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ABSTRACT

Brain-inspired neuromorphic computing has attracted much attention for its advanced computing concept. However, the mas-
sive hardware cost in fully-connected architectures makes it challenging to build a large-scale neuromorphic system. In this
work, we report a compact, programmable, versatile, and scalable neuromorphic architecture. To demonstrate the concept of
the neuromorphic architecture, a neuromorphic system consisting of four cores is implemented on an FPGA platform. On the
one hand, the neuromorphic system is extremely compact and hardware-saving. The computing block based on a simple digital
leaky Integrate-and-Fire (LIF) model only costs 69 logic elements (LEs); only one physical neuron is implemented in each core,
and it can be reused as hundreds of virtual neurons by time-division-multiplexing; only four 9-bit synaptic weights are assigned
to each neuron, which effectively alleviates the hardware explosion in fully-connected architecture. On the other hand, the
neuromorphic system is programmable and versatile, and can perform different neural network computing. The neuromorphic
system mapped with a three-layer feedforward network successfully recognizes the MNIST handwritten digits with an accuracy
of 96.26%, and it also effectively realizes different convolution operations which are basic computing operations in convolutional
neural networks. Last but not least, each neuromorphic core has its own router module, making it convenient to scale up.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5052609

I. INTRODUCTION

The human brain, consisting of 1010-1011 neurons, is one
of the most complex systems known at present.1 Although
Von-Neumann computers have developed rapidly according
to Moore’s law in the past half-century, they work funda-
mentally different from the human brain, making them low
efficiency, high power consumption, and poor performance
in implementing the brain behaviors.2 Recently, neuromor-
phic computing system inspired by the brain has received
much attention.3 Since the emerging of neuromorphic com-
puting concept, analog CMOS technology has been widely
used to develop neuromorphic cores, such as the Neurogrid,4

the BrainScaleS,5 and the ROLLS.6 Analog neurons are com-
pact, but are poor in programmability and are challenging to
multiplex.7 In comparison, the digital CMOS technology shows

high multiplex capability, programmability and scalability, and
thus neuromorphic platforms based on digital CMOS/FPGA
technologies have received much attention.8 In 2014, IBM
reported the TrueNorth neuromorphic core based on 28-nm
digital CMOS technology, which employs a stochastic leaky
Integrate-and-Fire neuron as the basic building block.9,10 D.
Ma et al. reported the Darwin neuromorphic chip based on
180-nm digital CMOS technology,11 which consists of a RISC
CPU and a neural-network core based on the LIF neuron
model.

Compared with CMOS technology, FPGA is a competitive
candidate for implementing digital neuromorphic platforms
because of its short design cycle, low cost, high flexibility, and
excellent stability. In 2011, A. Cassidy proposed an FPGA-based
array of LIF neurons,12 and an FPGA-based large-scale neuro-
morphic architecture.13 In 2015, D. Wang reported an FPGA
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based multicore neuromorphic system with a scalable rout-
ing network.14 In 2017, E. I. Guerra-Hernandez reported an
FPGA-based neuromorphic locomotion system for three dif-
ferent legged robots.15 Y. Qi et al. reported an FPGA-based
multicore neuromorphic system for ECG and edge detection
application.16 However, for a single neuron may cost mas-
sive hardware resource, and the hardware cost of synapses
increases drastically with the number of neurons in a fully-
connected architecture, it is full of challenge to implement a
neuromorphic systemwhose scale is comparable to that of the
human brain.

In this work, a compact, programmable, versatile, and
scalable digital neuromorphic platform is proposed and
implemented on an FPGA platform. Firstly, the neuromor-
phic core is hugely compact: 1) the basic building block is
constructed based on a simple digital LIF neuron model,
which only costs 69 logic elements (LEs); 2) only one
programmable neuron is physically implemented in a neu-
romorphic core, while it is able to be reused as 256 LIF
neurons, which theoretically reduces the hardware cost of
neurons by 255 times; 3) each neuron shares four different
synaptic weights, which effectively avoids the quasi-square
growth of synapse hardware cost with neuron number in
fully-connected architectures. Secondly, the neuromorphic
system is programmable and versatile. Critical properties of
the building block, such as threshold, leaky, and reset modes,
are designed to be configurable, allowing the neuromor-
phic system to be able to map various types of neural net-
work. As examples, fully-connected multilayer spiking neural
network and different convolution operations are success-
fully implemented on the neuromorphic platform, indicating
the feasibility of the way to build the neuromorphic system.
Thirdly, a programmable router module is packaged in the
compact neuromorphic core, making the neuromorphic sys-
tem easy to be scaled up. This work may provide a useful
reference for building extremely large-scale neuromorphic
systems.

II. SYSTEM DESIGN

The neuron, as the fundamental computing element, fun-
damentally determines the functionality and scalability of the
neuromorphic system. Among the various neuron models (i.e.,
the MPmodel,17 the Hodgkin-Huxley model,18 and the Izhike-
vich model19), the leaky integrate-and-fire (LIF) model20 is
widely used in computational neuroscience and neuromor-
phic computing, because of its highly biological plausibility
and excellent computing efficiency. In order to save hardware
cost, and to improve computational efficiency and large-scale
scalability, a simple digital LIF neuron model is used in this
neuromorphic system, whosemembrane potential is governed
by:

Vj(t) = Vj(t − 1) +
n∑

i

(Oi,j ×wi,j) + Lj (1)

Vj =





Vj(t)
���Vj

��� < Hj

Rj
���Vj

��� ≥ Hj

(2)

where j and i are the indexes of post- and pre-synaptic neu-
rons, respectively; wi ,j is the synaptic weight; Vj(t) and Vj(t

− 1) are the membrane voltage in the tth and (t − 1)th timestep,
respectively; Oi ,j denotes whether the ith pre-synaptic neuron

fires a spike in the (t − 1)th timestep; Lj denotes the leakage
voltage; Hj is the firing threshold; and Rj is the reset volt-
age. If the membrane potential is greater than or equal to Hj,
the neuron fires a spike and resets its membrane potential to
the Rj.

In the present work, a 4-core neuromorphic system based
on the simple LIF neuron model was implemented on a Terasic
DE2-115 FPGA board. Figure 1(a) shows the overall architec-
ture of the neuromorphic system, which consists of a System
Controller, a serial peripheral interface (SPI) Controller, and a
two-dimensional Core Array. The SPI Controller module acts
as the data exchange channel between the system and the host
FPGA. The System Controller is used to set up the required

FIG. 1. (a) Schematic of the neuromor-
phic platform frame; (b) computing pro-
cess of the neuromorphic system.
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ALGORITHM 1. Method for implementing neuromorphic computing.

Input: Network structure and the number of layers (S, L); network input data {Xt }Tt ; the number

of neurons in layer l {Nl }L
l=1
; parameters of layers ({wt,l

i,j
,Vt,l

j
,Ot,l−1

i
,Ll

j
,Hl

j
,Rl

j
}
T,L,Nl−1Nl ,
t,l=2,i=1,j=1

); pre-synaptic

neurons type {Yl
i
}
L,Nl−1

l=2,i=1
; computing window T;

Output: Inferencing results
Forward (inference):
1: Construct the network on the platform according to S, L
2: for t =1 to T do
3: Ot,1 ← Xt // Input layer receives input data
4: for l =2 to L do // Hidden and output layers process data
5: for j = 1 to Nl do // Each neuron process sequentially
6: for i =1 to Nl−1 do // Integrate each synapse

7: if Ot,l−1
i

= 1 then // Activated when the pre-synaptic neuron fire spikes

8: Update wt,l
i,j
according to Yl−1

i

9: Update Vt,l
j
,Ot,l

j
according to Eq. (1)–(2)

10: end if
11: end for
12: end for
13: end for
14: end for

operating environment for the Core Array. The System Con-
troller determines which cores are involved in the computing
process. During the system initialization process, configura-
tion data is sent to the System Controller from the host FPGA
under control of the SPI controller, and then rearranged and
written to the Configuration Manager of the target core(s).

There are two registers (Register 1 and Register 2) in the
System Controller. The Register 1 (Core Marker) is used to
mark the required core(s), while the Register 2 (Read Location)
is used tomark the core(s) output to the host FPGA. Configura-
tion information is written to the Registers 1 and 2 before core
initialization via theWrite Configuration Manager. The System
Controller sequentially checks each bit of the Register 1. Once
a high-level signal is detected, the configuration information
is configured into the corresponding core. After completing a
round of neuron switching, the whole system needs to wait
for 25 clock cycles for the 255th neuron’s spikes to reach the

target synapses. This action is realized by the System Delay
Unit. The cores of the Core Array can communicate with each
other via the routing network by event packets, and the leav-
ing routing interfaces are reserved around the Core Array for
future system scale up. The detailed neuromorphic computing
process is given in Figure 1(b), and the pseudo code for imple-
menting memory-efficient neuromorphic computing is given
in Algorithm 1.

Figure 2(a) shows the schematic of the neuromorphic
core. It consists of a Neuron module, a Synapse Array Man-
ager, a Time-Multiplexing Controller, a Sequencer, a Config-
uration Manager and a Router. Figure 2(b) shows the logic
schematic of the Neuron module. Logically, the Neuron mod-
ule only consists of a comparator, an adder, 2 registers, and
5 selectors; physically, the hardware-efficient neuron mod-
ule only costs 69 LEs. The Neuron module (together with the
Synapse Array module) can realize synaptic integration, leak

FIG. 2. (a) Schematic of the neuromorphic core; (b) logic schematic of the Neuron module.
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subtraction, threshold checking, spike firing and reset process
described in equations (1) and (2). The Synapse Array Manager
and the Neuron module can be reconfigured by the Configu-
ration Manager under control of the Time-Multiplexing Con-
troller, and the Neuron module can be reused as 256 neurons
(each neuron has 256 synapses). The Sequencer, consisting of
16 registers in 256-bit width and hardware logic units for data
writing/reading/counting, can temporarily store input data
from the host FPGA or other core. The Configuration Manager
manages the configuration information, typically including the
membrane potential, the type of synapse, the synaptic weight,
the threshold voltage, the reset voltage, and the leakage volt-
age. A neuron can be configured to four 9-bit signed integer
weights, and the specific weights are assigned to the corre-
sponding synapses by the Neuron module and the Synapse
Array Manager, which largely reduces the weight storage
space. The spikes generated by a particular neuron can be
sent to any target synapses in the Synapse Array by the Router
module. Once a spike is generated in the Neuron module, its
router encapsulates the information about the target core,

the target neuron, and the target synapse into a packet and
then forwards to the target core.

III. RESULTS AND DISCUSSIONS

The proposed neuromorphic platform was programmed
in Verilog and compiled using Quartus II, and implemented
on Terasic DE2-115 FPGA board. After compilation, placement,
and routing, the DE2-115 board operates at 100 MHz. Different
neural networks can bemapped to the versatile reconfigurable
neuromorphic platform. Here, a fully-connected multi-layer
neural network and convolution operations are demonstrated
as examples.

Firstly, handwritten digit recognition is implemented with
a multi-layer feedforward neural network on the neuromor-
phic platform. The images of 28×28 pixels from the MNIST
handwritten digital database are resized in 16×16-pixel images.
A three-layer artificial neural network consisting of a 256-
neuron input layer, two 256-neuron hidden layers, and a 10-
neuron output layer was trained with the 16×16 pixel images

FIG. 3. (a) Schematic of the 3-layer spiking neural network
implemented on the neuromorphic platform; (b) depen-
dence of recognition accuracy on iteration times neuromor-
phic platform; (c) average recognition matrix on the test set
digits of MNIST database.
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by the back-propagation algorithm on the Matlab, and the
Rectified Linear Unit (ReLU) activation function and zero
bias were applied to all neurons during the training pro-
cess.21 The trained artificial neural network was then con-
verted into a spiking neural network of the same size. Pixel
grayscale information encoded by Poisson-distributed 32-bit
spike trains (a 16×16-pixel image corresponds to 256 spike
trains) were fed to the spiking neural network as input
signal.22

In an iteration, one bit in each spike trains was pro-
cessed, and thus the 32-bit spike trains need to be iterated 32
times. The spiking neural network was mapped into the FPGA-
based neuromorphic platform, as schematically illustrated
in Figure 3(a). Spike trains were temporarily stored in the
Sequencer. After the spike trains stored in the Sequencer were
fed to the Neuron module, the System Controller switches
this core into waiting state and updates the data of the
Sequencer via the Update Sequencer module. After complet-
ing the updating process, the Cores Start module resends a
start signal to this core to continue data processing. In each
iteration, if any neuron in the output layer fires a spike, the
corresponding spike sum will be added by 1, and output neu-
rons with the most significant spike sum will be regarded as
the predicted result.

The trained artificial neural network can recognize hand-
written digits from the MNIST test set with an accuracy
of 97.94%. Figure 3(b) shows the dependence of the recog-
nition accuracy on the number of iterations. The recogni-
tion accuracy increases gradually from ∼10% to 96.26% after
iterating 32 times, indicating little degrade compared with

that of the artificial neural network. As shown in Figure 3(c),
the FPGA-based neuromorphic platform can successfully rec-
ognize the digits, and the recognition accuracy is 96.26%.
The small degrade of the recognition accuracy (by ∼1.5%) was
induced by the simple weight storage scheme (4 signed integer
weights for each neuron). However, it is acceptable and cost-
effective considering the storage compactness, the computing
simplicity, and potential scalability it brings.

The versatile neuromorphic platform is suitable for imple-
menting convolution operations. Convolution operations on
images including edge detection and high-pass filtering are
performed on the neuromorphic platform, as schematically
shown in Figure 4(a). Variables nn and k_s respectively rep-
resent the index of neuron and the kernel size (convolu-
tional window size). Figure 4(b) shows the original 256×340-
pixel image used for demonstrating convolution operation.
Pixel grayscales are encoded by Poisson-distributed 32-bit
spike trains. Each output neuron of the convolutional layer
is mapped to a single neuron of the Neuron module, and
all cores simultaneously process the corresponding convolu-
tional windows. Figure 4(c) and (d) show the images processed

with a 3×3 edge detection kernel (



−1 0 −1
0 4 0
−1 0 −1


) and a high-pass

filter (



−1 −1 −1
−1 9 −1
−1 −1 −1


), respectively. The neuromorphic platform

can successfully realize different convolution operations, and
thus it holds the potential to map the popular convolutional
neural networks, which is our ongoing work.

FIG. 4. (a) Schematic of the convolution operation imple-
mented on the neuromorphic platform; (b) original image for
processing. Photo of author Z. W. Liu, taken by author C. M.
Zhang; (c) image processed with an edge detection kernel;
(d) image processed with a high-pass filter.
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TABLE I. Comparison of previous work and this work.

Platform Weights Clock LE/Neuron Network Time Power

B. Glackin et al. 200523 N2 100Mhz 63 100×100×100 115.7s N/A
A. Cassidy et al. 200713 N2 50Mhz 431 N/A N/A N/A
Y. J. Qi et al. 201416 N2 50Mhz 115 279×50×16 140000s N/A
This work N × 4 100Mhz 69 256×256×10 370ms 293mW

Thanks to the compact, simple LIF neuron model,
memory-saving weight storage scheme, and hardware-saving
multiplexing scheme, the neuromorphic platform has excel-
lent memory efficiency. Table I shows the comparison of the
present work and pioneer research works. A physical neuron
in this work only costs 69 LEs, which is close to that of the
neuron that only has positive threshold property in Ref. 23;
while the present platform completes a neural network com-
puting task with only 370 ms and 293 mW, which is time-
and energy-efficient. At the same time, the present platform
reduces the number of synaptic weights from N2 to N × 4
(N denotes the total number of neurons in the system).
Besides, fully-connected spiking neural network implemented
on the neuromorphic platform is also 64×morememory band-
width efficient than that on conventional CPUs (Intel i5-4200U
CPU). The memory bandwidth required to complete single
neuromorphic computing can be calculated by F ×

∑n
i (Ni × Pi)

(F is the clock frequency, Ni is the number of synapses neu-
ron i owns, and Pi represents the bit width of all parame-
ters neuron i owns including synaptic weight, leaky weight,
and etc.). All cores in the FPGA-based neuromorphic platform
have independent storage space and neuromorphic comput-
ing unit, and is able to make full use of FPGA parallel comput-
ing. The neuromorphic platform has an average 10.7× speedup
over the Matlab implementation on CPU. The Power Analyzer,
a powerful analysis and optimization tool provided by Altera,
is used to estimate power consumption of the FPGA-based
neuromorphic platform. The FPGA-based neuromorphic plat-
form is 51.23× more energy efficient on average than the Intel
i5-4200U CPU.

IV. CONCLUSIONS

We present a scalable and reconfigurable neuromorphic
platform implemented on an FPGA board whose neuron is
based on the leaky Integrate-and-Fire model. Each core of
the neuromorphic platform shares the same physical circuit
to realize the neuromorphic computation of 256 neurons. This
neuromorphic platform can achieve high-accuracy (96.26%)
handwritten digit recognition with only four types of synap-
tic weight for each neuron. The neuromorphic platform can
also perform convolution operations, making it promising for
mapping convolution neural networks. Moreover, to imple-
ment fully-connected neural networks of the same size, the
neuromorphic platform is 64× more memory bandwidth effi-
cient, 51.23× more energy efficient, and 10.7× speedup than
Intel i5-4200U CPU. This work provides a practical and feasi-
ble method for the construction of large-scale neuromorphic
systems.
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