

𝜑𝑒𝑙𝑒𝑐 (radians) 
𝜑𝑒𝑙𝑒𝑐 = 𝑎 − 𝑛𝜋 0 < 𝑎 < 𝜋 and 𝑛 = 1, 2, 3, ⋯, 

𝜑𝐶𝑇 = −𝑎 

(radians) [0, −𝜋] 
𝜑𝑒𝑙𝑒𝑐 = −1.0 𝜑𝑒𝑙𝑒𝑐 = −2.5 

𝜑𝑒𝑙𝑒𝑐 = 𝑎 − 𝜋 
𝜑𝑒𝑙𝑒𝑐 = 2.14 − 𝜋 𝜑𝑒𝑙𝑒𝑐 = 0.64 − 𝜋 

𝜑𝐶𝑇 = −2.14 𝜑𝐶𝑇 = −0.64 [−𝜋, −2𝜋] 
𝜑𝑒𝑙𝑒𝑐 = −3.5 𝜑𝑒𝑙𝑒𝑐 = −6.0 

𝜑𝑒𝑙𝑒𝑐 = 𝑎 − 2𝜋 
𝜑𝑒𝑙𝑒𝑐 = 2.78 − 2𝜋 𝜑𝑒𝑙𝑒𝑐 = 0.28 − 2𝜋 

𝜑𝐶𝑇 = −2.78 𝜑𝐶𝑇 = −0.28 [−2𝜋, −3𝜋] 
𝜑𝑒𝑙𝑒𝑐 = −7.0 𝜑𝑒𝑙𝑒𝑐 = −8.5 

𝜑𝑒𝑙𝑒𝑐 = 𝑎 − 3𝜋 
𝜑𝑒𝑙𝑒𝑐 = 2.42 − 3𝜋 𝜑𝑒𝑙𝑒𝑐 = 0.92 − 3𝜋 

𝜑𝐶𝑇 = −2.42 𝜑𝐶𝑇 = −0.92 

 

Finally, the expressions for the hydrodynamics mass and 

damping coefficient, (2) and (3), can be introduced in (15) and 

an analytical expression relating the oscillation frequency of 

the cantilever vibrating in the feedback loop immersed in a 

viscous fluid and with a generic added mass is obtained:      

 𝑚𝐴 =  1𝑓𝑜𝑠𝑐 𝑥 ( 𝑐2𝜋 + 𝐿𝑏2𝜂4 ) + 𝑊𝐿4 √𝜌𝜂𝜋𝑓𝑜𝑠𝑐 (𝑏1𝑥 − 0.24𝑎2) +𝑘(2𝜋𝑓𝑜𝑠𝑐)2 − 0.24 (𝜋4 𝜌𝑊2𝐿𝑎1 − 𝑚𝐶𝑇).                              (16)  

 

The intrinsic damping coefficient, c, is assumed constant for 

all range of added masses, which is an approximation (see the 

decrease of the quality factors, QA, with the increase in added 

mass in Table II). Nevertheless, while vibrating in air, the 

quality factors are high enough for this approximation to be 

reasonable. On the other hand, when the cantilever is 

immersed in a viscous fluid, c is negligible when compared 

with 𝑐ℎ𝑦𝑑𝑟𝑜. 

According to the model developed here, (16) is a necessary 

condition for the existence of self-sustained oscillations in the 

feedback loop, but it does not provide any information on the 

stability of these solutions. This fact becomes relevant due to 

the presence of the periodic parameter 𝑥 = 𝑡𝑎𝑛(𝜑𝐶𝑇) in (16). 

In this case, different values of oscillation frequencies 𝑓𝑜𝑠𝑐 will 

satisfy (16) for the same value of added mass 𝑚𝐴. The Nyquist 

Stability Criterion [43] can be used as a secondary criterion to 

assess the stability of the solutions: it states that the only stable 

solution of the system is the one with the highest real part of 

the transfer function 𝐺(𝑗𝜔) = 𝑝𝐶𝑇(𝑗𝜔)𝑃𝑆(𝑗𝜔)𝑒−𝑗𝜔𝜏𝑡𝑜𝑡 (refer 

to [29, 30] for examples where this criterion has been 

successfully exploited to understand the stability of viscosity 

sensors). 

The dependence of the oscillation frequency 𝑓𝑜𝑠𝑐 on the mass 𝑚𝐴 attached to the cantilever, given by (16), is plotted on the 

left panel of Fig. 7. A constant value of 𝑅1 = 0.02 𝑘Ω and 

different values for 𝑅2 are considered in these examples, for 

both values of polarity. The geometrical and dynamical 

parameters of the cantilever reported in Table I and the 

rheological parameters of the air [40] were used in the model. 

In general, it can be observed that the oscillation frequencies 

decrease with the increase of the added mass, for the three 

different curves (𝑅2 = 10.12 𝑘Ω, 𝑅2 = 0.32 𝑘Ω and 𝑅2 =0.02 𝑘Ω, respectively green, orange and purple lines). In 

addition, the solutions of (16) are shown to be periodic, with 

branches of solutions for different ranges of oscillation 
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frequencies. The sudden jumps of the oscillation frequencies 

observed experimentally correspond to a change of the 

solution branch, for a particular set of conditions. As 

explained, the real part of the transfer function 𝐺(𝑗𝜔) is 

plotted on the right side of Fig. 7, considering the same 

operating conditions, to help deciding the stability of each 

solution branch. To validate the detailed model, the values of 

oscillation frequencies measured experimentally using the 

same conditions than those used to plot (16) are presented in 

Table IV. This experimental data is added to Fig. 7 as colored 

circles and show a very good agreement with the respective 

modeled results. Finally, the dependence between the 

resonance frequency and the added mass of the same 

cantilever working in the traditional open-loop mode, given by 

(5), is also plotted in Fig. 7, for comparison with the closed-

loop model.  

Fig. 7(a) shows the case of non-inverted polarity (𝑝 = 1). In 

this case, the solution of (16) is univocal for small added 

masses and there is no possible jump. For an added mass of 

mA ~ 2.0 x 10-12 kg a second branch of solutions of (16) 

appears at lower frequencies. A possible jump between these 

two solutions branches is then illustrated for mA ~ 4.0 x 10-12 

kg (purple squares on top of the purple line of 𝑅2 =10.12 𝑘Ω). In this case, the real part of the transfer function 𝐺(𝑗𝜔) becomes larger for the solution at 𝑓𝑜𝑠𝑐 = 124 𝑘𝐻𝑧 than 

the solution at 𝑓𝑜𝑠𝑐 = 158 𝑘𝐻𝑧, and the former becomes the 

stable branch. 

Fig. 7(b) shows the case of inverted polarity (𝑝 = −1). The 

first thing that can be noted is that the solutions of oscillation 

frequencies are complementary to those shown in Fig. 7(a). In 

this case, the modeled operating conditions allow the 

occurrence of a jump at very small added masses (mA ~ 2.0 x 

10-14 kg). This is the jump observed experimentally in Fig. 5 

for the case of the small polystyrene bead (red circles). In 

addition, the jump shown in Fig. 5 for the case of the big glass 

bead (green squares) is also presented, for mA ~ 1.5 x 10-11 kg. 

Both jumps are indicated by the orange squares. 

Fig. 7 shows that the results predicted by the proposed 

analytical model are in close agreement with the experimental 

measurements and that the model describes each aspect of the 

dynamical response of the system observed in Figs. 4 and 5. A 

deeper analysis of the model and data presented in this figure 

suggests the possibility of using this platform in three distinct 

ways, by adjusting the behavior of the sensor via 𝑅1, 𝑅2 and 𝑝. 

The first possibility is to use this device as a continuous mass 

sensor, whose oscillation frequency depends on the added 

mass to the cantilever. It is shown that for certain operating 

conditions, the response of this sensor follows the response of 

the microresonator working in open-loop (represented in Fig. 

7 by the dashed-dotted magenta line representing (5)). Thus, 

the ultimate sensitivity of the sensor working in closed-loop is 

the same as the microresonator working in open-loop, but with 

better signal-to-noise ratio and resolution, typical of the 

closed-loop setups. In the case of this work, added masses 

of the order of 10-14 kg (small polystyrene bead) were easily 

detected with a shift in frequency of around 150 Hz. Note that 

such added mass is well within the “flat” region of (5) (open-

loop mode), where small resonance frequency variations 

would be difficult to detect due to the poor signal-to-noise 

ratio associated with the typical open-loop setups.  

 
TABLE IV 

EXPERIMENTALLY MEASURED DATA PLOTTED IN FIG. 7 AS 

COLORED CIRCLES 

R1 = 0.02 kΩ 

R2 (kΩ) 

 

No mass 

 

Small Poly 

~ 2.0 x 10-14 

kg 

Medium Poly 

~ 5.0 x 10-13 

kg 

Big Poly 

~ 2.0 x 10-12 

kg 

Big Glass 

~ 1.5 x 10-11 

kg 

p = 1 

0.02 - - 154.82 kHz - - 

0.32 159.33 kHz 160.56 kHz - 146.23 kHz - 

10.12 - - - - 85.19 kHz 

p = -1 

0.02 - 150.59 kHz - - - 

0.32 166.98 kHz - 165.09 kHz 139.57 kHz - 

10.12 - - 158.3 kHz - 99.23 kHz 

 

 

 
Fig. 7.  Predictions of (16), showing the self-sustained oscillation frequencies 

as function of the mass added to the cantilever. Predictions from a simple 

externally excited harmonic oscillator given by (5) are shown with dashed 

lines, for comparison. a) Non-inverted polarity, p = 1; b) Inverted polarity, p = 

-1. Insets on the right panel: real part of the transfer function 𝐺(𝑗𝜔) =𝑝𝐶𝑇(𝑗𝜔)𝑃𝑆(𝑗𝜔)𝑒−𝑗𝜔𝜏𝑡𝑜𝑡, used to identify the stable solution according to the 

Nyquist Stability Criterion. The coloured circles indicate the respective 

experimental measurements (Table IV), while the squares indicate possible 

jumps. Three potential working modalities (continuous sensor, threshold 

sensor and stable resonator) are illustrated.  

The second possibility is to use this platform as a threshold 

sensor, in which a small variation of mass causes a sudden 

jump of the oscillation frequencies. Furthermore, it is shown 

that the location of the abrupt jump can be positioned in the 

range of added masses of interest by controlling the operating 

conditions, and in particular by tuning the potentiometers 𝑅1 

and 𝑅2 in the phase shifter.  
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Finally, the third possible way of operating this platform is as 

a stable microresonator, whose oscillation frequency is almost 

unaffected by the added mass. Fig. 7 shows regions where the 

oscillation frequency of the resonator completely deviates 

from the response characteristic of the open-loop mode, given 

by (5), and is almost constant for a wide range of added 

masses. A resonator insensitive to environmental conditions 

can be used for applications where, for example, a stable 

signal is required for precision timing and frequency 

references [44]. In reference [30] it was shown that, for 

specific operating conditions of this platform, the 

microresonator can also be insensitive to the viscosity of the 

medium. Such a device could therefore potentially be used to 

decouple the effect of simultaneous external factors acting on 

the resonator, for example a chemical reaction where the 

added mass to the cantilever and the viscosity of the medium 

change simultaneously [45].   

V. CONCLUSIONS 

The dynamical response of a microcantilever self-oscillating 

in a feedback loop is experimentally studied as a function of 

the mass added to the cantilever and as a function of the phase 

shift of the signal along the loop. An analytical model capable 

of explaining the observed phenomena is proposed by 

describing the microcantilever as a variable mass harmonic 

oscillator immersed in a viscous fluid and by exploiting a 

phase condition for the existence of self-sustained oscillations. 

The experimental and modeled results suggest that this 

platform can be used in three distinct modes, according to the 

chosen operating conditions. The first working mode is 

continuous mass sensing. In this case, the oscillation 

frequency changes smoothly with the mass added to the 

cantilever, in a similar fashion and with the same ultimate 

sensitivity as the cantilever working in traditional open-loop 

mode. Nevertheless, the closed-loop scheme allows obtaining 

a better resolution and signal-to-noise ratio than the traditional 

open-loop technique. The second working mode is threshold 

mass sensing. In this case, an arbitrarily small added mass can 

induce a sudden jump of the oscillation frequency. 

Furthermore, the location of the abrupt jump can be positioned 

in the range of added masses of interest by controlling the 

phase of the cantilever with the adjustable phase-shifter. This 

feature can be extremely useful in applications such as point-

of-care diagnosis, where the presence of an analyte of interest 

above a certain concentration must be assessed. Finally, this 

platform can also work as a stable microresonator, whose 

oscillation frequency is unaffected by some environmental 

condition (added mass, viscosity or density). This feature can 

prove to be extremely important in applications where a stable 

resonance frequency, independent of the external factors, is 

required, or to decouple the effect of competing external 

parameters on the dynamical response of the resonator. These 

degrees of flexibility are not available with current 

microcantilever-based mass sensors. 
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